
Finance and Economics Discussion Series 
Divisions of Research & Statistics and Monetary Affairs 

Federal Reserve Board, Washington, D.C. 
 
 
 
 
 
 

A Fully-Rational Liquidity-Based Theory of IPO Underpricing 
and Underperformance 

  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Matthew Pritsker 
2006-12 

 
NOTE:  Staff working papers in the Finance and Economics Discussion Series (FEDS) 
are preliminary materials circulated to stimulate discussion and critical comment.  The 
analysis and conclusions set forth are those of the authors and do not indicate 
concurrence by other members of the research staff or the Board of Governors.  
References in publications to the Finance and Economics Discussion Series (other than 
acknowledgement) should be cleared with the author(s) to protect the tentative character 
of these papers. 



A Fully-Rational Liquidity-Based Theory of IPO

Underpricing and Underperformance

Matthew Pritsker∗

First version: September 9, 2004

This version: February 21, 2006

Abstract

I present a fully-rational symmetric-information model of an IPO, and a dynamic
imperfectly competitive model of trading in the IPO aftermarket. The model helps
to explain IPO underpricing, underperformance, and why share allocations favor large
institutional investors. In the model, underwriters need to sell a fixed number of shares
at the IPO or in the aftermarket. To maximize revenue and avoid selling into the af-
termarket where they can be exploited by large investors, underwriters distort share
allocations towards investors with market power, and set the IPO offer price below the
aftermarket trading price. Large investors who receive IPO share allocations sell them
slowly afterwards to reduce their trade’s price-impact. This curtails the shares that
are available to small price-taking investors, causing them to bid up prices and bid
down returns. In some simulations, the distorted share allocations and slow unwinding
behavior generate post-IPO return underperformance that persists for several years.
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DC 20551. Matt may be reached by telephone at (202) 452-3534, or Fax: (202) 452-3819, or by email at
mpritsker@frb.gov.



1 Introduction

Two of the important functions of a financial system are to facilitate risk sharing among

investors and capital formation by firms. The initial public offering (IPO) process performs

both functions by allowing the initial owners of a firm to raise capital by transferring and

sharing some of the firm’s risk with the wider investing public. If the IPO process was fully

efficient, an IPO should maximize the issuer’s proceeds, the investors who most value the

shares should receive them, and in the absence of news or private information, there should

be little trade after the shares are allocated. Additionally, the fact that a stock is a new

issue should not influence its risk-adjusted expected returns in aftermarket trading.

Relative to this benchmark, U.S. IPOs appear to be highly inefficient: post-IPO share

trading is initially very heavy1, and the allocation price of U.S. IPOs is on average nearly

19 percent below the closing price on the first day of trade [Ritter and Welch (2002)]. This

underpricing is an apparent loss to issuers who would prefer to have sold at the higher

price in the IPO aftermarket. The IPO process has other inefficiencies: allocations tends

to favor institutional investors2 and, after the first trading day, the returns of new issues

underperform on a market and characteristic adjusted basis for a period of time as long as

three years [Loughran and Ritter (1991), Ritter and Welch (2002)].3

This paper presents a fully rational, symmetric information, theoretical model of IPO

share allocation and price-setting, and of trading in the IPO aftermarket. The paper is built

around the idea that trading conditions in the aftermarket may simultaneously explain un-

derpricing, underperformance, and why allocations favor institutional investors. The model

of the aftermarket is imperfectly competitive in the sense that there are some “large” in-

vestors who have market power, that is their trades move prices and they account for this

when trading. The IPO is modeled as a bargaining game between the underwriter and the

aftermarket investors: The underwriter must sell a fixed number of shares at the IPO or

shortly afterwards in aftermarket trading. To do so, he sets a uniform IPO offer price and

offers take it or leave it share allocations to the investors. Any shares that go unallocated are

sold by the underwriter in aftermarket trading that follows the IPO. Large investors’ market

1 Ellis, Michaely, and O’Hara’s (2000) study of NASDAQ IPO’s, found that turnover on the first trading
day is equal to 1/3rd of the turnover that a NASDAQ stock experiences over a year.

2Institutional investors receive more favorable allocations than retail investors in the most underpriced
issues.

3There is an ongoing debate within the empirical literature concerning whether IPO underperformance
exists and whether it is statistically significant. For a discussion of these issues see Viswanathan and Wei
(2004), de Jong and Dahlquist (2003), Schultz (2003), Loughran and Ritter (2000), and Brav, Geczy, and
Gompers (2000).
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power in the aftermarket gives them bargaining power at the IPO because they can turn

down their share allocation and force the underwriter to sell into the aftermarket, where large

investors can influence (and lower) the price. To avoid this outcome, the underwriter distorts

IPO asset allocations towards investors with market power, and gives them a favorable IPO

offer price.4

From the initial asset allocations at the IPO, investors trade towards efficient asset allo-

cations along an equilibrium transition path. Because large investors’ trades move prices, the

market is not perfectly liquid from their perspective, and this illiquidity influences returns

and asset prices. In particular, when initial asset allocations favor large investors, along the

equilibrium transition path large investors sell slowly through time to minimize the price

impact of their trades. This restricts the supply of shares that is available to price-taking

small investors. As a result small investors bid up the new issue’s price, and because they

don’t expect to acquire many assets in the short-term, they bid down its expected returns,

causing return underperformance. The magnitude and duration of the underperformance

depends on the severity of illiquidity in the aftermarket, and on how the assets are allocated

at the IPO.

There is a voluminous related literature on IPO underpricing, underperformance, and

share allocations at the IPO.5 Most of the theoretical models in this literature explain only

one or two of these phenomena. Only behavioral models can explain all three.6 Relative

to this literature, this paper makes three contributions. First, to the best of my knowl-

edge, it presents the only fully-rational theoretical model to date that can explain all three

phenonomena. Second, the model shows that these phenomena are related to the compet-

itiveness of the aftermarket, which in turn can be related to the distribution of the size of

the investors that participate in the IPO or trade in the aftermarket (as measured by their

wealth, or assets under management). Therefore, summary statistics of the distribution of

investor size constitute a new set of state variables that can be used to test theories of IPOs,

and to distinguish the predictions of this model from the related literature. Finally, this

4In related work, Hoberg (2004) presents a model in which underpricing results from imperfect competition
in securities underwriting.

5 In the dominant strand of the underpricing literature, underpricing occurs because information-
asymmetries cause adverse selection in allocating shares [Rock (1986)], or, because underpricing is needed
to entice informed investors to reveal information to the underwriters, as in the bookbuilding models that
starts with Benveniste and Spindt (1989). Other theories of underpricing are based on agency problems in
which the underwriters objective function departs from that of the issuer (Boehmer and Fishe, 2000), (Bias
et. al. 2002), (Loughran and Ritter, 2004). For extensive reviews of this literature, see Ritter and Welch
(2002), and Ljungvist (2004).

6Ritter and Welch (2002) claim there are no rational theoretical models that explain underperformance.
Ljunqvist, Nanda, and Singh (2003) present a behavioral model that generates all three phenomena.
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paper helps to fill a gap in the small literature on IPOs and liquidity. Within that literature,

Ellul and Pagano (2003) present a theoretical model in which markets are illiquid, but com-

petitive. Within their framework, they show that underpricing is required to compensate

IPO participants for aftermarket illiquidity; they also find empirical support for the theory

because aftermarket illiquidity has a large and positive correlation with more underpricing.7

Extending Ellul and Pagano’s logic suggests IPOs should also earn a positive liquidity pre-

mium in aftermarket trading, but this is belied by the fact that IPO’s underperform, and

suggests that the Ellul and Pagano model cannot on its own explain both underpricing and

underperformance. By contrast, this paper shows that a liquidity-based model can explain

underpricing and underperformance provided one drops the perfect competition assumption

in Ellul and Pagano and replaces it with the imperfect competition assumption that is used

here.8

The rest of the paper proceeds in six parts. Section 2 provides a model overview; section

3 provides details on aftermarket trading; section 4 describes the process for share allocation

and price setting at the IPO. Section 5 studies underpricing and underperformance using

simulations; section 6 discusses the empirical implications of the model and provides a brief

review of the most closely related empirical literature; a final section concludes.

2 Model Overview

The basic model is a stylized IPO in which a firm that wishes to raise capital by selling

XIPO shares of stock enlists a single underwriting firm to market the issue. To abstract from

agency issues, the underwriter is assumed to act on behalf of the issuer. The underwriter

sells the issue to an investor base that consists of M risk-averse investors who participate in

the IPO and trade in the aftermarket. Investor 1 represents a continuum of small investors

who each take prices as given. Investors 2 through M are large investors whose desired

aftermarket trades are large enough to move asset prices. Because of differences in their

size, the small investors can be viewed as representing the demands of retail investors, while

7In the theoretical model of Booth and Chua (1996), underpricing is used to increase the base of investors
that are interested in the new issue and increase aftermarket liquidity. In Westerfield (2003) underpricing is
also used to influence the composition of the investor base. If Booth and Chua are correct, then underpricing
should be negatively correlated with illiquidity, but this runs counter to the empirical results in Ellul and
Pagano, and hence casts doubt on the empirical relevance of Booth and Chua’s model.

8Other differences with Ellul and Pagano are that their model has information asymmetry while the
present model does not, and in their model, the aftermarket only lasts for one period whereas in the present
the model the aftermarket trading is fully dynamic and modelled over thousands of periods.

3



the large investors represent the demands of institutional investors. The process for setting

the IPO offer price and share allocations is modeled as a two-stage game. In the first stage,

the underwriter assesses the demand for the new issue by learning about the characteristics

of the investor base, and about aftermarket trading conditions. Based on his information,

the underwriter sets a uniform IPO offer price and offers take-it or leave-it share allocations

to the investors.9 In the second stage, investors decide whether to accept their allocations.

Any shares that are turned down by investors at the IPO are sold by the underwriter in the

aftermarket.

In much of the theoretical IPO literature, the primary explanation for underpricing is that

it represents equilibrium compensation for various types of information asymmetries in the

IPO process.10 To establish that the channels for underpricing and underperformance in the

present model do not rely on informational differences, asymmetric information is ruled out

by assumption. More specifically, I assume that information on investors’ risk preferences,

asset holdings, all knowledge of asset values, and the entire model of aftermarket trading is

publicly available at all points of time and is common knowledge. The next section formally

models the IPO aftermarket; and the following section models the share allocation and

price-setting process at the IPO.

3 The IPO aftermarket

The framework for aftermarket trading is a partial equilibrium extension of Pritsker’s (2004)

model of imperfect competition in asset markets.11 Investors in the economy hold diversified

portfolios, but also specialize in trading the assets that belong to a particular market-segment

or industry-group. Although there are many market segments, most of the analysis focuses

on the assets within a particular segment. For informational or other reasons, theM investors

in the model are the only investors in the economy that trade and hold the assets within

this segment.12 Hereafter, these assets are referred to as segment-assets. All investors in

the economy trade a riskless asset with gross return r per period that is in perfectly elastic

9The first stage share allocation process resembles IPO bookbuilding: in both processes the underwriter
collects information about market demand, and then allocates shares and sets an offer price based on the
information that he collects.

10See footnote 5.
11Closely related models of imperfect competition in asset markets include Urosevic (2002a & b), DeMarzo

and Urosevic (2000), and Vayanos (2001).
12The results would be very similar if some investors hold but do not trade the segment assets.
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supply, and a broadly-held index that is in zero net supply.13 The index proxies for systematic

risk and can be thought of as a futures market. Because the index is broadly held, the M

investors collective trades do not affect the price of the index.

Risky Assets

The prices of the segment and index assets are P 1(t) and P 2(t); and have stacked price

vector P (t). The segment-assets are in fixed supply X1. The assets pay i.i.d. dividends

D1(t), D2(t), represented by stacked vector D(t), that has distribution:

D(t) ∼ i.i.d. N (D̄,Ω), where Ω =

(

Ω11 Ω12

Ω21 Ω22

)

. (1)

Because prices can be negative, the assets’ excess returns are best expressed on a per share

basis, and are denoted:

Z(t) = P (t) +D(t) − rP (t− 1) (2)

For simplicity P 2(.) is fixed, which implies Z2(t) ∼ i.i.d. N (Z̄2,Ω22). To solve investors’

portfolio problem, it is useful to decompose the segment assets return into a component that

is perfectly correlated with the index and into a residual return e(t):

Z1(t) = β12Z
2(t) + e(t) (3)

where β12 = Cov[Z1(t),Z2(t)]
Var[Z2(t)]

= Ω21Ω
−1
22 . Investors’ portfolio problem can be represented as

choosing their exposure to the index risk, and to the residual risk of the segment assets.

Because a limited number of investors hold the residual risk, it is not diversifiable. Therefore,

the expected return for holding the residual risk will not necessarily be equal to 0. The

variance of e(t) is denoted Ωe; in equilibrium it turns out to be constant through time and

is given by:

Ωe = Ω11 − Ω21Ω
−1
22 Ω12.

13These assumptions are loosely based on Merton (1987).
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Investors

Each investor m chooses risky asset holdings Qm(t) and consumption Cm(t) to maximize his

discounted expected Constant Absolute Risk Aversion (CARA) utility of consumption:

Um(Cm(1), ...Cm(∞)) =

∞
∑

t=1

−δte−AmCm(t), (4)

with discount factor δ and absolute risk aversion Am, subject to the standard intertemporal

budget constraints:

Wm(t) = Qm(t)′Z(t) + r[Wm(t− 1) − Cm(t− 1)] t = 1, . . . T. (5)

An investor’s liquid wealth, Wml(t), is that part of her wealth that can be liquidated at

current prices. Because large investors’ trades have price impact, their wealth and liquid

wealth differ; and it is their liquid wealth that appears as an argument in their value func-

tions. Therefore it is useful to express their budget constraints in terms of their beginning

of period liquid wealth:

Wml(t) = Q1
m(t)′D1(t) +Q2

m(t)′Z2(t)

+ r
[

Wml(t− 1) − ∆Q1
m(t− 1)′P 1(t− 1) − Cm(t− 1)

]

t = 1, . . . T.
(6)

Below, I show that investors who differ in their risk-aversion have different trading styles;

this affects other investors ability to acquire illiquid assets. As a result, which investors hold

the segment assets is a critical argument of investors value functions. It is summarized by

Q1(t) (= vech[Q1
1(t)

′, . . . , Q1
M(t)′]′), the vector of all investors segment-asset holdings.

Trading Dynamics

Segment assets are traded over a total of T time periods. The sequence of actions is as

follows: At the beginning of each period t ≤ T , investors enter the period with risky-asset

holdings Qm(t), m = 1, . . .M ; they then receive dividends and choose their risky asset trades

∆Qm(t). These trades determine risky asset prices P (t). Investors then choose consumption

Cm(t); the period ends; and the same sequence is repeated through time T . After period T ,

investors continue to consume and trade other assets, but trading of segment assets ends.
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The final period of trade in the segment-assets facilitates solution of the model via backwards

induction.

The process of trade for the segment-assets is modeled as a dynamic Cournot-Stackelberg

game of full information. In each period t ≤ T , each small investor optimally computes his

demand for the segment assets conditional on the state-variable (Q1(t), t). Inverting the

aggregated demands of the small investors defines a linear schedule of prices at which they

are willing to absorb all possible quantities of the large investors trades for the segment

assets:

P 1(., t) =
1

r

(

β0(t) − βQ1(t)Q1(t) −
M
∑

m=2

βm(t)∆Q1
m(t)

)

. (7)

The matrix βm(t) measures the impact of large investor m’s segment asset trades on the

price of the segment assets.14 Large investors account for this price impact when choosing

their trades. Given the price schedule in equation (7), large investors choose their time t

risky asset trades and consumption choices to solve the maximization problem:

max
Cm(t),

∆Qm(t)

−e−AmCm(t) + δ Et Vm(Wml(t+ 1), Q1(t) + ∆Q1(t), t+ 1) (8)

subject to the budget constraint:

Wml(t+1) = Q1
m(t+1)′D1(t+1)+Q2

m(t+1)′Z2(t+1)+r
[

Wml(t) − ∆Q1
m(t)′P 1(., t) − Cm(t)

]

.

(9)

Large investors’ equilibrium trades are found by solving for trades that are best-responses

to each other under the Cournot-Stackelberg assumption that each large investor chooses his

own trades while taking the price schedule and the trades of the other large investors as

given. The resulting trades within a period are a Cournot-Nash equilibrium. The model

of trade is solved by backwards induction from period T , and the resulting equilibrium is

subgame perfect. Additional details on model solution and investors’ value functions are

contained in the appendix.

Intuition for the main results on asset prices and trades comes from examining the first

14It is a matrix because his trades in one asset may affect the prices of other segment-assets.
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order condition for large investor m’s optimal trade vector for the segment assets:

∂ EVm

∂∆Q1
m

=
[

EVm,W (.)(D1(t) − rP 1) + EVm,Q1
m
(.)
]

−
[

EVm,W (.)r∆Q1
m

′P 1
m(.)

]

= 0, (10)

where P 1
m(.) = ∂P 1(.)/∂∆Qm.

The first term in braces on the right hand side measures the expected net benefit from

borrowing money to buy a bit more of a segment asset when trades have no price impact.

This is the only term of the first order condition that should be present in a competitive

setting. Therefore, in a competitive setting all investors would immediately trade to a point

where the first term is equal to 0. When there is imperfect competition, it will never be

optimal for a large investor to trade immediately to such a point because the second term in

his first order condition would be non-zero, implying his trades had too much price impact.

Instead, to reduce their price impact, large investors trade in a way that allows their positions

to converge towards a point at which further trade is no longer optimal. Therefore, if a large

investor believes an asset is overvalued, or provides too low a return, he will not liquidate its

holdings immediately, but will instead sell the asset slowly over time. Because he sells slowly,

prices will also adjust slowly, making it possible for low returns to persist in equilibrium, as

will be discussed further below.

3.1 Asset Pricing

The intuition in the previous section and the results below both show that when markets

are illiquid, asset returns will satisfy one equilibrium relationship when asset holdings are at

their long-run equilibrium, and satisfy a different relationship during the transition to the

long run. To illustrate the exact pricing relationship, additional notation is required. More

specifically, let Q1W
m represent investor m’s long-run holdings of the segment-assets; these

holdings are also the same as if all investors were price-takers, and are also associated with

the efficient sharing of risks. When risk sharing is efficient, each investor holds assets in

proportion to his risk-tolerance as a fraction of the sum total of all investors’ risk tolerances:

Q1W
m =

(1/Am)X1

∑M
m=1(1/Am)

m = 1, . . .M (11)

The following proposition shows that when markets are illiquid, the deviation from in-

vestors’ efficient asset holdings behaves like a priced factor when computing one-period re-
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turns:

Proposition 1 The segment-assets equilibrium excess expected returns satisfy a linear factor

model that provides a reward for assets covariances with the liquid index, for their covari-

ances with segment-specific risk, and for covariances with deviations of large investors asset

holdings from those associated with efficient sharing of the residual risk:

Z̄1(t) = β12Z̄
2(t) + λ[X1]ΩeX

1 +

M
∑

m=2

λ(m, t)Ωe(Q
1
m(t) −Q1W

m ) (12)

where

λ[X1] =
1 − (1/r)
∑M

m=1 1/Am

(13)

Proof: See section D of the appendix.

The proposition is intuitive. Because investors can perfectly hedge the segment risk that

is correlated with the index, the reward for bearing that risk is exactly the same as is provided

by trading the index. Investors are left to share the segment assets portfolio of residual risk,

X1′et. Segment-assets covariance with that residual risk is ΩeX
1. I refer to this covariance as

segment risk; segment risk is rewarded because the investors in the segment cannot diversify

it away.15 In section D.1 of the appendix I show that in a competitive setting, index-risk

and segment-risk are the only priced risks in the model.

When some investors trades move prices, imperfect risk sharing among investors in-

troduces additional transient priced factors that vanish only when investors asset holdings

converge to those associated with perfect risk sharing. Because of illiquidity, the convergence

process takes time; therefore, imperfect risk sharing at period t affects one period risk-premia

at period t+ τ , as shown in the following corollary:

Corollary 1 The segment assets τ period ahead 1-period excess returns follow a factor model

in which deviations from perfect risksharing at period t affect excess returns at period t+ τ :

Et[Z
1(t+ τ + 1)] = β12Z̄

2 + λ[X1]ΩeX
1 +

M
∑

m=2

λm(t, τ)Ωe(Q
1
m(t) −Q1W

m ) (14)

15The presence of this term suggests there is a CAPM-like relationship in the model for sharing segment-
risk. This is similar to Stapleton and Subrahmanyam (1978), who derive circumstances in which the CAPM
holds dynamically through time when investors have CARA utility and trade risky assets whose dividend
payments are normally distributed.
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Proof: See section D of the appendix.

In both the corollary and the proposition, the prices of risk of the transient factors (the

λm’s) are negative because when large investors hold more than their efficient share of risky

assets, the marginal investors, in this case the small investors, hold less and hence require a

smaller premium for holding the residual risk.

Potential Explanations for Underperformance

There are two notions of return underperformance after an IPO. The first is that an

asset’s expected returns in the short-run are lower than its expected returns in the long-run.

The second are that its expected returns underperform after adjusting for some benchmark

measure of risk. This section deals with the first type of underperformance; the second type

of underperformance is discussed in section 5.3.

Corollary 1 illustrates how underperformance of the first type can occur. More specif-

ically, because investors trade to efficient asset holdings, the third term in equation (14)

is transient, while the first two terms are not. Therefore, short-run underperformance will

occur whenever the third-term is negative. Because the market prices of risk λm(t, τ) are

negative, the third term generates return underperformance when each large investor’s IPO

share allocation is greater than is consistent with optimal risk sharing; this is consistent with

allocations being tilted towards institutional investors and away from retail investors at the

IPO.

The magnitude of underperformance depends on whether allocations are distorted to-

wards large investors, and it depends on the risk preferences of the large investors that

receive the allocations. In a model with illiquidity, differences in investors’ risk tolerances

correspond to differences in investors’ willingness to sell assets quickly and pay a high liq-

uidity cost in order to share risk. The more risk tolerant large investors are less willing to

pay a high a liquidity cost to share risk; therefore, risk sharing progresses more slowly when

asset allocations are initially tilted towards them. This reduces the amount of risk that must

be borne by the marginal (small) investors and reduces the assets required rate of return.

Consistent with this reasoning, in simulations the λm(t, τ) functions (which measure the

impact of allocation distortions towards investor m at time t on excess returns at time t+ τ)

show that when allocations are distorted towards large investors with more risk tolerance,

the effect on excess returns is longer-lived and larger in magnitude.

The amount and persistence of underperformance also depends on the competitiveness

10



of the aftermarket. When the aftermarket is highly competitive, the λm(t, τ) functions

rapidly asymptote toward 0 as τ increases, generating little underperformance. When the

aftermarket is less competitive, the functions asymptote slowly, generating longer-lived un-

derperformance.

Because IPO allocations affect post-IPO excess returns, they should also affect the initial

trading price of the segment assets in the aftermarket. This is established in the appendix16,

where I show that segment-asset prices at the beginning of each time period have the form:

P 1(t) =
1

r
(α−

M
∑

m=1

γm(t)ΩeQ
1
m), (15)

where the scalars γm(t) are positive numbers that are smaller for investors who are more

risk tolerant. It follows that aftermarket prices will initially be higher than their long-run

competitive values if the asset allocations are distorted away from efficient asset holdings

towards relatively risk tolerant large investors. The initial “overpricing” in the aftermarket

due to allocation distortions may help to explain part of the IPO underpricing puzzle. A

full explanation depends on how shares are allocated at the IPO, and on how the IPO offer

price is set. I turn to that topic below.

4 IPO Share Allocation and Price Setting

The motivation for the analysis in this section is based on Pritsker (2004). Pritsker studies

a situation in which a distressed investor must rapidly sell a given number of shares into

an imperfectly competitive aftermarket. Because the distressed investor is essentially selling

to an oligopoly, the price he receives is discounted relative to the competitive price. The

size of the discount is determined by the intensity of competition, which in turn depends on

differences in large investors’ risk tolerances. If one large investor is far more risk tolerant

than the others, he has significant market power because by purchasing fewer shares, he

can force the distressed sales to be absorbed by relatively risk averse investors who require

a larger risk premium for taking the shares. Conversely, if investors risk tolerances are

more similar, each investors market power is reduced, and the aftermarket becomes more

competitive.17

16See propositions 2,3, and 5
17In Pritsker (2004), large investors can be interpreted as institutions that trade on behalf of a base of

small investors. In this interpretation, large investors absolute risk tolerances are just the integrated risk
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The distressed investor analysis is applicable to the IPO setting. The issuing firm is

like a distressed investor that needs to sell XIPO shares in a segment that is imperfectly

competitive. The IPO is a mechanism that helps avoid selling shares into the imperfectly

competitive aftermarket by instead allocating them beforehand at a fixed IPO price. I

assume the underwriter acts on the issuer’s behalf by lining up investors to buy the issue in

order to maximize IPO proceeds. The IPO process resembles bookbuilding as practiced in

the United States. The underwriter gathers demand information on the issue. In the model

this information consists of knowledge about the other risky assets in the new issue’s market

segment, as well as knowledge about investors holdings of the segment-assets, the investors

risk preferences, and whether there are investors who have market power in aftermarket

trading. Based on this information, the underwriter sets an IPO offer price P IPO and makes

take it or leave offers of share allocations to the large and small investors. The large investors

allocations’ are denoted by XIPO
m , m = 2, . . .M . The total number of shares offered to small

investors is denotedXIPO
1 . I assume that the small investors that are offered share allocations

are offered identical amounts of shares. It will turn out that if shares are offered to some

small investors, it will be optimal to offer them to all small investors. Therefore, I assume

that when small investors are offered shares, they are all offered the same amount.

If a large or small investor turns down the share allocation that he is offered, then the

underwriter is stuck with the shares. I assume that the underwriter sells any unallocated

shares immediately in the aftermarket following the IPO. The possibility that an investor

can force distressed sales in the aftermarket serves as a threat that constrains how the issuer

allocates shares and chooses the IPO offer price.18 In particular, if an investor receives shares,

the allocations and offer price must be set so that it cannot be in the interest of the investor

to refuse their allocation and instead force the shares to be sold by the underwriter in the

aftermarket. Of course, it is possible in theory that the underwriter might find it optimal to

sell some shares in the aftermarket; denote these shares as XIPO
U and the aftermarket price

on the first day of trading as P IPO
A .19 This suggests that the underwriter chooses the vector

tolerances of their small investor base. If all small investors have identical risk tolerances, then large investors
risk tolerances will differ substantially depending on the size of their investor base.

18There are many other possible ways to model the threats that available to the large investors and the
threats that are available to the underwriter.

19The aftermarket price on the first day of trading was solved for in section 3; it is given by equation (B3).
Because a distressed sale in period 1 is tantamount to sales by investors that don’t account for the price
impact of their trades, for the purposes of price determination if XU is not equal to 0, then XU is added to
the initial allocation of investor 1 in order to determine the aftermarket price.
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of share allocations and aftermarket sales X and IPO offer price P IPO to maximize

Π(P IPO, X) = P IPO × (

M
∑

m=1

XIPO
m ) + P IPO

A XIPO
U , (16)

where Π(.) represents the underwriters profit, the first term on the right hand side measures

revenues raised at the IPO, and the second represents revenues raised by distressed sales in

the IPO aftermarket.

The maximization takes place subject to the constraints that the total issue is allocated:

M
∑

m=1

XIPO
m +XIPO

U = XIPO, (17)

that there are no short-sales by investors 1 through M ,

XIPO
m ≥ 0, m = 1, . . .M, (18)

and subject to incentive compatibility (IC) constraints that those who receive allocations in

the IPO will accept the allocations. The IPO allocations are evaluated based on investors

ex-ante expected value of entering the first period of aftermarket trading when the asset

allocation is X.20 Each small investor’s IC constraint is denoted ψs, and takes the form:

ψs = Vs[Q
IPO
s ;QIPO, tIPO + 1] − Vs[Qs;Q

IPO, tIPO + 1] ≥ 0 (19)

The segment-asset holdings of each small investor that chooses to and chooses not to par-

ticipate in the IPO are denoted QIPO
s and Qs respectively; and the vector of all investors

post-IPO segment asset holdings is denoted QIPO. Because each small investor is infinitesi-

mal, his individual participation decision has no influence on the state vector QIPO.

Large investors IC constraints are denoted ψm and take the form:

ψm = Vm[QIPO, tIPO + 1] − Vm[QIPO
−m , tIPO + 1] ≥ 0 (20)

where large investor m’s share allocation is QIPO
m if he participates in the IPO, and QIPO

−m if

he does not.

While other investors are not allowed to take a short position at the IPO, the underwriter

20The value functions are derived from proposition 2, but they contain an additional argument to account
for the underwriters net sales in the aftermarket XU .
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can do so. If he does, then he is obligated to buy shares in the first period of aftermarket

trade in order to cover his short position.21

The assumption that any shares not sold at the IPO are sold immediately afterward by

the underwriter in the form of distressed sales is very strong. A more realistic assumption

is that any shares that the underwriter fails to sell at the IPO will instead be sold over a

longer amount of time, τS trading periods, following the IPO. This modeling assumption is

consistent with empirical evidence, reported in Ellis et. al. (2000), that IPO underwriters

engage in price support activities in the IPO aftermarket, and with evidence reported by Ellis

et. al. (2002) which shows that underwriters are active participants in the IPO aftermarket

for long periods of time.22.

I assume that when the underwriter sells shares over τs time periods he will sell them

optimally. By optimality I mean that the underwriter buys shares at the IPO offer price,

and then participates in the IPO aftermarket, trading as a large investor over the following

τS time periods in order to maximize his own utility subject to the constraint that by time τS

the underwriter holds no shares of the new issue. It is assumed that the certainty equivalent

value of the underwriters utility from buying and trading the shares is turned over to the

issuing firm at the time of the IPO. For tractability I assume that the underwriter has CARA

utility like the other large investors. Let CEU(QIPO, τs) denote the underwriters certainty

equivalent. Then, under the less restrictive assumption, the underwriter maximizes:

P IPO × (XIPO
1 +

M
∑

m=2

XIPO
m ) + CEU(QIPO, τs), (21)

subject to the constraints that the total issue is allocated [equation (17)], that there are

no short sales [equation (18)], and subject to a new set of participation constraints that

account for the underwriter’s trading activity in the aftermarket.23 My conjecture is that

the underwriter’s ability to spread out sales of unsold shares through time will reduce large

investors bargaining power at the IPO and result in a higher IPO offer price, and higher

21The “Green Shoe” option that is often given to underwriters allows the underwriter to cover his short
position following the offering by acquiring up to a certain amount of additional shares from the issuer at
the IPO offer price. This option is valuable when there is uncertainty about demand for the new issue. In
the present model, there is no demand uncertainty. Therefore, underwriters are not allowed to short-cover
by using the “Green Shoe” option.

22In Ellis et al.’s (2002) sample of 313 NASDAQ IPOs, the lead underwriter participated in an average
of more than 90 percent of post IPO NASDAQ trades during the first day of the IPO; this amount tapers
down over the next 140 days, but remained above 40 percent on average on the 140th day

23The solutions for investors value functions and optimal trades when a distressed investor optimally sells
a position over τ time periods is similar to Pritsker (2004), and is not presented here in order to save space.
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profits for the issuer. That said, most of my recent simulations using the objective function in

equation (21) show spreading out the underwriters sales has little effect on profit. Therefore,

I do not report any results for this case in the current version; but hope to study it more in

future work.

In closing this section I should emphasize that the optimal IPO allocation problem is

difficult because it involves maximizing a nonlinear objective function subject to nonlinear

inequality constraints. Details on how I solved the problem are provided in appendix E.

5 Simulation Analysis

The model’s properties are studied for a single case in which an underwriter sells 40 shares

to a continuum of small investors (investor 1) and five large investors (investors 2-6) under

a variety of liquidity conditions. For simplicity, the only segment asset is the new issue, and

investors risk tolerances are normalized so that they sum to 1.

Aftermarket liquidity depends on the concentration of risk bearing capacity among in-

vestors, and on the number of periods of aftermarket trade. An investors share of a segment’s

risk bearing capacity is his risk tolerance as a percentage of the sum total of all investors risk

tolerances. Concentration of risk bearing capacity provides investors with market power in

the aftermarket; and this makes the market more illiquid. Results on concentration of risk

bearing capacity are reported using the Herfindahl index, which ranges from 10,000 when

risk bearing capacity is concentrated with one investor, to 0 when all investors are small and

there is no concentration.24

The number of post-IPO trading periods consider ranges from 200 trading days (a bit

less than a year) up to 2000 trading days (8 years).25 To explain the relationship between

the number of post-IPO trading periods and liquidity, note that the more shares an investor

trades within a period, the more he moves the price. Therefore, he would prefer to break

up his trades through time to minimize their price impact. When fewer periods of trade

remain, opportunities to break up trades are limited; therefore risk sharing becomes more

costly. Consequently, shares acquire a greater liquidity premium when fewer periods of

trade remain. Conversely, as the number of tradings periods grow, the liquidity premium

24The Herfindahl index is equal to sum of each investors squared percentage share of risk bearing capacity.
Because each small investor is infinitesimal, their contribution to the index is 0.

25The time scalefor the trading periods is determined by the annualized per-period interest rate. There
are 250 trading periods per year, and the annualized per-period interest rate is fixed at 2 percent.
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vanishes and the market becomes perfectly competitive.26 Because my focus is on imperfect

competition, I assume the number of trading periods is finite.

To illustrate the role of imperfect competition, the main results focus on two benchmark

cases that differ only in whether the investors behave competitively. In both cases, investor

2 has more than a fifty percent share of the segment’s risk bearing capacity (Table 1, Panel

A); and the other investors differ in their risk tolerances.

When investors behave competitively, and the underwriter must sell all 40 shares, the IPO

is no different than if the underwriter sold the shares directly in the aftermarket. Therefore,

he raises $420 at the competitive price of $10.50 per share; additionally investors share

allocations are proportional to their share of risk bearing capacity, which implies investor 2

should receive 21.82 shares.

When the aftermarket is imperfectly competitive, investor 2’s large share of risk bearing

capacity gives him enormous bargaining power at the IPO, because if he turns down his share

allocation then the underwriter will have to sell shares into an aftermarket where investor

2 has substantial influence over price. Alternatively, if the underwriter instead chooses to

allocate shares to other more risk averse investors, then they will be exploited by investor

2 in the aftermarket—and this will depress the price that other investors are willing to pay

for shares. To illustrate these points, I studied a sequence of IPOs in which investor 2

can trade in the aftermarket but is restricted in the amounts that he can acquire at the

IPO. More specifically investor 2’s aquistion was progressively restricted to be no larger

than 0, 2, 4, . . .XIPO shares.27 If the aftermarket is perfectly competitive, the allocation

restrictions are of little consequence because other investors can aquire the shares at the

IPO and then quickly sell them to investor 2 in the aftermarket at the competitive price;

therefore the IPO offer price is barely discounted from the competitive price. By contrast,

if the aftermarket is imperfectly competitive, then the IPO offer price is severely discounted

relative to the competitive price; moreover, the feasible offer price (Figure 1) and proceeds

(not shown) are monotone increasing in the amount that can be offered to investor 2 up

to the total outstanding supply of the issue. Investor 2’s enormous bargaining power has

implications for allocations and trading volume, as well as for underpricing, and return

26Alternative intuition for the relationship between illiquidity and the number of post-IPO trading periods
is based on Coasian analysis of a durable goods monopolist. Coase shows that a durable goods monopolist
has more market power if he can commit to selling over a single time period instead of allowing for several
periods of retrade. Kihlstrom (2001) argues that stocks are durable goods and shows that the Coasian
analysis applies to a monopolist in stocks. The results here are similar to Kihlstrom, but in an oligopoly
setting.

27The analysis used approximate optimization over a discrete grid of allocations.
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underperformance.

5.1 Allocation Distortions and Trading Volume

Because prices and proceeds are increasing in the amount that investor 2 can purchase, all

of the shares are allocated to him at the IPO. This shows that allocations are distorted

towards investors who have market power and away from retail investors (who each have

none) (Table 1,Panel C). Additionally, among investors with market power, in the example

the allocations are distorted towards the large investor with the most power. This illustrates

that differences in investors market power provide a noninformation based explanation for

why some large investors receive share allocations while others do not.

Because allocations at the IPO are not pareto optimal, the distortions create a basis

for trade in the aftermarket. The resulting trading volume is heaviest on the first day of

trading, constituting 1.2 percent of shares issued; daily volume drops off to about 0.1 percent

of shares issued after the first week of trading (Figure 2). The example’s pattern of heavy

trading volume that rapidly drops off is qualitatively consistent with the empirical literature

on post-IPO trading (Ellis et al. 2000), but the model fails to match the empirical magnitude

of the first day’s trading, which averaged 33.3 percent of shares issued in the 1980’s, and

148.7 percent of shares issued in 1999-2000 (Ritter, 2005).

5.2 IPO Underpricing

The example shows the model is capable of generating substantial IPO underpricing. Un-

derpricing ranges from a low of 40 percent when many trading periods remain to a high of

159 percent when relatively few periods remain (Table 1, Panel B). The underpricing has

three pronounced features. First, the offer price is low relative to the asset’s competitive

price. Second, the aftermarket price is inflated relative to the asset’s competitive price. If

the competitive price is interpreted as the asset’s “fundamental value” then it appears as

if the IPO is associated with irrational price-overshooting even though the model is fully

rational. The third feature is that the first two features are most pronounced when there

are fewer periods of trade following the IPO.

Intuition for the first feature is related to investor 2’s bargaining power; additional in-

tuition for the underpricing comes from interpreting illiquidity as a tax on risk sharing.
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Because the tax makes risk sharing more costly, it pushes down the IPO offer price; in

addition because of the tax less risk sharing takes place, which means investor 2 sells less

in the aftermarket—and this constraint on supply pushes up the aftermarket price. When

fewer trading periods remain, illiquidity is more severe, making the first two features more

pronounced.

5.3 Underperformance

Recall that there are two types of return underperformance—underperformance relative to

an assets long-run return—and underperformance relative to a risk adjusted benchmark.

Section 3.1 shows that the former is associated with IPOs; to address the latter, post-IPO

expected excess returns were computed for up to 2000 business days and then adjusted for

market-risk by subtracting the asset’s beta times the expected excess return on the market

portfolio. To compute the excess return on the market portfolio, I aggregated up the excess

returns across all market segments. Recall from equation (12) (reproduced below) that in

each segment j, assets excess expected returns can be decomposed into a component that

is correlated with the index, a second that is associated with market segmentation (due

to imperfect sharing of idiosyncratic risk), and a third that is associated with allocation

distortions and illiquidity:

Z̄j(t) = βj2Z̄
2(t) + λ[Xj ]Ωej

Xj +

Mj
∑

m=2

λ(m, t)Ωej
(Qj

m(t) −QjW
m ).

Because investors trade towards efficient asset holdings, the third component is transitory.

and is assumed to be small or zero for segments that have not had recent IPOs; but it is

negative for those that have had them.

Under these circumstances, if investors trade the liquid index and specialize in trading

the assets within different market-segments, then in the context of a one-period example

(appendix F), the assets in each segment and the market portfolio earn a segmentation pre-

mium. Therefore, after adjustment for market-risk, the assets average segmentation premia

are 0, and do not depend on whether the assets are new issues. Using similar reasoning,

because relatively few firms are new issues, these firms will only have a minor effect on the

market return. Therefore, after market adjustment, IPO firms will retain a large negative

liquidity premium; that is they will underperform on a risk-adjusted basis.

Under simplifying circumstances (see appendix F), if φ is the fraction of firms that are
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new issues, then the average market adjusted underperformance at time t for segments with

IPO’s should be approximately (1−φ) times the allocation distortion / liquidity component

of excess returns:

(1 − φ)
M
∑

m=2

λ(m, t)Ωe(Q
1
m(t) −Q1W

m ).

In the example, if φ is 0, and the market adjusted segmentation premium is approximately 0

for simplicity, then the CAR grows to -32 percent over 2000 periods. In the simulations which

corresponds to about 8 years of underperformance (Figure 3, Panel A). More realistically, if

φ is about 10 percent, then the expected market-adjusted CAR should be about -29 percent

over 8 years. This confirms that the model can in theory generate both IPO underpricing

and long-lived market adjusted return underperformance.

Adjusting for Characteristics

A stylized fact of measured underformance is that it is strongest when returns are market-

adjusted, and weaken after adjustment for additional characteristics such as market-to-book

(Ritter and Welch, 2002). Under some interpretations, these stylized facts are consistent with

the liquidity-based explanation in the model; in particular, if assets’ long-run competitive

prices are interpreted as book-value, then the model predicts that because of illiquidity

and allocation distortions at the IPO, then just after the IPO, market to book is high and

consistent with the market-to-book effect, IPO returns underperform. It is important to bear

in mind that in the empirical asset pricing literatature, market-to-book’s ability to explain

asset returns is an empirical regularity, not a theory of asset pricing. The contribution of

the present model is that it provides a theoretical reason why market-to-book appears to

“explain” post IPO return underperformance. This result has empirical implications; in

particular, it shows that controlling for market-to-book can be problematic when testing the

present model because a finding of no underperformance after adjustment for market-to-book

is consistent with the model, and not evidence against it. This topic is discussed further in

footnote 33 of section 6.1.

5.4 Money Left on the Table

IPO underpricing makes it appears as if the IPO should have raised more revenue. The

loss in revenue is referred to as “money left on the table”, hereafter MLOTT, and is usually

measured as the differential between the IPO-offer price and closing price on the first day of
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trade times the number of shares issued. MLOTT often has the interpretation of a measure

of the issuer’s losses due to imperfections in the IPO process.28 For the present model,

the imperfection is illiquidity; and it should be clear that the usual MLOTT calculation

overstates issuer losses because it incorrectly assumes that all of the shares could be sold at

the artificially high price that prevails in an illiquid aftermarket. An alternative measure of

MLOTT instead compares the revenues that were raised at the IPO against the revenues

that could have been raised if the aftermarket was perfectly competitive, which in this

model means perfectly liquid. Computing losses by this alternative metric shows that the

usual calculation can very significantly overstate issuer losses; in the case of the example it

overstates them by a factor of 5 to 10 (Table 1, Panel B).

5.5 Alternative market configurations

To study how differences in investors risk tolerances affect the results, I solved the model

under two alternative market configurations. In the first, some of investor 2’s risk tolerance is

spread evenly among the other large investors (Table 2). This change makes the aftermarket

more competitive, and has three further effects on the aftermarket. First, when the number

of aftermarket trading periods is 2000, or 1800, the market is sufficiently competitive that

differences in who receives shares at the IPO have a very small effect on prices (no more than

6 cents per share). In this circumstance, the optimal allocation problem is ill-posed. I simply

assume that the competitive allocation results in these cases. Second, the magnitude and

persistence of underperformance diminish somewhat, with the liquidity component of the

CAR reduced to -16 percent over 5 years. Third, the prices charged by the underwriter at

the IPO are actually above the competitive price. This occurs because when the aftermarket

is a little bit more competitive, investor 2 has less market power in the aftermarket, and

hence has less bargaining power at the IPO. In this circumstance, the underwriter can extract

some of investor 2’s surplus from acquiring the new issue. Because the aftermarket is still

not perfectly liquid, the aftermarket price is inflated above the IPO offer price, but now

the underwriter is actually generating more revenue for the issuer than if the aftermarket

were competitive. Compared with the earlier results, this shows that the underwriter and

issuer actually benefit if the aftermarket is a bit less than perfectly competitive, but is hurt

if the aftermarket becomes too imperfectly competitive. Because a little bit of imperfect

competition can sometimes help the underwriter, this result may help to explain underwriter

28For example, in informational theories of bookbuilding, the money left on the table is equal to informa-
tional rents that investors receive for sharing their information with the underwriter.

20



practices that restrain trade in the aftermarket, such as restrictions on investors ability to

flip shares.

The second alternative market configuration contained two dominant large investors that

each have 30% of the risk bearing capacity.29 Because this configuration was highly compet-

itive, unless a small number of trading periods followed the IPO, results are only discussed

for when there are 200 post-IPO trading periods. Unlike the previous examples in which the

optimum involved allocating all of the shares to one investor, in this example the optimal

share allocations involved splitting the shares evenly between investors 2 and 3 while dis-

torting the share allocations away from all other investors. As in the previous example, the

resulting IPO offer price was above the price that would prevail if the aftermarket was per-

fectly competitive. Nevertheless, the aftermarket price following the IPO was even higher,

resulting in IPO underpricing of about 12%. Additionally, cumulative abnormal returns in-

dicate short-lived underperformance; the liquidity component of the underperformance was

4.5% over 200 trading days.

6 Empirical Implications

The purpose of this section is to outline a rough strategy for testing the theory in this paper.

The main implication of the theory is that IPO illiquidity and imperfect competition in

the aftermarket following an IPO lead to allocation distortions towards large investors and

IPO underpricing and underperformance. These implications lead to the following testable

predictions:

1. Allocation distortions are associated with underperformance in the aftermarket.

2. Allocation distortions are associated with IPO underpricing.

3. The above two effects are associated with illiquidity and imperfect competition in

aftermarket trading.

Prediction 1 imposes restrictions on the coefficients of empirical versions of equation (14):

Zi(t+ τ + 1) = βi,2πIND + [λ[X1]ΩeX
1]πSEG + [

M
∑

m=2

λm(t, τ)Ωe(Q
1
m(t)−Q1W

m )]πLIQ + ǫi(t+ τ)

(22)

29The other 4 investors each had 10% of the risk bearing capacity.
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The empirical version provided above differs from equation (14) because it is parameter-

ized with additional π coefficients, and because expected excess returns have been replaced

by their realization on the left hand-side, which introduces an expectational error ǫi(t+τ) on

the right-hand side. The main coefficient of interest is πLIQ. Under the null hypothesis that

allocation distortions at the IPO are unrelated to underperformance, πLIQ should be equal

to 0; while under the alternative πLIQ should be positive and the coefficients λm,t should

be negative. Estimation of πLIQ in cross-section requires information on Ωe and investors

holdings of all assets within each segment. However, if Ωe is nearly diagonal, or if allocation

distortions are only significantly different from zero for new issues, then it is sufficient to

create an allocation distortion measure for each new issue that only depends on its own

idiosyncratic risk and own asset holdings. This simplified approach is outlined below.

The allocation distortion measure that I propose for firm i has the form:

distorti = Ωii

M
∑

m=2

g(RBCm)

[

xm
∑M

m=1 xm

− RBCm

]

, (23)

where xm is the share allocation of large investor m at the IPO; Ωii is the variance of the

idiosyncratic component of firm i’s return; RBCm is large investor m′s risk bearing capacity,

which is his risk tolerance as a fraction of the sum total of all M investors risk tolerances;

and g() is a negative and monotone decreasing function, which serves as a proxy for λ in

equation (22). The distortion measure is 0 if allocations are efficient; positive if allocations

are distorted towards small investors, and negative if distorted towards large investors. In

addition, consistent with the results that show underperformance and the aftermarket price

are maximized when allocations are distorted towards the most risk tolerant large investor,

the distortion measure is maximized when all assets are allocated to the most risk tolerant

large investor.

Proxies for RBCm are needed to operationalize the distortion measure. Because the

model assumes that investors have CARA utility primarily for tractability, a sensible way

to proceed is to use a more realistic assumption about investors utility. For example, if

all investors have power utility with coefficient of relative risk aversion γ, then investors

absolute risk tolerance is Wm/γ, and each investors risk bearing capacity is equal to their

own wealth as a fraction of the sum total of the wealth of other investors in the segment

(RBCm = Wm
PM

m=1 Wm
).30 Since wealth is a measure of investors’s size, the allocation distortion

30In the case of institutional investors, Wm represents wealth under management, and the measure of risk
bearing capacity implies that more wealthy investors have a greater capacity to bear risk.
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measure them becomes a measure of how assets are allocated relative to the size of the

investors involved. Armed with this measure of allocation distortions it should be possible

to test prediction 1 by estimating variants of equation (22) in cross-section and then test

whether πLIQ is positive.31. A full analysis of how to estimate the equation is well beyond the

scope of the present paper. To test prediction 2, the same measures of allocation distortions

that are used to estimate equation (22) can be used to attempt to explain the cross-section

of IPO underpricing.

To test the third prediction, measures of aftermarket illiquidity should be interacted with

the allocation distortion variable. The theory predicts that the allocation distortions should

only have an effect when there is illiquidity in the aftermarket. Hence, the interaction with

the illiquidity variables should provide a sharper test of theory. The coefficients on the

interaction terms are expected to have the same sign as the coefficients on the allocation dis-

tortions, and including these terms should cause the coefficients on the allocation distortions

to weaken.

Allocation distortions are predicted by other theories, such as for example bookbuilding

and adverse selection, in which the allocations are based on investors information. However,

neither of those theories predicts a relationship between allocation distortions and IPO re-

turn underperformance. Therefore, if allocation distortions explain both underpricing and

underperformance, it should be interpreted as evidence that an explanation based on illiq-

uidity and imperfect competition in the aftermarket helps contribute to our understanding

of IPOs.

To close this section, I briefly review the most closely related empirical literature on

underpricing and underperformance.

6.1 Related literature

The empirical literature that is most closely related to this paper studies the relationship

between after-market liquidity and underpricing or underperformance. The relationship

between IPO underpricing and illiquidity has been empirically studied by Booth and Chua

(1996), Hahn and Ligon (2004), and Ellul and Pagano (2003). In closely related work, Butler

et. al. (2005) study the relationship between a stock’s liquidity, and the underwriting fees

that are paid during a seasoned equity offering.

31Getting data on IPO allocations is difficult, but it is sometimes available on a proprietary basis as in
Cornelli and Goldreich (2003), or can be constructed as in Reuter (2005).
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Although the Booth and Chua model makes predictions about the relationship between

underpricing and aftermarket liquidity, they don’t test this implication of their model; in-

stead their tests focus on underpricing as compensation for costs of information gathering.

Because such costs could generate underpricing irrespective of illiquidity, the implications of

their tests for the relationship between underpricing and aftermarket liquidity are unclear.

Hahn and Ligon attempt to directly test the Booth and Chua hypothesis that underpricing

is used to increase liquidity by running OLS regressions of market microstructure measures

of aftermarket liquidity on IPO underpricing. In regressions that account for other deter-

minants of illiquidity, their results are mixed; with coefficients on underpricing sometimes

statistically significant and positive, sometimes statistically significant and negative, and

sometimes not statistically significant at all. A potential difficulty with the Hahn and Ligon

methodology is that causality may run from underpricing to illiquidity (as in Booth and

Chua) as well as from illiquidity to underpricing (as in Ellul and Pagano). The possibil-

ity that causality runs in both directions suggests that an instrumental variable approach

is needed. In Ellul and Pagano, they regress underpricing on a set of determinants for

underpricing, including measures of aftermarket liquidity. Additionally, they recognize the

potential for simultaneity bias and instrument for it in some of their regressions.32 In all

of Ellul and Pagano’s regressions they find that more aftermarket illiquidity increases the

amount of IPO underpricing. Butler et. al. find qualitatively similar relationship between

illiquidity and underwriter fees in SEO’s, but quantitatively the effects of illiquidity are much

smaller than in Ellul and Pagano. This suggests the Ellul and Pagano results, while favor-

able for liquidity based theories, should be interpreted with caution. An additional reason

for caution is if underpricing is a risk premium for aftermarket illiquidity, then the logical

extension of Ellul and Pagano’s theory would suggest that in the aftermarket, IPO’s should

earn a positive and significant risk premium for aftermarket illiquidity. If we believe the

empirical evidence that IPO returns underperform in the aftermarket, this suggests that the

mechanism driving aftermarket returns is more complicated than the theory of illiquidity

considered by Ellul and Pagano. Eckbo and Norli (2002) take this argument one step fur-

ther; they claim that newly issued stocks are more liquid than other stocks with similar risk

characteristics; and thus their returns should underperform. To establish this point empiri-

cally, Eckbo and Norli compare the returns of a rolling portfolio of newly issued stocks that

are held for up to five years against the returns a portfolio of more seasoned issues that are

matched on size and book to market. They find that after adjusting for these factors, and

controlling for differences in liquidity, new issues do not underperform.

32They do not report any results on tests for the strength of the instruments, nor do they report any
results of tests for instrument validity.
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The Eckbo and Norli and Ellul and Pagano findings, taken together are puzzling because

the latter suggests that IPOs are very illiquid, while the former suggests the opposite. Both

papers can only be correct if liquidity conditions change rapidly after the IPO, and if partic-

ipants in IPOs are very concerned about a short-term need to liquidate. This paper points

towards a different resolution in which illiquidity, when combined with imperfect competi-

tion, generates both underpricing and underperformance. To make a strong case that this is

the correct resolution requires careful future research on how to measure underperformance

and which measures of liquidity are relevant for large investors.33 ,34

7 Conclusions

In this paper I have presented a fully-rational, symmetric-information model to simulta-

neously explain IPO underpricing, underperformance, and a tilt in IPO share allocations

towards institutional investors, and away from retail investors. The key model features that

generate these results are illiquidity and imperfect competition in aftermarket trading. The

model also generates a new set of testable predictions that tie the market structure of after-

33 A difficult issue in assessing return underperformance is whether to adjust returns for market-to-book
effects. The standard basis for adjustment is to determine whether an empirical pricing anomaly is new, or
is a manifestation of a known anomaly such as market-to-book. Because market-to-book is an empirical reg-
ularity, but not a theory, risk adjustment for it may lead to spurious inference about IPO underperformance
when testing the present theory. To see what can go wrong, suppose that the forces that drive market-to-
book effects for other stocks don’t apply to IPO’s, but that market-to-book is negatively correlated with IPO
returns for other theoretical reasons, such as those given in this paper. In this circumstance, adjustment for
market-to-book effects will spuriously bias the test against detecting underperformance when it is present. A
better method to test the present theory is to forgo a problematic market-to-book adjustment, and instead
test the predicted relationships between allocation distortions and the returns on new issues.

34A difficult issue in testing liquidity-based theories of IPO underpricing and underperformance is deter-
mining an appropriate measure of liquidity. Eckbo and Norli (2002) measure it based on trading volume;
but it is not clear that high volume after an IPO has the same liquidity implications as high volume for
other stocks. For example, if IPO’s extraordinarily high turnover (see footnote 1) implied they were very
liquid for large investors, then those investors should be selling out en masse on the first day following an
IPO because of the high first day return. In fact, Aggarwal’s (2003) study of sales by initial share holders,
which is also known as share flipping, shows that on median only 7.34% of initial shares are sold during the
first few days following an IPO. This suggests the extraordinarily high trading volume associated with IPOs
does not necessarily translate into a highly liquid environment in which large investors can sell their shares.
Post IPO volume may mismeasure liquidity because, as noted by Aggarwal (2003) it is associated with the
same small number of shares being traded very frequently within the day, and does not measure the price
impact of a large number of shares being sold into the market. This is consistent with Corwin et. al. (2004),
who find that NYSE-listed IPOs typically have low depth to trading volume during the first several days
of trading. Additonally, for investors who risk punishment from underwriters for flipping too many shares,
the high volume does not measure their ability to sell off their holdings. Finally, although volume may be
problematic as a measure of liquidity, other measures based on bid-ask spreads and price impacts may be
problematic because it may not measure liquidity on the scale that large shareholders wish to transact.
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market trading and allocation distortions at the IPO, to the cross-sectional pattern of return

underperformance following an IPO. Hopefully the results in this paper will stimulate new

empirical research that studies the relationship between the structure of the IPO aftermarket

trading environment and IPO underpricing and underperformace.
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Appendix

A Notation

There are M investors and N = N1 +N2 risky assets. The first N1 assets are illiquid. The

next N2 assets are perfectly liquid. The risky asset holdings of investor m at time t are

denoted by

Qm(t) =

(

Q1
m(t)

Q2
m(t)

)

where Q1
m(t) and Q2

m(t) are investor m′s holdings of illiquid and liquid risky assets respec-

tively. Q1(t) denote the N1M × 1 vector of all investors illiquid asset holdings at time t

where

Q1(t) =









Q1
1(t)
...

Q1
M(t)









.

Q1
1(t) represents the net asset holdings of a continuum of infinitesimal small investors

indexed by s:

Q1
1(t) =

∫ 1

0

Q1
s(t)µ(s)ds.

The small investors are often collectively referred to as the competitive fringe. Q1
2(t) through

Q1
M(t) denotes the net illiquid risky asset holdings of large investors, and is denoted by the

N1 × (M − 1) vector Q1
B(t). The change in investors illiquid risky asset holdings from the

beginning of time period t to the beginning of time period t+ 1 is denoted by the N1M × 1

vector ∆Q1(t). Similarly, ∆Q1
1(t) and ∆Q1

B(t) denote the change in the competitive fringe’s

illiquid asset holdings, and the change in the illiquid asset holdings of the large investors.

The algebra which follows requires many matrix summations and the use of selection

matrices. Rather than write summations explicitly, I use the matrix S = ι′M ⊗IN to perform

summations where ιM is an M by 1 vector of ones, and IN is the N ×N identity matrix.35

In some cases, the matrix S may have different dimensions to conform to the vector whose

elements are being added. In all such cases, S will always have N , or N1 rows. The matrix

35For example, SQ(t) =
∑

M

m=1
Qm(t)
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Si is used for selecting submatrices of a larger matrix. Si has form

Si = ι′i,M ⊗ IN ,

where ιi,M is an M vector has a 1 in its i’th element, and has zeros elsewhere.36 As above Si

will sometimes have different dimensions to conform with the matrices being summed, but

it will always have N or N1 rows.

In the rest of the exposition, I will occasionally suppress time subscripts to save space.

B Proof of Proposition 2

Proposition 2 : Small investors value functions for entering period t with liquid wealth

Ws, when investors’ state vector of illiquid asset holdings is given by Q1 is given by:

Vs(Ws, Q
1, t) = −K1(t) F (Q1, t) e−As(t)Ws ,

where F (Q1, t) = e−Q1(t)′v̄s(t)−Q1(t)′θs(t)Q1(t).
(B1)

Large investor m’s value function for entering period t when the state vector of illiquid asset

holdings is Q and his holdings of liquid wealth is Wm is given by:

Vm(Wm, Q
1, t) = −Km(t)e−Am(t)Wm−Am(t)Q1 ′Λm(t)+.5Am(t)2Q1′Ξm(t)Q1

m = 2, . . .M, (B2)

and the price function for illiquid assets has the functional form:

P 1(t) =
1

r
(α(t) − Γ(t)Q1) (B3)

Proof: The proof is by induction. Part I of the proof establishes that if the value

function has this form at time t, then it has the same form at time t−1. Part II of the proof

establishes the result for time T , the first period in which trade cannot occur.

36To illustrate the use of the selection matrix, Qm(t) = SmQ(t).
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B.1 Part I:

Suppose the form of the value function is correct for time t. Then, to establish the form

of the value function at time t − 1, I first solve for the competitive fringe’s demand curve

for absorbing the net order flow of the large investors. I then solve the large investors and

competitive fringe’s equilibrium portfolio and consumption choices, and then solve for the

value function at time t− 1.

The competitive fringe’s demand curve

The competitive fringe represents a continuum of infinitesimal investors that are distributed

uniformly on the unit interval with total measure 1, i.e. µ(s) = 1 for s ∈ [0, 1]. At time

t− 1, each participant s of the competitive fringe solves:

max
Cs(t− 1),

Qs,

qs

−e−AsCs(t−1) − δ E[Ks(t)F (Q1, t)e−As(t)Ws(t)] (B4)

where, Qs is the stacked vector of small investor s’s holdings of illiquid (Q1
s) and perfectly

liquid (Q2
s) risky assets:

Qs =

(

Q1
s

Q2
s

)

;

Z(t) is the stacked vector of excess returns for the illiquid and liquid assets:

Z(t) =

(

Z1(t)

Z2(t)

)

=

(

P 1(t) +D1(t) − rP 1(t)

P 2(t) +D2(t) − rP 2(t)

)

; (B5)

and small investors liquid wealth is given by

Ws(t) = Q′

sZ(t) + r[Ws(t− 1) − Cs(t− 1)].

Note: Although I refer to the first set of assets as illiquid, they are only illiquid for large

investors whose trades have price impact. Because each small investor is infinitesimal, their
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trades do not have price impact and hence both assets are perfectly liquid from their per-

spective.

In equation (B5),

EZ(t) ≡ Z̄(t) ≡

(

Z̄1(t)

Z̄2(t)

)

,

and

VarZ(t) ≡ Ω ≡

(

Ω11 Ω12

Ω21 Ω22

)

.

Substituting the expression for Ws in (B4) and taking expectations shows that small

investors maximization becomes:

max
Cs(t− 1),

Qs

−e−AsCs(t−1) − δF (Q1, t)e−As(t)r[Ws(t−1)−Cs(t−1)]−As(t)Q′

sZ̄(t)+.5As(t)2Q′

sΩQs (B6)

In solving the model, it is useful to break small investors maximization into pieces by

first solving for optimal Q2
s as a function of Q1

s, and then solving for optimal Q1
s. For given

Q1
s, the first order condition for optimal Q2

s shows that optimal Q2
s is given by

Q2
s =

1

As(t)
Ω−1

22 Z̄2(t) − β ′

12Q
1
s, (B7)

where β12 = Ω12Ω
−1
22 .

Plugging the solution for Q2
s into the small investors value function and simplifying then

shows that the small investors maximization problem reduces to:
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max
Cs(t− 1),

Q1
s

−e−AsCs(t−1)−δF (Q1, t)Ks(t) Exp
{

−.5Z̄ ′

2Ω
−1
22 Z̄2 − As(t)r[Ws(t− 1) − Cs(t− 1)]

}

× Exp
{

−As(t)Q
1
s
′[Z̄1(t) − β12Z̄2(t)] + .5As(t)

2Q1
s
′ΩeQ

1
s

}

(B8)

where Ωe is given by

Ωe = Ω11 − Ω12Ω
−1
22 Ω21.

To gain intuition for the above expression, note that the excess return on each illiquid

asset can be decomposed into a component that is correlated with the liquid assets and into

a second idiosyncratic component.

Z1(t) = β12Z2(t) + ǫ1(t)

Z̄1 −β12Z̄2(t) is the vector of expected returns on the idiosyncratic components at time t

and Ωe is the variance covariance matrix of the idiosyncratic returns. The expression shows

that small investors portfolio maximization problem can equivalently be written in terms of

choosing an exposure to the returns of the liquid assets, and to the idiosyncratic component

of returns of the illiquid assets.

Solving for optimal Q1
s(t) then shows

Q1
s(t) =

1

As(t)
Ω−1

e [Z̄1(t) − β12Z̄2(t)] (B9)

The aggregate demand for Q1 at time t by all small investors can be found by integrating

both sides of equation (B9) with respect to µs, the density of small investors, yielding:

Q1
1(t) =

∫ 1

0
Q1

s(t)µsds

=
[

∫ 1

0
1

As(t)
µsds

]

Ω−1
e [Z̄1(t) − β12Z̄2(t)]

= 1
A1(t)

Ω−1
e [Z̄1(t) − β12Z̄2(t)]

(B10)
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The Price Schedule Faced by Large Investors

The price schedule faced by large investors at time t−1 maps large investors desired orderflow

of the illiquid assets into the time t − 1 prices at which the competitive fringe is willing to

absorb the net orderflow. To solve for the price schedule, I solve for prices P (., t − 1) in

equation (B10) such that when the large investors choose trade ∆Q1
B(t−1) at time t-1, then

the competitive fringe chooses trade −S∆Q1
B(t− 1).

Rearranging, equation (B10) while making the substitutions

Q1(t) = Q1(t− 1) + ∆Q1(t− 1),

Q1
1(t) = S1[Q

1(t− 1) + ∆Q1(t− 1)],

∆Q1(t− 1) =

(

−S∆Q1
B(t− 1)

I∆Q1
B(t− 1)

)

and

Z̄1(t) = P 1(t) + D̄1 − rP 1(t− 1, .)

P 1(t) =
1

r

(

α(t) − Γ(t)[Q1(t− 1) + ∆Q1(t− 1)]
)

then produces the price schedule faced by large investors at time t− 1:

P 1(., t− 1) =
1

r

(

β0(t− 1) − βQ1(t− 1)Q1(t− 1) − βQ1
B
(t− 1)∆Q1

B(t− 1)
)

, (B11)

where,

β0(t− 1) = D̄1 + (1/r)α(t) − β12Z̄
2 (B12)

βQ1(t− 1) = (1/r)(Γ(t) + rA1(t)ΩeS1) (B13)

βQ1
B
(t− 1) = (1/r)Γ(t)

(

−S

I

)

−A1(t)ΩeS (B14)

Given the price schedule in equation (B11), large investors at time t− 1 solve the maxi-

mization problem:
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Large Investors Maximization Problem

max
Cm(t− 1),

Qm

−e−AmCm(t−1)−E
{

δKm(t) Exp
(

−Am(t)Wm −Am(t)Q1′Λm(t) + .5Am(t)2Q1′Ξm(t)Q1
)}

(B15)

where, substituting in the budget constraint, liquid wealth at the beginning of time t is

given by

Wm(t) =Q1
m(t)′D1(t) +Q2

m(t)′Z2(t)

+ r(Wm(t− 1) − ∆Q1
m(t− 1)′P 1(t− 1, .) − Cm(t− 1))

(B16)

Note: Because dividends are paid in cash, the dividend payments received for holdings of

illiquid asset are counted as part of liquid wealth even though the illiquid assets themselves

are not counted.

Note that in equation (B15), Λm(t) and Ξm(t) are deterministic functions of time that are

parameters of the value function. Keeping this in mind, large investors holdings of the liquid

assets are solved in the same way as for small investors. Taking expectations in equation

(B15), solving for optimal Q2
m given Q1, and substituting the optimal choice back into the

large investor’s value function, transforms the large investors maximization problem so that

it has the following form:

max
Cm(t− 1),

Q1
m

− e−AmCm(t−1)

− δKm(t)
{

Exp(−.5Z̄2′Ω−1
22 Z̄2 − Am(t)r[Wm(t− 1) − ∆Qm(t− 1)′P 1(t− 1, .) − Cm(t− 1)]

×Exp(−Am(t)Q1′v̄m(t) + .5Am(t)2Q1′θm(t)Q1)
}

(B17)

where,

v̄m(t) = S ′

m(D̄1 − β12Z̄2) + Λm(t) (B18)

θm(t) = S ′

mΩeSm + Ξm(t) (B19)

The large investors play a Cournot game in which each choose his time t − 1 trade
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∆Qm(t − 1) in the illiquid assets to solve the maximization problem in (B17) while taking

the trades of the other large investors as given, but while taking into account the effect that

his own trades have on the prices of the illiquid assets. Recall the price impact function for

the illiquid assets at time t− 1 is given by equation (B11).

The first order condition for large investors illiquid asset choices is given by:

0 = −Am(t)[(−S1+Sm)v̄m(t)] + Am(t)2(−S1 + Sm)[(θm(t) + θm(t)′)/2](Q1 + ∆Q1)

+ Am(t)
[

rP 1(., t− 1) − SmβQ1
B
(t− 1)′Sm∆Q1

B

]

,
(B20)

After substituting for P 1(., t − 1) from equation (B11), writing Q1 + ∆Q1 as Q1 +
(

−S∆Q1
B

∆Q1
B

)

and simplifying, this produces the following reaction function for large in-

vestor m:

πm(t− 1)∆Q1
B = χm(t− 1) + ξm(t− 1)Q1, (B21)

where,

πm(t− 1) =Am(t)(−S1 + Sm)[(θm(t) + θm(t)′)/2]

(

−S

I

)

− βQ1
B
(t− 1) − SmβQ1

B
(t− 1)′Sm

(B22)

χm(t− 1) = (−S1 + Sm)v̄m(t) − β0(t− 1) (B23)

ξm(t− 1) = βQ1(t− 1) −Am(t)(−S1 + Sm)[(θm(t) + θm(t)′)/2] (B24)

Stacking the (M-1) reaction functions produces a system of (M − 1)N linear equations

in (M − 1)N unknowns:

Π(t− 1)∆Q1
B(t− 1) = χ(t− 1) + ξ(t− 1)Q1(t− 1) (B25)

Assume that Π(t−1) is invertible. Then the solution for ∆Q1
B(t−1) is unique, and given

by

∆Q1
B(t− 1) = Π(t− 1)−1χ(t− 1) + Π(t− 1)−1ξ(t− 1)Q1(t− 1) (B26)
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Equilibrium Asset Holdings

The solution for ∆Q1
1(t − 1) is −S∆Q1

B(t − 1). Therefore, the solution for ∆Q1(t − 1) =

(∆Q1
1(t− 1)′,∆Q1

B(t− 1)′)′ can be written as:

∆Q1(t− 1) = H0(t− 1) +H1(t− 1)Q1(t− 1). (B27)

where,

H0(t− 1) =

(

−SΠ(t− 1)−1χ(t− 1)

Π(t− 1)−1χ(t− 1)

)

, and H1(t− 1) =

(

−SΠ(t− 1)−1ξ(t− 1)

Π(t− 1)−1ξ(t− 1)

)

.

(B28)

With the above notation, the equilibrium purchases by large participant m in period t−1

are given by

∆Q1
m(t− 1) = Sm[H0(t− 1) +H1(t− 1)Q1(t− 1)] (B29)

Additionally, the equilibrium transition dynamics for beginning of period illiquid risky

asset holdings are given by:

Q1(t) = G0(t− 1) +G1(t− 1)Q1(t− 1) (B30)

where G0(t− 1) = H0(t− 1) and G1(t− 1) = H1(t− 1) + I.

Equilibrium Price Function

Recall that the equilibrium price function in each time period maps investors beginning of

period holdings of risky assets to an equilibrium price after trade. The equilibrium price

function for period t − 1 is found by plugging the solution for large investors equilibrium

trades from equation (B26) into the price schedule faced by large investors (equation (B11)).

The resulting price function for illiquid asset in period t− 1 has form:

P 1(t− 1, Q1) =
1

r

(

α(t− 1) − Γ(t− 1)Q1
)

(B31)
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where,

α(t− 1) = β0(t− 1) − βQ1
B
(t− 1)π(t− 1)−1χ(t− 1) (B32)

Γ(t− 1) = βQ(t− 1) + βQ1
B
(t− 1)π(t− 1)−1ξ(t− 1) (B33)

Large Investors Consumption

Large investors optimal time t− 1 consumption depends on optimal time t− 1 trades. After

plugging the expressions for equilibrium prices, and equilibrium trades [equations (B30),

(B31), and (B27)] into equation (B17), large investors consumption choice problem has

form:

max
Cm(t−1)

−e−AmCm(t−1)−δkm(t)erAm(t)Cm(t−1)×ψm(Q1(t−1),Wm(t−1), D(t−1), t−1), (B34)

where

ψm(Q1,Wm(t− 1), t− 1) =e−.5Z̄2′Ω−1
22 Z̄2

−Am(t)rWm(t−1)

× e+Am(t)r[Sm(H0(t−1)+H1(t−1)Q1(t−1)]′(α(t−1)−Γ(t−1)Q1(t−1))/r

× e−Am(t)(G0(t−1)+G1(t−1)Q1(t−1))′ v̄m(t)

× e.5Am(t)2[G0(t−1)+G1(t−1)Q1(t−1)]′θm(t)[G0(t−1)+G1(t−1)Q1(t−1)]

(B35)

The first order condition for choice of consumption implies that optimal consumption is

given by:

Cm(t− 1) =
−1

Am(t)r + Am

ln

(

δkm(t)Am(t)rψm(Q1(t− 1),Wm(t− 1), t− 1)

Am

)

(B36)

Large investors value function at time t− 1

Define Vm(t−1, Q1,Wm(t−1)) as the value function to large investor m from entering period

t− 1 when the vector of illiquid risky asset holdings is Q1, and his liquid asset holdings are

Wm(t−1). After substituting the optimal consumption choice in (B36) into equation (B34),
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this value function is given by:

Vm(Wm(t− 1), Q1, t− 1) = −

[

1 + r∗m(t)

r∗m(t)

]

[

δkm(t)r∗m(t)ψm(Q1,Wm(t− 1), t− 1)
]

1
1+r∗m(t)

(B37)

where,

r∗m(t) = Am(t)r/Am (B38)

Tedious algebra then shows that large investor m’s value function at time t−1 has form:

Vm(t−1, Q1,Wm(t−1)) = −km(t−1)×e−Am(t−1)Wm(t−1)−Am(t−1)Q1 ′Λm(t−1)+.5Am(t−1)2Q1′Ξm(t−1)Q1

(B39)

where the parameters of the value function at time t−1 are given by the following Riccati

difference equations.

Am(t− 1) = Am(t)r/(1 + r∗m(t)) (B40)

km(t− 1) =

[

r∗m(t) + 1

r∗m(t)

]

[δkm(t)r∗m(t)]
1

1+r∗m(t)

× e
−.5Z̄2 ′Ω−1

22
Z̄2

1+r∗m(t)

× eAm(t−1)H0(t−1)′S′

mα(t−1)/r−Am(t−1)G0(t−1)′ v̄m(t)/r+.5Am(t−1)2((1+r∗m(t))/r2)(G0(t−1)′θm(t)G0(t−1))

(B41)

Λm(t− 1) = −H1(t− 1)′S ′

mα(t− 1)/r + Γ(t− 1)′SmH0(t− 1)/r +G1(t− 1)′v̄m(t)/r

− Am(t− 1)(1 + r∗m(t))G1(t− 1)′
(

θm(t) + θm(t)′

2

)

G0(t− 1)/r2

(B42)

Ξm(t− 1) =
−2H1(t− 1)′S ′

mΓ(t− 1)

rAm(t− 1)
+ (1 + r∗m(t))G1(t− 1)′θm(t)G1(t− 1)/r2 (B43)
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Small investors optimal consumption

The solution for each small investors consumption depends on small investors optimal trades.

To solve for optimal consumptions, I first use equation (B9) to substitute out for Q1
s in

equation (B8). I then substitute out for Z̄1(t) − β12Z̄
2(t) with the expression:

Z̄1(t) − β12Z̄
2(t) = a0(t− 1) + a1(t− 1)Q1(t− 1), (B44)

where,

a0(t− 1) =
α(t)

r
− α(t− 1) + D̄1 − β12Z̄

2(t) −
Γ(t)G0(t− 1)

r
(B45)

a1(t− 1) = Γ(t− 1) −
Γ(t)G1(t− 1)

r
. (B46)

Finally I substitute out Q1(t) with [G0(t−1)+G1(t−1)Q(t−1)]. With these substitutions,

small investors choice of optimal consumptions simplifies to:

max
Cs(t−1)

−e−AsCs(t−1) − δks(t)e
rAs(t)Cs(t−1) × ψs(Q

1(t− 1),Ws(t− 1), t− 1), (B47)

where,

ψs(Q
1(t− 1),Ws(t− 1),t− 1) = e−As(t)rWs(t−1)−.5Z̄′

2Ω−1
22 Z̄2

×e−.5[a0(t−1)+a1(t−1)Q1(t−1)]′Ω−1
e [a0(t−1)+a1(t−1)Q1(t−1)]

×e−[G0(t−1)+G1(t−1)Q1(t−1)]′ v̄s(t)

×e−[G0(t−1)+G1(t−1)Q1(t−1)]′θs(t)[G0(t−1)+G1(t−1)Q1(t−1)]

(B48)

The first order condition for choice of optimal consumption implies that optimal con-

sumption is given by:

Cs(t− 1) =
−1

As(t)r + As

ln

(

δks(t)As(t)rψs(Q
1(t− 1),Ws(t− 1), t− 1)

As

)

(B49)

Small investors value function at time t− 1

Define Vs(Ws(t− 1), Q1(t− 1), t− 1) as the value function to small investor s from entering

period t−1 when the vector of illiquid risky asset holdings is Q1(t−1), and his liquid wealth

is Ws(t−1). After substituting the optimal consumption choice in (B49) into equation (B47),
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this value function is given by:

Vs(Ws(t− 1), Q1(t− 1), t− 1) =

−

[

1 + r∗s(t)

r∗s(t)

]

[

δks(t)r
∗

s(t)ψs(Q
1(t− 1),Ws(t− 1), t− 1)

]
1

1+r∗s (t)

(B50)

where,

r∗s(t) = As(t)r/As (B51)

Simplification then shows that the value function has form:

Vs(Ws(t− 1), Q1(t− 1), t− 1) = −Ks(t− 1) F (Q1, t− 1) e−As(t−1)Ws(t−1),

where F (Q1(t− 1), t− 1) = e−Q1(t−1)′ v̄s(t−1)−Q1(t−1)′θs(t−1)Q1(t−1)
(B52)

The parameters in the small investors value functions at time t−1 are a function of time

t parameters as expressed in the following Riccati equations:

As(t− 1) =
rAs(t)

1 + r∗s(t)
(B53)

ks(t− 1) =

[

r∗s(t) + 1

r∗s(t)

]

[

δks(t− 1)r∗s(t)e
−.5Z̄2′Ω−1

22 Z̄2
]

1
1+r∗s (t)

× Exp

{

−a0(t− 1)′Ω−1
e a0(t− 1) −G0(t− 1)′v̄s(t) −G0(t− 1)′θs(t)G0(t− 1)

1 + r∗s(t)

}

,

(B54)

v̄s(t− 1) =
a1(t− 1)′Ω−1

e a0(t− 1) +G1(t− 1)′v̄s(t) +G1(t− 1)′(θs(t) + θs(t)
′)G0(t− 1)

1 + r∗s(t)
,

(B55)

θs(t− 1) =
.5a1(t− 1)′Ω−1

e a1(t− 1) +G1(t− 1)′θs(t)G1(t− 1)

1 + r∗s(t)
(B56)
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This completes part I of the proof because equations (B39) and (B52) verify that the

value functions at time t− 1 have the same form as at time t.

B.2 Part II

To establish part II of the proof, I need to show that investors value functions for entering

entering period T , the last period of trade, has the same functional form as given in the

proposition. To establish this result, I first need to solve for investors value function at

time T + 1, the first period when investors cannot trade the illiquid assets (recall they can

continue to trade the riskless asset and the liquid assets indefinitely). Then, given this value

function, I use backwards induction to solve for investors value function at time T .

Investors Value Functions at Time T+1

Recall that investors are infinitely lived but that from time T onwards they cannot alter

their holdings of illiquid assets, but they can continue to alter their consumption, and their

holdings of liquid and riskless assets. Because investors cannot trade in period T + 1 and

after, the distinction between small and large investors after this period is irrelevant. Hence,

the index m used below could be for either a large or small investor. Using the Bellman

principle, the value function Vm(.) of entering period t+1 (t ≥ T ) with illiquid asset holdings

Q1
m and liquid wealth Wm satisfies the functional equation:

Vm(Wm(t+ 1), Q1
m) = max

Cm(t+ 1)

Q2
m(t+ 2)

− exp−AmCm(t+1) +δE{Vm(Wm(t+ 2), Q1
m)}, t ≥ T,

(B57)

where,

Wm(t+ 2) = Q1
m

′D1(t+ 2) +Q2
m

′Z2(t+ 2) + r[Wm(t+ 1) − Cm(t+ 1)], (B58)

and,

Z2(t+ 2) = P 2(t+ 2) +D2(t+ 2) − rP 2(t+ 1).
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Inspection shows that the function

Vm(Wm, Q
1
m) = −Kmexp−Am[1−(1/r)]Wm−Am[1−(1/r)]Q1

m
′ (1/r)[D̄1

−β12Z̄2]

1−(1/r)
+ 1

2
A2

m[1−(1/r)]2Q1
m

′ (1/r)Ωe
1−(1/r)

Q1
m

(B59)

with

Km =
r

r − 1
× (δr)

1
r−1 × exp−.5

Z̄2′Ω
−1
22 Z̄2

r−1 ,

satisfies the Bellman equation (B57) for all time periods ≥ T + 1.

Given the value function at time T +1, to solve for investors value functions at time T , I

follow the same steps as in equations (B4) through equation (B56). Therefore, substituting

in from equation (B59), small investors maximization problem at time T has form:

max
Cs(T ),

Qs

−e−AsCs(T )−δ E
{

Ks(T + 1)e−As(T+1)Ws(T+1)−As(T+1)Q1
s
′Λs(T+1)+ 1

2
As(T+1)2Q1

s
′Ξse(T+1)Q1

s

}

(B60)

such that,

Ws(T + 1) = Q1
s
′Z1(T + 1) +Q2

s
′Z2(T + 1) + r[Ws(T ) − Cs(T )], (B61)

where,

Ks(T + 1) =
r

r − 1
× (δr)

1
r−1 × exp−.5

Z̄2′Ω−1
22 Z̄2

r−1 , (B62)

As(T + 1) = As[1 − (1/r)], (B63)

Λs(T + 1) =
(1/r)[D̄1 − β12Z̄

2]

1 − (1/r)
, (B64)

Ξse(T + 1) =
(1/r)Ωe

1 − (1/r)
, (B65)

Z1(T + 1) = D1(T + 1) − rP 1(T ), (B66)

Z2(T + 1) = P 2(T + 1) +D2(T + 1) − rP 2(T ). (B67)

Substituting the expression for Ws(T + 1) into the value function, taking expectations,

and then solving for optimal Q2
s given Q1

s, and substituting that into the value function

shows that small investors optimal choice of Q1
s and Cs(T ) problem has form:
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max
Cs(T ),

Q1
s

−e−AsCs(T )−δKs(T + 1) Exp
{

−.5Z̄ ′

2Ω
−1
22 Z̄2 − As(T )r[Ws(T ) − Cs(T )]

}

× Exp
{

−As(T + 1)Q1
s
′[v̄s(T + 1) − rP 1(T )] + .5As(T + 1)2Q1

s
′Ωe(T + 1)Q1

s

}

(B68)

where

v̄s(T + 1) =

[

D̄1(T + 1) − β12Z̄2(T + 1)

1 − (1/r)

]

(B69)

Ωe(T + 1) =

[

Ωe

1 − (1/r)

]

(B70)

Integrating the solution for optimal Q1
s over the set of small investors then reveals that

the net demand for the illiquid assets by the competitive fringe is:

Q1
1(T + 1) =

1

A1(T + 1)
[Ωe(t+ 1)]−1[v̄s(T + 1) − rP (t)] (B71)

Following the approach that was used earlier to solve for the price schedule faced by large

investors in equation (B11), inverting the small investors demand schedule for the illiquid

assets reveals that the price schedule faced by large investors has the form:

P 1(., T ) =
1

r

(

β0(T ) − βQ1(T )Q1(T ) − βQ1
B
(T )∆Q1

B(T )
)

, (B72)

β0(T ) = v̄s(T + 1) (B73)

βQ1(T ) = A1(T + 1)Ωe(T + 1)S1) (B74)

βQ1
B
(T ) = −A1(T + 1)Ωe(T + 1)S (B75)

Given the price schedule at time T , and the value function in equation (B59), large

investors maximization problem at time T can be written in the form:
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max
Cm(T ),

Qm

− e−AmCm(T )

− E
{

δKm(T + 1)e−Am(T+1)Wm(T+1)−Am(T+1)Q1′Λm(T+1)+.5Am(t)2Q1′Ξm(T+1)Q1
}

(B76)

where,

Am(T + 1) = Am[1 − (1/r)] (B77)

Λm(T + 1) = S ′

m

[

(1/r)[D̄1 − β12Z̄
2]

1 − (1/r)

]

, (B78)

Ξm(T + 1) = S ′

m

(

(1/r)Ωe

1 − (1/r)

)

Sm. (B79)

Km(T + 1) =
r

r − 1
× (δr)

1
r−1 × exp−.5

Z̄2′Ω
−1
22 Z̄2

r−1 (B80)

Substituting in the budget constraint, liquid wealth at the beginning of time T + 1 is

given by

Wm(T + 1) =Q1
m(T + 1)′D1(T + 1) +Q2

m(T + 1)′Z2(T + 1)

+ r(Wm(T ) − ∆Q1
m(T )′P 1(T, .) − Cm(T ))

(B81)

Large investors maximization problem at time T has exactly the same form as given in

equation (B15). Therefore, the optimal trades and consumption of large investors follow

precisely the same equations as given in Part I of the proof. Large investors value function

at time T also has the same functional form as in part I. The equilibrium price function at

time T also has the same functional form as in part I. Therefore, to complete the proof, it

suffices to solve for small investors consumption and then value function and verify that the

value function has the appropriate functional form.

To do so, note that from equation (B68), it is straightforward to show that the optimal

choice of Q1
s(T + 1) is

Q1
s(T + 1) =

1

As(T + 1)
[Ωe(T + 1)]−1 × [v̄s(T + 1) − rP 1(T )],

and that after substituting this expression back in the value function, and making the sub-
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stitution P 1(T ) = 1
r
(α(t) − Γ(t)Q1(t)), then the maximization in equation (B68) simplifies

to have the form:

max
Cs(T )

−e−AsCs(T ) − δKs(T + 1) Exp{As(T )rCs(T )} × Ψs(T,Q
1) (B82)

where,

Ψs(T,Q
1) =Exp

{

−.5Z̄ ′

2Ω
−1
22 Z̄2 −As(T )rWs(T )

}

× Exp
{

−.5[v̄s(T + 1) − α(T )]′[Ωe(T + 1)]−1[v̄s(T + 1) − α(T )]
}

× Exp
{

−Q1(T )′Γ(T )′[Ωe(T + 1)]−1[v̄s(T + 1) − α(T )]
}

× Exp
{

−.5Q1(T )′Γ(T )′[Ωe(T + 1)]−1Γ(T )Q1(T )
}

(B83)

Using the same approach that was used to solve for large investors optimal consumption

and then value function in part I of the proof, tedious algebra shows that small investors

value function at time T has form

−F (Q1, T )Ks(T ) Exp(−As(T )Ws(T ))

where, F (Q1, T ) = e−Q1(T )′v̄s(T )−Q1(T )′θs(T )Q1(T ),

r∗s(T + 1) = As(T + 1)r/As, (B84)

As(T ) = As(T + 1)r/(1 + r∗s(T + 1)), (B85)

Ks(T ) =

[

r∗s(T + 1) + 1

r∗s(T + 1)

]

[δKs(T + 1)r∗s(T + 1)]
1

1+r∗s (T+1)

× Exp

(

−.5Z̄2′Ω−1
22 Z̄

2 − .5[v̄s(T + 1) − α(T )]′[Ωe(T + 1)]−1[v̄s(T + 1) − α(T )]

1 + r∗s(T + 1)

)

,

(B86)

v̄s(T ) =
Γ(T )′[Ωe(T + 1)]−1[v̄s(T + 1) − α(T )]

1 + r∗s(T + 1)
, (B87)

θs(T ) =
Γ(T )′[Ωe(T + 1)]−1Γ(T )

1 + r∗s(T + 1)
. (B88)
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This completes the proof by establishing that large and small investors value functions

take the hypothesized form in all periods that involve trade. 2

C Solutions for Value Function Parameters

Proposition 3 For all time periods t = 1, . . . , T , and for large investors m = 2, . . .M :

v̄m(t) =
S ′

m(D̄1 − β12Z̄
2)

1 − (1/r)
(C1)

α(t) = (D̄1 − β12Z̄
2) (C2)

Am(t) = Am[1 − (1/r)] (C3)

r∗(t) = r − 1 (C4)

km(t) =

(

r

r − 1

)

× (δr)
1

r−1e−.5
Z̄2′Ω−1

22
Z̄2

r−1 (C5)

Proof:

For v̄m(t) and α(t):

The proof is by induction. First, suppose that the results for v̄m(t) and α(t) are true

at time t. Then, from equation (B12), β0(t − 1) = α(t). This implies that from equation

(B23) that(−S1 + Sm)v̄m(t) − β0(t − 1) = 0. As a result χ(t − 1) = 0, which implies

from equation (B32) that α(t − 1) = β0(t − 1) and from equations (B28) and (B30) that

H0(t− 1) = G0(t− 1) = 0. Substituting for H0(t− 1) and G0(t− 1) in equation (B42) and

simplifying then shows:

Λm(t− 1) = S ′

mα(t)/r. (C6)

Finally, substituting this result in equation (B18) proves the result for v̄m(t−1). To complete

the induction, I use equations (B78) and (B18) to solve for v̄m(T + 1); I then substitute the

resulting expression as well as the one for β0(T ) (equation (B73)) in equation (B23) and use

it to show that χ(T ) = 0, which implies G0(T ) = H0(T ) = 0. Substituting into equation

(B32), then shows that α(T ) = β0(T ) = S ′

m(D̄1 − β12Z̄
2)/[1 − (1/r)], which confirms the

result for α(T ). Finally, given the solutions for α(T ) and v̄m(T+1), substitution in equations

(B78) and (B18) confirms the result for v̄m(T ) and completes the induction.

For Am(t) and r∗(t):

45



The proof is by backwards induction. We know Am(T +1) = Am[1−(1/r)] from equation

(B77). Using this expression, and iterating on equations (B40) and (B38) proves the result

for all times t = 1, . . . T.

For km(t):

The proof is by backwards induction. Equation (B80) establishes that it is true at time

T + 1. Plugging the solution for Km(T + 1) into equation (B41) while using the solutions

for r∗m(t) and the result H0(t− 1) = G0(t− 1) = 0 confirms the result for periods 1, . . . T . 2

The next proposition provides information on the value functions of the small investors:

Proposition 4 For all time periods t = 1, . . . , T , and for each small investor s

a0(t) = 0 (C7)

v̄s(t) = 0 (C8)

As(t) = As[1 − (1/r)] (C9)

r∗s(t) = r − 1 (C10)

ks(t) =

(

r

r − 1

)

× (δr)
1

r−1e−.5
Z̄2′Ω−1

22
Z̄2

r−1 (C11)

Proof:

For a0(t) and v̄s(t): Plugging the solutions for α(t) and G0(t− 1) from proposition 3 into

equation (B45) shows that a0(t) = 0 for all times t. Since G0(t − 1) = 0 for all times t,

it then follows from equation (B55) that if v̄s(t) = 0, then so does v̄s(t − 1). To complete

the induction, note that substituting the solutions for v̄s(T + 1) (equation (B69)) and α(T )

(proposition 3) into equation (B87) confirms the result.

For As(t), r
∗

s(t), and ks(t):

The form of the proof is identical to that given in proposition 3.2

Proposition 5 Assume that for t ≤ T , conditional on state variable Q1(t) the Nash Equi-

librium trades of the large investors exists and is unique. Then for all m = 2, . . . ,M and

t = 1, . . . , T , θm(t) has form:

ϑm(t) ⊗ Ωe, (C12)
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where, ϑm(t) is M ×M ; and

Γ(t) = γ(t) ⊗ Ωe, (C13)

where, γ(t) is 1 ×M .

Proof: The proof is by induction. First, assume that the theorem is true at time t. Then,

from equations (B14) and (B13) βQB
(t−1) = BQB

(t−1)⊗Ωe, and βQ(t−1) = BQ(t−1)⊗Ωe,

where BQB
(t− 1) is 1×M − 1 and βQ(t− 1) is 1×M . Applying these substitutions in large

investors reaction functions and then stacking the results reveals that in equation (B25),

π(t − 1) = P(t − 1) ⊗ Ωe and ξ(t − 1) = Z(t − 1) ⊗ Ωe. The assumption that the Nash

Equilibrium trades in each period are unique implies that P(t− 1) is invertible. Solving for

H0(t− 1) and H1(t− 1) then shows that H0(t− 1) = 0 and

H1(t− 1) =

(

−S[P (t− 1)−1Z(t− 1)] ⊗ IN1

(P (t− 1)−1Z(t− 1)) ⊗ IN1

)

(C14)

=

(

[−ι′MP(t− 1)−1Z(t− 1)] ⊗ IN1

(P(t− 1)−1Z(t− 1)) ⊗ IN1

)

(C15)

= H1(t− 1) ⊗ IN1 (C16)

where ιM is a 1×M vector of ones, and H1(t−1) isM×M . Since G1(t−1) = H1(t−1)+IN1M ,

it follows thatG1(t−1) = G1(t−1)⊗IN1 for G1(t−1) = H1(t−1)+IM . From here, substitution

in equation (B33) shows that Γ(t−1) = γ(t−1)⊗Ω and substitution in equation (B43) and

(B19) shows that θm(t − 1) = ϑm(t − 1) ⊗ Ω. To complete the induction, I substitute the

expression for ξm(T + 1) (equation (B79)) into equation (B19) and show that the result is

true for θm(T + 1). Then, following steps similar to those in the first part of the induction,

it is straightforward to show that the result holds for Γ(T ) and θm(T ), which completes the

induction. 2.

Corollary 2 For each small investors, and for each time period t = 1, . . . T ,

θs(t) = ϑs ⊗ Ωe,

where ϑs is M ×M .

Proof: Straightforward induction involving application of the results from proposition 5.
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D Proofs of Asset Pricing Propositions

Proposition 6 When asset markets are imperfectly competitive as specified in section 2 of

the text, then if market participants initial asset holdings are Q1W , then investors will hold

Q1W forever, and asset prices and expected returns will be the same as when there is perfect

competition.

Proof: When investors risky asset holdings are Q1W , then investors asset holdings are identi-

cal to those associated with a competitive equilibrium and complete markets in which trading

is restricted to the set of market participants that has been modeled. Hence, when trade in

the first set of assets is restricted to be among the market participants, asset holdings are

pareto optimal in all time periods; and investors asset holdings will remain at Q1W because

investors have no basis to trade away from asset holdings that are associated with perfect

risk sharing. Because Q1W is the vector of asset holdings from a competitive equilibrium, the

resulting prices and expected returns which support QW are the same as in the competitive

equilibrium. 2

Corollary 3 For all t ≥ T ,

[Γ(t) −
1

r
Γ(t+ 1)G1(t)]Q

1W = λ[X1]ΩeX
1.

Proof: Algebra shows that when asset holdings of asset 1 at time t are Q1W , then excess

returns of asset 1 are equal to:

P 1(t+ 1) + D̄1 − rP 1(t) = β12Z̄
2 + [Γ(t) −

1

r
Γ(t+ 1)G1(t)]Q

1W .

Proposition 6 shows that when asset holdings are Q1W then the excess returns of asset 1 are

β12Z̄
2 + λ[X1]ΩeX

1. Equating the two expressions confirms the claim in the corollary. 2.

Proposition 1: When investors asset holdings of the first asset are not Q1W , then equilib-

rium expected asset returns satisfy a linear factor model in which one factor is the returns

on asset 2, another factor corresponds to perfect risk-sharing, but imperfect diversification

of the idiosyncratic risk of asset 1, and the remaining factors correspond to the deviation of

large investors asset holdings from those associated with the large investors perfectly sharing

the idiosyncratic risk of asset 1.
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Proof: Let Q1W denote the vector of asset holdings of asset 1 that is associated with perfect

risk sharing among the investors that trade in asset 1. Manipulation of the equation for

equilibrium prices given in proposition 2, and substitution of G0(t) +G(t)Q(t) for Q(t+ 1)

shows:

P 1(t+1)+D̄1−rP 1(t) = [
1

r
α(t+1)+D̄1−α(t)]−[

1

r
Γ(t+1)G0(t)]+[Γ(t)−

1

r
Γ(t+1)G1(t)]Q

1(t)

Plugging in the solution for α(t) = α(t − 1) = [D̄1 − β12Z̄
2]/[1 − (1/r)] shows the first

term in braces on the right hand side of the equation is equal to β12Z̄
2. The second term

in braces is zero since proposition 3 shows that G0(t) = 0. Adding and subtracting Q1W to

Q1(t), the above equation can be rewritten as:

P 1(t+1)+D̄1−rP 1(t) = β12Z̄
2+[Γ(t)−

1

r
Γ(t+1)G1(t)](Q(t)−QW )+[Γ(t)−

1

r
Γ(t+1)G1(t)]Q

1W

(D1)

Using the fact that Q1
1 = X1 − SQ1

B, the vector Q1(t) − Q1W can be expressed in terms of

the deviations of large investors asset holdings from pareto optimal asset holdings:

Q1(t) −Q1W =

[

(X1 − SQ1
B) − (X1 − SQ1W

B )

Q1
B −Q1W

B

]

=

[

−S

I

]

(Q1
B −Q1W

B )

Applying the substitution for Q1(t)−Q1W , and the result of corollary 3 in equation (D1)

shows

P 1(t+1)+D̄1−rP 1(t) = β12Z̄
2+λ[X1]ΩeX

1+[Γ(t)−
1

r
Γ(t+1)G1(t)]

(

−S

I

)

(Q1
B(t)−Q1W

B )

Finally, applying the algebra used in the derivation of proposition 5 shows

[Γ(t) −
1

r
Γ(t+ 1)G1(t)]

(

−S

I

)

= λ(t) ⊗ Ωe (D2)
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where λ(t) is 1 ×M − 1. Making this substitution then shows:

P 1(t+ 1) + D̄1 − rP 1(t) = β12Z̄
2 + λ[X1]ΩeX

1 + [λ(t) ⊗ Ωe](Q
1
B(t) −Q1W

B )

= β12Z̄
2 + λ[X1]ΩeX

1 +
∑M

m=2 λ(m, t)Ωe(Q
1
m(t) −Q1W

m )

(D3)

where λ(m, t) = λ(t)s′m−1. 2.

Corollary 1: When asset holdings at time t are not efficient, then asset returns at time

t + τ follow a factor model in which the market portfolio, the portfolio of segment residual

risk, and the deviation of large investors time t asset holdings from efficient asset holdings

are factors.

Proof: Iterating equation (D1), by τ periods shows:

P 1(t+ τ + 1) + D̄1 − rP 1(t+ τ) = β12Z̄
2 + [Γ(t+ τ) −

1

r
Γ(t+ 1 + τ)G1(t+ τ)](Q1(t+ τ) −Q1W )

+ [Γ(t+ τ) −
1

r
Γ(t+ τ + 1)G1(t+ τ)]Q1W .

(D4)

Iterating the equation for equilibrium trades in each period shows

Q1(t+ τ) = [
τ−1
∏

j=0

G1(t+ j)]Q1(t).

Additionally, because the investors will not trade away from efficient asset holdings, it also

follows that

[
τ−1
∏

j=0

G1(t+ j)]Q1W = Q1W .

Making both of these substitutions in equation (D4) shows that:

P 1(t+ τ + 1) + D̄1 − rP 1(t+ τ) = β12Z̄
2 + λ[X1]ΩeX

1 + [λ(t, τ) ⊗ Ωe](Q
1(t) −Q1W )

= β12Z̄
2 + λ[X1]ΩeX

1 +
M
∑

m=2

λm(t, τ)Ωe(Q
1
m(t) −Q1W

m )

where,

λ(t, τ) ⊗ Ωe = [Γ(t+ τ) −
1

r
Γ(t+ 1 + τ)G1(t+ τ)]

τ−1
∏

j=0

G1(t+ j),

and λm(t, τ) = λ(t, τ)S ′

m−1 2.
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D.1 Competitive Benchmark Model

It is useful to contrast the behavior in the multi-market model with large investors with the

behavior of asset prices and trades in the same model when all investors are price takers and

can trade forever.

In this infinite period set-up with competitive markets, the equilibrium risk-premium

should be time invariant. Denote this risk premium by ρ, where,

ρ =

(

ρ1

ρ2

)

=

(

Z̄1

Z̄2

)

=

(

P 1(t+ 1) + D̄1 − rP 1(t)

P 2(t+ 1) + D̄2 − rP 2(t)

)

(D5)

Note that Z̄2 is taken as exogenous. The goal is to solve for Z̄1 and P 1 that makes the

prices of the first group of assets (the ones that are illiquid in the imperfect competition

model) consistent with equilibrium in all time periods.

Solving the equation for P 1(t) forward while imposing the transversality condition limt→∞ r−tP 1(t) =

0, shows that

P 1(t) =
D̄1 − ρ1

r − 1

for all time periods t.

Given the hypothesized behavior of prices, it remains to solve for ρ1 and then to show

that the hypothesized behavior of prices is consistent with equilibrium.

The function,

Vm(W, t) = −
r

r − 1
(r δ)

−1
r−1 exp−Am(1−(1/r))W−

.5Z̄2 ′Ω−1
22 Z̄2

r−1
−

.5ρ1′Ω
−1
e ρ1

r−1

and the risk premium solution

ρ1 = Z̄1 = β12Z̄
2 + λ[X1]ΩeX

1, (D6)

where,

λ[X1] =
(1 − (1/r))
∑M

m=1(1/Am)
(D7)

satisfies the Bellman equation,
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Vm(W, t) = max
Cm(t),

Q1
m(t),

Q2
m(t)

−e−AmCm(t) + Et{δVm(W (t+ 1), t+ 1)},

such that,

W (t+ 1) = Q1
m(t)′Z1(t) +Q2

m(t)′Z2(t) + r[W (t) − Cm(t)].

In addition, in the competitive equilibrium, investors optimal choices of Q1
m are constant

through time, and are market clearing for the hypothesized ρ1. Investor m′s competitive

equilibrium holdings of Q1
m is denoted by Q1W

m and is equal to

Q1W
m =

(1/Am)X1

∑M
m=1(1/Am)

, m = 1, . . .M. (D8)

Substituting the hypothesized ρ1 into the expression for equilibrium P 1, it follows that

in a competitive equilibrium, the equilibrium price is given by

P 1(t) =
D̄1 − β12Z̄

2

r − 1
−

ΩeX
1

r
∑M

m=1
1

Am

, t = 1, . . .∞ (D9)

E Solving the IPO Allocation and Price-Setting Prob-

lem

The underwriter’s problem in equations (16) - (18) problem requires that he maximize a non-

linear objective function subject to the equality constraint that the total issue is allocated at

the IPO or sold in the aftermarket, and subject to a set of nonlinear participation constraints.

To solve the maximation, the participation constraints were expressed in terms of investors

certainty equivalent wealth. The transformed participation constraints are quadratic in the

state variables. Additionally, the equality constraint was used to express Xu in terms of the

size of the issue, and the allocations to other investors:

Xu = XIPO −
M
∑

m=1

XIPO
m

52



To economize on notation, I will drop the “IPO” superscript below in what follows. The

Lagrangian for the transformed maximization problem is:

L = max
P,X

Π(P,X) +

M
∑

m=1

λm ψm (E1)

The necessary conditions for an optimum are given by the Kuhn-Tucker conditions:

LP = ΠP +
M
∑

m=1

λm ψm,P ≤ 0 with c.s. (E2)

and for j = 1, . . .M :

LXj
= ΠXj

+
M
∑

m=1

λm ψm,Xj
≤ 0 with c.s. (E3)

If an investor purchases any shares at the IPO, then his utility is decreasing in the IPO

offer price. Therefore, if shares are issued at the IPO, then the incentive constraints must be

binding for some investors, because if they were not the underwriter could profit by raising

the offer price until the incentive constraints do bind.

Although it is clear the incentive constraints must bind for at least one investor, it is

not clear for how many other investors the constraints will bind. I solved the model in the

special case when there are 6 investors (M = 6) and the only asset in the segment is the

new issue. To solve the model, I assumed that the underwriters short position is limited,

i.e. Xu ≥ −LB. With this added constraint, the feasible choices of Xm lie on a simplex. I

discretized the simplex so that each investor’s post IPO asset holdings could take one of 21

values. Given a vector of asset holdings, I then solved for the highest IPO offer price that

satisfies all investors incentive compatibility constraints,37, and then evaluated the objective

function. The point on the discretized simplex for which the objective function was highest

was treated as being in a neighborhood of the global optimum, and was used as a starting

point for a second stage optimization. Additionally, the investor or investors for whom the

incentive compatibility constraints were binding, were deemed as the investors for whom the

constraints will be binding at the optimum.

The second stage optimization minimized the squared norm of the Kuhn-Tucker condi-

tions while checking for changes in the set of investors for whom the constraints are binding.

37This step is simple because the price that makes each investors incentive constraint bind has a closed
form expression.
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A quadratic hillclimbing algorithm with safeguards was used in the second stage optimiza-

tion. When the investors all differ in their risk aversion, as they do in some of the examples

in the paper, then the incentive compatability constraints tended to bind for a single in-

vestor. Under this circumstance, the Kuhn Tucker condition for price produce an analytical

expression for λm, which simplifies the second-stage optimization. A complicating factor

in the second stage is that the Hessians of the first and second stage objective functions

are singular. I believe (but cannot show), that Gauss’ nonlinear constrained optimization

crashed because of this property. To compensate for this problem in the second stage, at

each iteration I projected the direction vector onto the range and null spaces of the hessian

matrix, and then solved for the projection coefficients that guarantee an increasing step in

the objective function. Finally, I found the book Practical Optimization, by Gill, Murray,

and Wright (1981) to be a very useful reference for solving nonlinear optimization problems.

F Market Segmentation and Market Adjusted Abnor-

mal Returns

The purpose of this section is to study the properties of market adjusted abnormal returns

when there is market segmentation. The analysis and results are closely related to Merton

(1987). The model contains two time-periods and N blocks of risky assets, and a riskfree

asset that is in perfectly elastic supply and has return r. The supply of shares outstanding

in block i is denoted by the vector Xi. Note that the number of assets can vary from block

to block. Investors trade the assets in period 1 and consume in period 2. The period 2

payoff vector per share in block i is equal to Di. The payoff of Di is further decomposed into

its mean µi, a component that is sensitive to systematic risk factor f , and an idiosyncratic

component ǫi:

Di = µi + aif + ǫi (F1)

I assume that f ∼ N (0, σ2
f), and ǫi ∼ N (0,Ωi). The ǫi are uncorrelated across blocks and

are uncorrelated with f .

In addition to the N blocks of assets, there is a single asset in zero net supply whose

payoff vector is:

DN+1 = f. (F2)

The N’th market can be viewed as a market for sharing systematic risk.
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At time period 1, the price vector of the risky assets is denoted by Pi, i = 1, . . .N + 1.

I assume that for some reason that is not specified here, asset markets are segmented.

This means that each block of assets has its own set of investors that only take positions in

the segment assets and in asset N+1. For simplicity, the investors in each block are modelled

as a single representative price-taking investor with CARA utility of period 2 wealth and

risk tolerance τi.

The market portfolio has payoff DM =
∑N

i=1X
′

iDi, and price PM =
∑

X ′

iPi. Its excess

return over the risk free rate is denoted by Zm = DM − rPM ; and the excess return of the

assets in block i over the risk free rate is denoted by Zi = Di − rPi.

Armed with this notation,

Var(Zm) = (

N
∑

i=1

X ′

iai)
2σ2

f +

N
∑

i=1

X ′

iΩiXi; (F3)

and,

Cov(Zi, ZM) = ai(

N
∑

i=1

X ′

iai)σ
2
f + ΩiXi (F4)

If I use the primitive assets to construct N assets with payoffs µi + ǫi, and a single asset

with payoff f , then the new assets will span the same space as the old, but they are easier

to work with. In particular, working from the new assets, it is straightforward to show that

for each block i, under the assumption of market segmentation,

Z̄i = τ−1
i ΩiXi + ai[

∑

X ′

iai][
∑

τ−1
i ]σ2

f (F5)

= ηiΩiXi + λM Cov(Zi, ZM) (F6)

where λM = [
∑

τi]
−1, and ηi = τ−1

i − λM , and Z̄i = EZi.

Using the above expression to solve for the market’s excess expected return then shows:

Z̄M =
N
∑

i=1

ηiX
′

iΩiXi + λM Var(ZM) (F7)

The expression for Z̄M contains two components. The second component is the standard

risk premium for an assets covariance with market risk when investors fully diversify their
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asset holdings. The first component is an additional premium for imperfect diversification.

Examination will show that each term of the imperfect diversification premium is positive,

which implies that imperfect diversification increases the return on the market portfolio.

Below, I seek to examine how imperfect diversification affects market adjusted abnormal

returns. Letting βi = Cov(Zi, ZM)/V ar(ZM), algebra then shows:

Z̄i − βiZ̄M = ηiΩiXi − βi

∑

ηiX
′

iΩiXi (F8)

= αi (F9)

The term on the right hand of equation (F8) is the vector of Jensen’s alphas for block i

that is due to market segmentation. These alphas capture the risk premium for inefficiently

sharing risk across market segments (or blocks). My goal here is to characterize the average

behavior of the alphai. Simple algebra shows
∑

X ′

ialphai = 0. Because Xi >> 0, it follows

that some of the market corrected alphai must be positive and some must be negative.

Additionally, if the number of shares outstanding of each asset is the same, then the average

value of αi is equal to 0. This suggests that to a first approximation when the market is

perfectly competitive, and there is segmentation, then the average market adjusted α is 0.

When there is imperfect competition, I showed that asset returns have two components.38

The first component is compensation for imperfect risk sharing across blocks (or segments),

and is identical to the component above for the competitive case. The second component

is for inefficient risk sharing among the investors who trade within a segment. Because

investors within each segment eventually share risks optimally, this second component is

transitory. For simplicity here, I will write it as πi. πi should be close to 0 for segments that

have not experienced an IPO recently, but may be nonzero if they did. Note: if the first

asset in a segment is an IPO, and the risks of the other assets are shared efficiently within

the segment, then the allocation distortions at the IPO will cause πi to depart from 0 for all

assets within the segment, but the size of the departure for each asset is proportional to the

first column of Ωi. If Ωi is diagonal, then the other assets in the segment are not affected

by the IPO; but they will be otherwise. To examine the role that this term plays in market

adjusted excess returns, note that πi should be added to each segments excess returns, and

38When I speak of imperfect competition here, it is only over a single period of trade, which is a special
case of the dynamic model in the paper. I have full confidence that all of the reasoning in this subsection can
be written in terms of the general dynamic model in the text, but for now it is easier not to do so formally.
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∑

X ′

iπi should be added to the excess return on the market. Arithmetic then shows that:

Z̄i − βiZ̄M = αi +
[

πi − βi

∑

X ′

iπi

]

(F10)

The second term on the right hand side of the above equation reflects how an IPO affects

the returns within a particular market segment. To get a feel for the magnitude of this term,

with great loss of generality suppose for a moment that an IPO occurs only in segment 1,

that there is only 1 risky asset per segment, and that the characteristics of the assets in each

segment are identical (same number of shares, etc)̇. Then πi is nonzero in segment 1, and 0

in the other N−1 segments. Algebra shows that X ′

iβi = 1/N ; solving for βi and substituting

in the right hand side of (F10) then shows that if segment 1 has an IPO then

Z̄1 − β1Z̄M = α1 +

[

π1 −
1

NX1

∑

X ′

iπi

]

= αi + π1[1 − (1/N)],

where the last line follows because by assumption in this specialized case, Xi = X1, and πi =

π1 for all i. Generalizing a bit, since αi is 0 on average, this analysis suggests that averaging

across IPOs through time and across segments, the average market adjusted returns on IPOs

will be π1[1 − φ] where φ is the fraction of segments that have an IPO. This implies that

IPO’s should underperform after adjusting for market risk.
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Table 1: IPO Under-Pricing and Money Left on the Table: I.

A. Investors Risk Bearing Capacity
Investor Number Type Risk Bearing Capacity

1 Retail 10.00
2 Institutional 54.56
3 Institutional 21.82
4 Institutional 8.73
5 Institutional 3.49
6 Institutional 1.40

Risk Bearing Concentration (Herfindahl Index) 3543.26

B. IPO Under-Pricing and Money Left on the Table (MLOTT)
Prices MLOTT

Periods Liq P Offer P Open P Comp % Und Price Raw Liq. Adj.
2000 10.13 14.25 10.50 40.66 164.75 14.90
1800 10.06 14.83 10.50 47.38 190.73 17.38
1600 10.00 15.43 10.50 54.26 217.12 19.79
1400 9.94 16.04 10.50 61.33 243.93 22.23
1200 9.88 16.66 10.50 68.61 271.18 24.72
1000 9.82 17.29 10.50 76.10 298.87 27.24
800 9.75 17.93 10.50 83.82 327.01 29.81
600 9.69 18.58 10.50 91.76 355.60 32.41
400 9.62 19.24 10.50 99.94 384.65 35.06
200 7.95 20.62 10.50 159.36 506.89 101.74

C. IPO Allocation Distortions (Percent)
Investor Number

Post-IPO Trading Periods 1 2 3 4 5 6
2000 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1800 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1600 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1400 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1200 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1000 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
800 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
600 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
400 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
200 -100.00 83.29 -100.00 -100.00 -100.00 -100.00

61



Table 1 Continued

Notes: When there is a continuum of small retail investors (investor 1), and 5 large investors

(investors 2-6), the table reports expected IPO underpricing and money left on the table for

10 IPOs that vary by the number of days of trading that take place in the IPO aftermarket

(Periods Liq). Fewer trading days correspond to less aftermarket liquidity. Each investors

risk bearing capacity (panel A) is his own risk tolerance as a percent of the sum total of

all investors risk tolerances. Percentage underpricing (panel B) is equal to the net expected

one-day return associated with purchasing at the offer price (P Offer) and then selling at the

first days closing price (P Open). Raw money left on the table is the difference in P Offer

and P Open times the number of shares issued. Liquidity adjusted money left on the table

is equal to the shares issued times the one day return associated with purchasing at P Offer

and then selling into a competitive (and perfectly liquid) aftermarket at price P Comp. In a

competive market, each investors allocation at the IPO should be equal to risk capacity times

the number of shares issued. Allocation distortions (panel C) measure are the percentage

difference in investors allocations at the IPO relative to the allocation he would have received

in an efficient market.
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Table 2: IPO Under-Pricing and Money Left on the Table: II.

A. Investors Risk Bearing Capacity
Investor Number Type Risk Bearing Capacity

1 Retail 10.00
2 Institutional 40.00
3 Institutional 12.50
4 Institutional 12.50
5 Institutional 12.50
6 Institutional 12.50

Risk Bearing Concentration (Herfindahl Index) 2225

B. IPO Under-Pricing and Money Left on the Table (MLOTT)
Prices MLOTT

Periods Liq P Offer P Open P Comp % Und Price Raw Liq. Adj.
2000∗ 10.50 10.50 10.50 0.00 0.00 0.00
1800∗ 10.50 10.50 10.50 0.00 0.00 0.00
1600 10.53 10.71 10.50 1.70 7.14 -1.38
1400 10.69 11.65 10.50 8.97 38.33 -7.62
1200 10.85 12.61 10.50 16.27 70.59 -14.07
1000 11.01 13.60 10.50 23.49 103.48 -20.65
800 11.18 14.61 10.50 30.62 136.94 -27.34
600 11.35 15.63 10.50 37.65 170.96 -34.14
400 11.52 16.66 10.50 44.59 205.55 -41.06
200 11.70 17.72 10.50 51.43 240.70 -48.09

C. IPO Allocation Distortions (Percent)
Investor Number

Post-IPO Trading Periods 1 2 3 4 5 6
2000∗ 0.00 0.00 0.00 0.00 0.00 0.00
1800∗ 0.00 0.00 0.00 0.00 0.00 0.00
1600 -100.00 147.50 -100.00 -100.00 -100.00 -100.00
1400 -100.00 149.57 -100.00 -100.00 -100.00 -100.00
1200 -100.00 149.77 -100.00 -100.00 -100.00 -100.00
1000 -100.00 149.84 -100.00 -100.00 -100.00 -100.00
800 -100.00 149.88 -100.00 -100.00 -100.00 -100.00
600 -100.00 149.90 -100.00 -100.00 -100.00 -100.00
400 -100.00 149.92 -100.00 -100.00 -100.00 -100.00
200 -100.00 149.93 -100.00 -100.00 -100.00 -100.00
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Table 2 Continued

Notes: This table is similar to Table 1 except that investors risk bearing capacity is less

concentrated. When there are 2000, and 1800 post-IPO trading perids (marked with an

asterisk), the aftermarket is sufficiently competitive that investors and the underwriter are

nearly indifferent over how shares are allocated. I have assigned efficient share holdings in

this case at competitive prices. When the aftermarket is slightly more competitive than in

Table 1, but not perfectly competitive, the underwriter can allocate shares at a price that

is higher than the competitive price (which is also the price with perfect liquidity). In such

circumstances, liquidity adjusted money left on the table is negative.
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Figure 1: IPO Offer Prices and Investor 2’s Participation

Notes: For the market structure in panel A of Table 1, the figure presents optimal IPO offer
prices as a function of constraints on the amount of shares that investor 2 can acquire at
the IPO. Results are presented for when the aftermarket is perfectly competitive (nearly
flat solid line), and when it is imperfectly competitive and there are 2000 (short dashes) or
400 (long dashes) periods of aftermarket trading following the IPO. The figure shows that
when there is imperfect competition, the underwriter should distort share holdings towards
investor 2 in order to increase the revenue raised at the IPO.
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Figure 2: Post-IPO Share Turnover

Notes: For the market structure in panel A of Table 1, when there are 2000 periods of
trade remaining following the IPO, the figure presents share turnover [(buy volume + sell
volume)/2] as a percent of shares outstanding.
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Figure 3: Market-Adjusted Cumulative Abnormal Returns

Notes: For the market structure in panel A of Table 1, the figure presents expected cumulative
abnormal returns (CARs) relative to the market portfolio for differing numbers of periods
of liquid trading in the aftermarket following the IPO. The figure is constructed under the
assumption that IPO’s are an infinitesimal fraction of the market portfolio. If instead, new
issues represent φ percent of the market, then the CAR should be adjusted downward in
magnitude by approximately φ percent. See appendix F for details.
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