Finance and Economics Discussion Series
Divisions of Research & Statistics and Monetary Affairs
Federal Reserve Board, Washington, D.C.

Forecasting Professional Forecasters

Eric Ghysels and Jonathan H. Wright
2006-10

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS)
are preliminary materials circulated to stimulate discussion and critical comment. The
analysis and conclusions set forth are those of the authors and do not indicate
concurrence by other members of the research staff or the Board of Governors.
References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character
of these papers.



Forecasting Professional Forecasters®

Eric Ghysels! Jonathan H. Wright!

First Draft: September 2005
This version: February 14, 2006

*We thank Andrew Ang, Mike McCracken, Nour Meddahi, Jim Stock, Rossen Valkanov and Min Wei
for helpful comments. All remaining errors are our own. The views expressed in this paper are solely the
responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors
of the Federal Reserve System or of any other employee of the Federal Reserve System.

"Department of Finance, Kenan-Flagler School of Business and Department of Economics University of
North Carolina, Gardner Hall CB 3305,Gardner Hall CB 3305, Chapel Hill, NC 27599-3305, phone: (919)
966-5325, e-mail: eghysels@unc.edu.

Division of Monetary Affairs, Federal Reserve Board, Washington DC 20551, phone: (202) 452-3605,
e-mail: jonathan.h.wright@frb.gov.



Abstract

Surveys of forecasters, containing respondents’ predictions of future values of growth, in-
flation and other key macroeconomic variables, receive a lot of attention in the financial
press, from investors, and from policy makers. They are apparently widely perceived to
provide useful information about agents’ expectations. Nonetheless, these survey forecasts
suffer from the crucial disadvantage that they are often quite stale, as they are released only
infrequently, such as on a quarterly basis. In this paper, we propose methods for using asset
price data to construct daily forecasts of upcoming survey releases, which we can then eval-
uate. Our methods allow us to estimate what professional forecasters would predict if they
were asked to make a forecast each day, making it possible to measure the effects of events
and news announcements on expectations. We apply these methods to forecasts for several
macroeconomic variables from both the Survey of Professional Forecasters and Consensus

Forecasts.

KEYWORDS: Survey forecasts, Mixed frequency data sampling, Forecast evaluation, Ra-
tional expectations, Kalman filter, Kalman smoother, News Announcements.
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1 Introduction

Surveys of professional forecasters are released, typically on a quarterly or monthly basis,
containing respondents’ predictions of key macroeconomic variables. These releases get wide
coverage in the financial press and many of the forecasters being surveyed have a large clien-
tele base paying considerable sums of money for their services. The sources and methods
that these forecasters use are somewhat opaque, but a large quantity of their information is
economic news that is in the public domain. Through the market process of price discovery,
this economic news is also impounded in financial asset prices. In this paper, we propose
methods for using financial market data that are readily available at a daily frequency to
construct forecasts of upcoming survey releases, which we can then evaluate. Our methods
allow us to estimate what professional forecasters would predict if they were asked to make
a forecast each day. The challenge of formulating models to accomplish these tasks is that
financial data are abundant, and arrive at much higher frequency than the releases of macro-
economic forecasts. It quickly becomes obvious that, unless a parsimonious model can be
formulated, there is no practical solution for linking the quarterly forecasts to daily financial
data.

There are various reasons why we are interested in measuring professional forecasters’
expectations at a daily frequency:
(i) First, agents’ expectations are of critical importance to policy makers, and policy makers
apparently perceive surveys of forecasters to be providing useful information about those
expectations. Monetary policy communications such as the minutes of the Federal Open
Market Committee, and the semiannual Monetary Policy Report to the Congress of the
Federal Reserve Board frequently point to survey expectations of inflation. These surveys are
however released only at low frequency and are generally somewhat stale while perceptions
of the outlook for the economy can move very fast. Policy makers, monitoring the economy

in real time, would presumably like to be able to measure these expectations at a higher



frequency. The methods that we propose allow us to measure expectations immediately
before and after a specific event (e.g. macroeconomic news announcements, Federal Reserve
policy shifts or major financial crises) and so measure the impact of such events on agents’
expectations[l]

(i) Second, expectations in a multi-agent economy involve "forecasting the forecasts of oth-
ers" (to paraphrase Townsend (1983)) and therefore private sector agents would likewise also
wish to obtain higher frequency measures of others’ expectations.

(iii) A third reason (closely related to the first two) is that surveys may be (approximately)
rational or efficient forecasts of future economic data and may thus contain information for
policy makers not just about agents’ expectations, but also about likely future outcomes.
In this paper we do not, however, make an assumption that surveys represent rational con-
ditional expectations—for one thing their timing is too murky for this to be literally true.
Nevertheless, the hypothesis of rationality of survey expectations has been examined and
tested. The evidence is mixed. Froot (1989), Lamont (1995), Zarnowitz (1995), Ehrbeck
and Waldmann (1996) and Romer and Romer (2000) report evidence against the efficiency
of survey forecasts, but Keane and Runkle (1998), Thomas (1999), Mehra (2002) and Ang,
Bekaert and Wei (2005) report more favorable evidenceﬂ Much of the discrepancy appears
to relate to the sample period considered. In the 1970s, the surveys appear to have had poor
success in forecasting some variables, especially inflation, but have been more successful sub-

sequently| Our empirical work is going to focus on recent periods where the evidence on

! Naturally, an exercise like this is subject to Lucas critique arguments, if the event in question implied a
structural break in the parameters of the model we are using for predicting survey forecasts.

2Note that both Lamont (1995) and Ehrbeck and Waldmann (1996) construct models of why survey
responses may differ systematically from conditional expectations. Moreover, these forecast rationality tests
referred to are all in fact joint tests of forecast rationality and a particular loss function, complicating the
interpretation of rejection from these tests (see Elliott, Komunjer and Timmermann (2005)).

3Survey forecasts of inflation in the 1970s fail forecast rationality tests, but, arguably, the surveys might
have been approximately rational given the data at that time. The statistical rejection of forecast rationality
might owe to agents subsequently learning about large oil shocks and their effects.



survey forecasts is relatively favorable. Ang, Bekaert and Wei run a horse-race for predicting
inflation using macro variables, financial variables and survey forecasts. They argue quite
persuasively that, in recent years, surveys appear to be the best predictors. They also inves-
tigate several optimal methods of combining forecasts and show that surveys outperform the
other forecasting methods based on combining surveys with forecasts of macro variables and
asset markets. Hence, Ang, Bekaert and Wei argue that surveys give very useful information
regarding future inflation, that beats forecasts constructed from macro variables and asset
prices. However, even if surveys provide useful information about future economic outcomes,
they nevertheless have the drawback of being infrequent and generally somewhat stale, while
the outlook for the economy can move very fast. The methods presented in this paper can
overcome this drawback. Indeed, one might wonder how our forecasts of upcoming survey
releases fare when interpreted as predictions of actual outcomes. We show that in some cases
they can outperform a simple random walk benchmark.

While there are many reasons for measuring professional forecasters’ expectations at
high frequency, the task itself is, as noted before, not so trivial. One may first of all wonder
which data would be most suitable to use. The task is very much related to the construction
of leading indicators, or the extraction of a common factor as in, for example, Stock and
Watson (1989, 2002). We could use low-frequency macroeconomic data, or high-frequency
asset price dataﬂ But the latter will allow us to make predictions at any point in time, which
is our goal in this paper. Thus, in this paper we use daily asset price data. Indeed, while we
focus on the daily frequency, the methods that we propose apply to intradaily frequencies
as well.

A priori, it is not clear how to use daily financial market data to formulate a parsimo-
nious model. We first consider using a regression model to predict the next survey release.

But, if surveys of forecasters are released quarterly and we are, say, two months from the

4One could try to interpolate low-frequency series on a daily basis, but it is hard to see how this could
be done without using high-frequency asset price data.



last release, how would we use these two months of data to predict the next release? A
simple linear regression will not work well as it would entail estimating a large number of
parameters. For example if we use two months of data it would require estimation of 44
parameters, assuming 22 trading days a month. The estimation uncertainty would nullify
any underlying predictable patterns that might exist. Matters are further complicated by
the fact that there is some fuzziness in the timing of the surveys: although we have a no-
tional date for each survey (the deadline for submission of responses), we have no way of
knowing whether the forecasters actually formed their predictions on the survey deadline
date or several days earlier. To allow for this we might want to use more than two months
of data. We resolve the challenge by using Mixed Data Sampling, or MIDAS regression
models, proposed in recent work of Ghysels, Santa-Clara and Valkanov (2002, 2003, 2005).
MIDAS regressions are designed to handle large high-frequency data sets with judiciously
chosen parameterizations, tightly parameterized yet versatile enough to yield predictions of
low frequency forecast releases with daily financial data. The virtue of our approach is that
we have for any day prior to a release a prediction model that conveniently adapts to the
time remaining until the next forecast release. In our empirical work we use the median fore-
casts of output growth, inflation, unemployment and certain interest rates, from the Survey
of Professional Forecasters (Croushore (1993)) and Consensus Forecasts (Zarnowitz (1995)).
The financial market data that we use to predict these forecasts are daily changes in interest
rates and interest rate futures prices, and also daily stock returns. We find that these as-
set price changes give us considerable predictive power for upcoming Survey of Professional
Forecasters releases, and, to a lesser extent, Consensus Forecasts releases.

In addition to using these regression models to predict upcoming survey releases, we
consider a more structural approach in which we use the Kalman filter to estimate what
forecasters would predict if they were asked to make a forecast each day, treating their fore-
casts as "missing data" to be interpolated (see e.g. Harvey and Pierse (1984), Harvey (1989),
Bernanke, Gertler and Watson (1997)). As a by-product, this also gives forecasts of upcom-
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ing releases. But again, we have to contend with the fact that although we have a notional
date for each survey, agents likely formed their expectations sometime earlier. Again, we
resolve this problem by using mixed data sampling methods. The theory of the Kalman
Filter applies only to linear homoskedastic Gaussian systems and this assumption is clearly
inadequate for daily financial market data. However, the Kalman filter nonetheless provides
optimal linear prediction even when the errors are in fact fat-tailed and heteroksedastic. The
Kalman filter models have the useful feature of allowing us to estimate forecasters’ expecta-
tions on a day-to-day basis. We cannot precisely accomplish this task with a reduced form
regression model that allows only predictions of future observed forecasts.

Having obtained estimates of agents’ daily forecasts, we can then relate these to macro-
economic news announcements. For example, we can measure the average effect of a nonfarm
payrolls announcement that is 100,000 better-than-expected on agents’ forecasts.

Our work is conceptually related to several recent papers that use high-frequency fi-
nancial data to form a daily indicator of the state of the economy (see e.g. Evans (2005) and
Giannone, Reichlin and Small (2005)). However, our aim is not to construct a high-frequency
coincident economic indicator, nor even a high-frequency leading economic indicator—an in-
dicator designed to have maximal predictive power for future economic realizations (though
we may be doing this indirectly). Our direct aim is to obtain high-frequency measures of
forecasters’ expectations.

There is of course an enormous literature on using asset price data to forecast future
inflation, growth and other macroeconomic variables (see e.g. Stock and Watson (2003)),
though not generally at the daily frequency. It is well known that it is hard to beat naive
time series models in predicting future macroeconomic variables. This paper is, however,
concerned with forecasting survey predictions of macroeconomic variables, rather than with
forecasting the future macroeconomic variables. Forecasting survey predictions might be a
somewhat easier task because if surveys were to approximate rational forecasts of future

macroeconomic data, then a regression relating the forecast of the survey prediction to asset



price returns should have a higher R-squared than a corresponding regression relating the
future macroeconomic outcomes to asset price returns, because rational forecasts and actual
realizations differ by a pure noise component that reduces the empirical fit of the latter
regression.

The remainder of this paper is organized as follows. In section [2| we present a theoret-
ical framework that succinctly represents the salient features of predicting forecasters with
financial data. Reduced form MIDAS regression methods appear in section[3. A more struc-
tural approach that uses the Kalman filter to interpolate at the daily frequency is described

in section [4l Empirical results appear in section [5] Section [6] concludes the paper.

2 Forecasting and financial market signals

In this section we present a stylized model of forecasting and financial market signals. The
objective is to show, in a very stylized setting, how if asset prices and forecasts both respond
to news about the state of the economy, we can use asset returns to glean high-frequency
information about agents’ forecasts. At the outset it is important to emphasize that we
want to keep the model in this section simple. Therefore, we make some compromises with
regards to generality and do not aim at matching all salient data features that will appear
in our empirical analysis. The empirical specifications considered in the next sections will
be richer and more general.

Assume that we observe forecasts of some future macroeconomic variable (e.g. inflation
four quarters hence) once a quarter and suppose, for simplicity in this model, that these are
observed on the last day of each quarter. Assume that the underlying macroeconomic variable

y; is autoregressive of order one:

Yer1 = Ao + a1Y; + €111 (1)

Let fI*" denote the forecast of 1., made on the last day of quarter t. If the forecaster

knows the DGP, knows y; at the end of quarter ¢ (when the forecast is being made), and is
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constructing a rational forecast then this h-quarter-ahead forecast will be:
= a0 gal + aty, 2)

and, after a little algebra, this is related to the previous h-quarter-ahead forecast and the

shock ¢; as follows:

h—1

i = ao{a} — (a1 — 1) Za{} +afii ™+ d e (3)
=0

We are interested in predicting f™" at some time between the end of quarter ¢-1 and the end
of quarter . During the quarter all sorts of news is released pertaining to the macroeconomic
variable y;, and this news is impounded into financial asset returns. Although the errors ¢,
occur quarterly, we construct a fictitious set of daily shocks ¢; = Zf;:ltfl 1 Va where [; denotes
the last day of quarter ¢. While there are many financial assets traded, we focus on a single
asset and assume that its price on day 7 relates to the fictitious shocks as follows:
p;=pi+ Z Vg + wr (4)
d=ly_1+1
where p? is the price at the beginning of the quarter t. Equation tells us that daily prices

provide a noisy signal of the underlying economic shocks. Assume that the fictitious shocks

2

- and that the noise is also Gaussian with

vy are Gaussian with mean zero and variance o
mean zero and variance 2 and is orthogonal to the vy process. We make these assumptions
for convenience, but will comment on them later. The two related problems we then consider
are: (1) predicting f/*" during quarter ¢ with concurrent and past daily financial market
data via a regression model, or (2) treating agents’ h-quarter-ahead expectations during the
quarter as "missing" values of a process only observed at the end of the quarter. There is a
fundamental difference between predicting ™", during the quarter, and "guessing" ", the
unobserved h-quarter-ahead expectation on day 7. The former is a prediction problem that
can be formulated via a regression, whereas the latter is a filtering problem. We describe

both of these in turn in the next two subsections.



2.1 The regression approach

From equation we note that the partial sums process S, = Z;thﬂ 41 Va behaves like a
random walk and therefore asset price p] behaves like a random walk plus noise (in practice
stock prices are not a random walk, but this is one of our simplifying assumptions). To

predict fIt"

, we would like to know €;,1, and the best predictor on day 7 would be S, which
is not observed but can be extracted from asset returns. In particular, in appendix [A] we

show that conditional linear prediction given daily returns, denoted P can be approximated

as:
h—1
,P[f;"rh"/ﬂdad:lt_l‘l'l,...,T] ~ ao{a}f—(al_l) ajl}
7=0
li—1+1
tay fiT el Z (1— (=), (5)
d=1

where ( is a function of the signal-to-noise ratio ¢ = 02 /52 (see below equation ) and 74
is the asset return on day d for days l;_1 + 1, ..., 7 during quarter t. Equation (5| indicates
that daily asset returns, which contain the daily accumulation of "news" allow us to predict
forecasts.

The stylized model presented so far is based on a number of simplifying assumptions.
It is worth discussing some of the critical assumptions and how they can be relaxed.

Firstly, the above analysis assumes that forecasters have rational expectations and
know the DGP. The analysis in the remainder of the paper will not exclude the possibil-
ity of rational forecasting, and that would clearly strengthen the motivation for real-time
forecasting of the forecasters. Nevertheless, our empirical model does not rely on such an
assumption and, throughout this paper, we remain strictly agnostic about the rationality of
forecasters’ expectations.

Secondly, to derive equation we assumed Gaussian errors. The resulting prediction

formula only depended on the signal to noise ratio ¢ and the linear prediction is optimal in



a MSE sense. With the Gaussian distributional assumptions, we are in fact in the context
of the Kalman filter, the topic of the next subsection. Here we consider equation as
a linear projection or regression equation. Obviously, this regression equation is tightly
parameterized because the analysis has been kept simple for the purpose of exposition. In
particular, the process y; was assumed to be AR(1) and this yielded convenient formulas in
this example. In practice, we prefer to have reduced form regressions that do not explicitly
hinge on the specifics of the DGP. The empirical specification of the regression models is a

topic that will be discussed further in the next section.

2.2 The filtering approach

We now turn to the second problem, namely how to extract . For this, it is very natural to
specify and estimate a state space model using the Kalman filter to interpolate respondents’
expectations, viewing these as "missing data" (see e.g. Harvey and Pierse (1984), Harvey
(1989), Bernanke, Gertler and Watson (1997)). It is worth noting that the regression ap-
proach of the previous subsection can be viewed as less "structural" in the sense that we do
not need to specify an explicit state space model. The Kalman filter applies to homoskedas-
tic Gaussian systems, assumptions we make here for analytic convenience. To be specific,

let us reconsider equation and apply it to a daily setting:

SO’; ~ 90}71—1 + av, (6)

The shocks v, are not directly observable, only the returns areE] The above equation, com-
bined with equation , therefore holds the ingredients for a state space model to determine

¢ namely daily returns are a noisy signal of daily changes in ¢ :

rr=¢(ph — t_1) + & (7)

®We skip the details of specifying @ in equation (B) as this would require to disaggregate equation at
the daily level.



where at the end of each quarter we observe fit" = goZ. This gives us an explicit state space

model.

3 Regression model specifications

In this section, we deal with regression models for predicting f{™". Let d; denote the survey
deadline date for quarter ¢: survey respondents submit their forecasts on or before this day:
the survey results are released a few days later. We suppose that the researcher wishes to
forecast /™" using asset return data on days up to and including day 7. Our forecasting

model is:

na
T =at pfITT D BAL) A+ e (8)
j=1

where 77 denotes the return on day 7 for asset j, n4 denotes the number of assets and (L)
is a lag polynomial of order n; so that v(L)r/ is a distributed lag of daily returns on asset j
over the n; days up to and including day 7 = d; 1+ 6(d; —d;_1) where 0 < 6 < 1. In empirical
work we will consider § = 1,2/3 and 1/3 corresponding to forecasts for f/™ made on the
survey deadline date, about one month earlier, and about two months earlier, respectively.
Equation uses mixed frequency data: fi™ and f/=/™" are observed at the quarterly
frequency, t = 2,...T, while the returns are at the daily frequency, but there is only one
observation of the distributed lag of daily returns, v(L)ri, in each quarterﬂ Hence, as
suggested by equation (5| ), asset returns up to a fraction  of the time from the quarter ¢ — 1
survey deadline date to the quarter ¢ survey deadline date are used to predicting the quarter
t survey. We run a different regression for each # and so should strictly put a #-subscript
on o,{3;}74,, p, and v(L) in equation , but do not do so, in order to avoid excessively

cumbersome notation. In order to identify 3, in this equation, we constrain the polynomial

(L) to have weights that add up to one. The discussion in the previous section yielded a

6This distributed lag could include returns from before the previous survey deadline date, d;_;, which
would be appropriate if the survey forecasts were somewhat stale.
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polynomial (L) governed by one single parameter ¢q. While this is certainly attractive, it
is very limited as a parameterization and besides the very specific context of our particular
theoretical model, may not be empirically plausible. In other words, we want a more flexible
approach that keeps the number of parameters small. A solution to this problem can be
found with MIDAS regression models. Following Ghysels, Sinko and Valkanov (2003) we use
a flexible specification for v(L) with only two parameters, k1 and ks. In particular, the lag

k coefficient is written as:

f(ﬁa’%l;’{?)
(ks Ky, ko) = =0 9
o) = S e ) ©)

where: f(z,a,b)=2""'(1—2)""'T'(a+0b)/T'(a)T'(b), with '(a) = [ e~ 'dx. Specification

(9 has weights that add up to one and is based on the Beta function and we refer to it as
the "Beta Lag." Ghysels, Sinko and Valkanov (2003) discuss its features in detail.

We consider three MIDAS regression models for the prediction of f/*". The first,
which we refer to as model M1, is simply given by equations and @ with unknown
parameters a,{/3; }?;‘1, p, k1 and ky. The second, which we refer to as model M2, imposes
that x; = k3 = 1, implying that the weights in (L) are equal. In this case, v(L)rJ is simply
the average return over the n; days up until day 7 and v(L)= Z;”: L 1/m L7t Lastly, we
consider an equal-weighted MIDAS regression in which the average returns from day d;_; to
day 7 are used to predict the upcoming release, i.e. y(L)= Y7, 1/ L7~" and ny = 7 —d; .
We refer to this as model M3. The difference between models M2 and M3 is that model M2
has a fixed lag length parameter, n;, while model M3 will always use returns from exactly
day d;_; to day 7.

We estimate MIDAS models M2 and M3 by linear regression of f{+" on {37, 1/n, LI 1ri} 74,
with n; fixed and n; = 7 — d;_1, respectively. We estimate MIDAS model M1 by nonlinear

least squares, i.e. the parameters are chosen so as to minimize

T

S (it —a - Z B(L)rl — pfi 1 ")? (10)

t=2
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where v(L) is given by equation ([9).

4 Kalman filter specifications

We now turn to the extraction of " for horizon h on day 7. The methods outlined in
the previous section allow for prediction of upcoming survey releases in a simple regression
framework with minimal assumptions. In this section we deal with filtering a process that
remains latent during the quarter. As noted before, it is very natural to specify and estimate
a state space model using the Kalman filter to interpolate respondents’ expectations, viewing
these as "missing data". The Kalman filter applies to homoskedastic Gaussian systems and
this assumption is clearly inadequate for financial data. However, the Kalman filter provides
optimal linear prediction even with non-Gaussian errors.

We consider two thought-experiments that go beyond the simple stylized example of
section [2 The first is that forecasters form expectations each day, but only send these
expectations into the compilers of the survey once a quarter, on survey deadline dates. Thus,
we observe respondents’ expectations on survey deadline dates, but these expectations are
missing data that must be interpolated on all other days. We let ©” denote the respondents’

h-quarter-ahead expectations on day ¢ and write the following model

rro= ¢(eF =@l e (11)
SO}TL = fo+ M1‘P¢—1 + €27 (12)
tt+h = Spillt (13)

where (g, ;) is i.i.d. normal with mean zero and diagonal variance-covariance matrix.
This model is clearly a linear Gaussian model in state-space form with ¢’ as the unobserved
state, equation as the transition equation, and and as the elements of the

measurement equation[]

"We avoid here a direct mapping between the parameters of the stylized model in section Instead,
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However, this model assumes that surveys correctly measure respondents’ expectations
on survey deadline dates. As discussed earlier, there is some fuzziness about the exact timing
of respondents’ expectations that it seems we should allow for. We can do so by amending

equation to specify instead that

P =(L)ed, (14)
where (L) is a MIDAS polynomial given by equation (9). The thought-experiment here
is that individual respondents form their expectations each day, but that some of these
get transmitted to the compilers of the survey faster than others, with the compilers of
the survey using the latest numbers from each respondent to construct the survey releases
once a quarter, on survey deadline dates. Our objective is to back out our estimates of
respondents’ underlying expectations given by ¢”. Of course, the model in which surveys
correspond exactly to respondents’ expectations on survey deadline dates is nested within
this specification, as we can specify that k; = 1 and ky = oo, implying that (L) = 1.

We refer to the simple Kalman filter model (equations (11]), and (12)) as model
K1. We refer to the MIDAS Kalman filter model (equations (11)), and (12)) as model
K2. In either case, we can use the Kalman filter to find maximum-likelihood estimates of
the parameters, giving filtered estimates of ¢/ and forecasts of f/™" (made a fraction 6 of
the way through the prior inter-survey period) as by-products. We can also use the Kalman

smoother to obtain estimates of ©” conditional on the entire dataset.

5 Empirical results
There are two surveys that we consider in the empirical work in this paper:

(i) The Survey of Professional Forecasters (SPF), conducted at a quarterly frequency. The

we proceed with a generic state space model, similar to the generic MIDAS regressions considered in the
previous section.
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respondents include Wall Street financial firms, banks, economic consulting groups, and
economic forecasters at large corporations. Prior to 1990, it was a joint project of the
American Statistical Association and the National Bureau of Economic Research; now it is
run by the Federal Reserve Bank of Philadelphia. We use median SPF forecasts of real GDP
growth, CPI inflation, three-month T-Bill yields and the unemployment rate at horizons one-
through four- quarters ahead. Real GDP growth and CPI inflation are constructed as the
annualized growth rates from quarter ¢t — 1 to quarter ¢t + h, where t is the quarter in which
the survey is taken and h is the horizon of the forecast (h = 1,2,3,4). Three-month T-Bill
yields and the unemployment rate are simply expressed in levels. In the notation of the
previous section, fI*" refers to the forecast made in the quarter ¢t SPF forecast for any one
of these variables in quarter ¢t + h and our forecasting models are the MIDAS models exactly
as defined earlier. We start with the forecasts made in 1990Q3 and end with forecasts made
in 2005Q4 for a total of 62 forecasts. For each of these forecasts we have the survey deadline
dates that are about in the middle of each quarter. The survey deadline date is not the date
that the survey results are released, but is the last day that respondents can send in their
forecasts. We do not use SPF forecasts made before 1990Q3 because we do not have the
associated survey deadline dates. Besides, the use of a relatively recent sample minimizes
issues of structural change that seem to be very important using data that spans earlier time

periods (Ang, Bekaert and Wei (2005) and Stock and Watson (2005)).

(ii) Consensus Forecasts, a survey that is conducted at a monthly frequency by Consensus
Economics. We use median predictions from Consensus Forecasts for year-over-year real
GDP growth, year-over-year CPI inflation, the level of three-month T-Bill yields, the level
of the unemployment rate and the level of ten-year yields for the current and subsequent
years, from October 1989 to June 2003, inclusive, for a total of 165 forecasts. As with the
SPF, we have the survey deadline datesf]

8For the Survey of Professional Forecasters, the survey deadline date is a hard deadline. In discussions
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We can use daily asset prices to predict the upcoming releases of either of these surveys, using
MIDAS regression models M1, M2 and M3, or our Kalman filter models K1 and K2. We
consider models with the following daily asset returns: (a) excess stock market returns, (b)
the daily change in the rate on the fourth three-month eurodollar futures contract (a futures
contract on a three-month interest rate about one year hence), (c¢) the daily changes in the
rates on the first and twelfth eurodollar futures contracts (futures contract on three-month
interest rates about three months and three years hence), (d) the daily changes in three-
month and ten-year Treasury yields, and, finally, (e) the daily change in two-year Treasury
yieldsﬂ The number of assets, n 4, is thus either 1 or 2. Our predictors are thus stock returns
and changes in measures of the level and/or slope of the yield curve. In MIDAS models M1
and M2, the lag length n; is a fixed parameter that we set to 90 for the SPF and 40 for
Consensus Forecasts. As our data are at the business day frequency, this corresponds to
substantially more than one quarter or one month of data, respectively. We do this because
we have no way of knowing whether the forecasters actually formed their predictions on the
survey deadline date or several days earlier, and because preliminary investigation revealed
that this choice of n; generally gave the best empirical fit.

We evaluate the forecasts by comparing the in-sample and pseudo-out-of-sample root
mean-square prediction error (RMSPE) of each of the models M1, M2, M3, K1 and K2, used
to predict the upcoming survey release, relative to the RMSPE from using the prior survey
release as a predictor (a "random walk" forecast). This seems like a natural benchmark;

it tells us what fraction of the revision to survey forecasts we are failing to predict. The

with Conensus Economics, we were however told that some responses come in a day or so after the survey
deadline date and are still included in the survey. The survey is published about three days after the survey
deadline date, so there cannot be too much leeway on timing.

9Data sources are as follows. Excess stock market returns are excess returns on the value-weighted
index over the risk free rate, obtained from CRSP. Eurodollar futures rates were obtained from the Chicago
Mercantile Exchange. Treasury yields are constant maturity yields (H-15 release). Futures contracts that
settle to the three-month eurodollar interest rate in March, June, September and December of each of the
next few years have been very liquid since the 1980s.
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empirical results for predictors (a)-(e) are reported in Tables 1-5, respectively. Each Table
gives results for the Survey of Professional Forecasters in the top panel and for Consensus
Forecasts in the lower panel. In each Table we report the in-sample and pseudo-out-of-sample
relative RMSPE of models M1, M2, M3, K1 and K2, used to predict the upcoming survey
release, relative to the random walk benchmark, for 6 = 1,2/3,1/3. The first observation for
out-of-sample prediction is the first observation in 1998, with parameters estimated using
data from 1997 and earlier, and prediction then continues from this point on in the usual
recursive manner, forecasting in each period using data that were actually available at that
time. Note that because we are working with asset price data and survey forecasts (rather
than actual macroeconomic realizations), we have no issues of data revisions to contend with;

the out-of-sample forecasting exercise is a fully real-time forecasting exercise.

5.1 Discussion of the Forecasting Results for the SPF

We first discuss the simple regression results (models M1, M2 and M3) for the SPF. The
in-sample relative RMSPEs from MIDAS models M1, M2 and M3 are generally well below
one. Not surprisingly, relative RMSPEs are higher in the pseudo-out-of-sample forecasting
exercise. Survey forecasts of the unemployment rate and T-Bill yields appear to be generally
the most predictable out-of-sample, but relative RMSPEs are in many cases below one
out-of-sample for GDP growth and CPI inflation as well. Overall, the best out-of-sample
results appear to obtain for predictors (d), the daily changes in the three-month and ten-year
Treasury yields, but the other yield curve variables (predictors (b), (c) and (e)) had similar
performance. On average, across all four variables and all four horizons, the pseudo-out-
of-sample relative RMSPE from MIDAS model M1 with § = 1 and predictors (d) is 0.78.
MIDAS model M1 also beats the benchmark out-of-sample (averaging across all variables
and horizons), but the performance is notably weaker with predictors (a) (stock returns). It

is perhaps not surprising that the best forecasting performance is given by daily changes in
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the slope and/or level of the yield curve rather than stock return datam as the former exhibit
a stronger relationship with the state of the economy. In particular, it is consistent with
much work finding that the level and slope of the yield curve alone has the best predictive
power for several key macroeconomic variables.

Even though MIDAS model M1 involves estimation of two additional parameters, it
generally gives smaller out-of-sample RMSPEs than models M2 or M3. Thus, perhaps in
part because the surveys represent agents’ beliefs at a substantial lag relative to the survey
deadline date (a lag that furthermore varies by respondent), allowing for non-equal weights
in (L) appears to result in some improvement in forecasting performance.

Not surprisingly, the relative RMSPE is generally somewhat smaller for forecasts made
using asset price data up through the survey deadline date (6 = 1) than for forecasts made
earlier in the inter-survey period (0 = 2/3,1/3).

We next discuss the results using the Kalman filter (models K1 and K2) for the SPF.
Models K1 and K2 give quite similar RMSPEs to the MIDAS regression models. Again,
the best results obtain when predicting the forecasts for three-month T-Bill yields and the
unemployment rate, and when using predictors (d). Model K2, which allows for surveys
to represent some respondents’ beliefs at a substantial lag relative to the survey deadline
date, generally gives smaller out-of-sample RMSPESs than model K1, even though the former
involves estimation of two additional parameters. This reinforces the evidence that surveys
represent agents’ beliefs a considerable lag to the survey deadline date..

Models K1 and K2 seem to generally give less good forecasts of what the upcoming
survey release is going to be than the reduced form MIDAS regression models M1, M2
and M3. Nonetheless, they have the useful feature of allowing us to estimate forecasters’
expectations on a day-to-day basis, (¢! in the notation of equation ) and these estimates

can be either conditional on past data (filtered estimates) or the whole sample (smoothed

10We experimented with adding stock returns on industry portfolios, but found that these also gave poor
results.
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estimates). We cannot precisely accomplish these tasks with the reduced form MIDAS
regression models.

As an illustration, in Figures 1 - 4, we show the time series of Kalman filtered and
smoothed estimates of two-quarter-ahead real GDP growth expectations from models K1
and K2, using predictors (d), over the period since January 1998. SPF releases of actual
two-quarter real GDP growth expectations are also shown on the figure (dated as of the
survey deadline date). The Kalman filtered estimates jump on each survey deadline date
as the information from the survey becomes incorporated in the model, but the jumps are
quite a bit smaller in magnitude than the revisions to the survey forecasts, consistent with
the results in Tables 1-5 on the RMSPE of the Kalman filter forecasts relative to that of the
random walk benchmark. The Kalman smoothed estimates adjust more smoothly, as is of

course to be expected.

5.2 Discussion of the Forecasting Results for Consensus Forecast

We next briefly summarize the corresponding results for median Consensus Forecasts, re-
ported in the lower panels of Tables 1-5. The results are fairly consistent with what we found
for the SPF, but the improvements in RMSPE relative to the random walk benchmark are
more modest than for the SPF. The most favorable results in predicting median Consensus
Forecasts are for the three-month T-Bill yield and the ten-year yield. Averaging across all
variables and all horizons, the pseudo-out-of-sample relative RMSPE for median Consensus
Forecasts with 8 = 1 is below one for all five models with any of the predictors, with the sole
exception of predictor (a) (excess stock returns). Overall, the best results for forecasting

median Consensus forecasts again obtain with predictors (d).
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5.3 Measuring the Effect of News Announcements on Agents’ Ex-
pectations

Applying the Kalman smoother to models, K1 and K2, we can estimate what forecasters’
expectations were on a day-to-day basis conditional on the whole sample. Hence, we can, in
principle, measure agents’ expectations immediately before and after a specific event (e.g.
macroeconomic news announcements, Federal Reserve policy shifts or major financial crises)
and so measure the impact of such events on their expectations. The impacts of some events
can even be seen in Figures 2 and 4, for models K1 and K2, respectively.

As an illustration, we show how our method can be used to estimate the average effect
of a nonfarm payrolls data release (one of the most important macroeconomic news an-
nouncements) coming in 100,000 stronger than expected on the expectations of respondents
to the SPF. Nonfarm payrolls data are released by the Bureau of Labor Statistics once a
month, at 8:30 AM sharp. We measure ex-ante expectations for nonfarm payrolls releases
from the median forecast from Money Market Services (MMS) taken the previous Friday.
The surprise component of the nonfarm payrolls release is then the released value less the
MMS survey expectation[’] Since the Kalman smoother gives us measures of the expecta-
tions of SPF respondents each day, we can regress the change in these expectations from
the day before the nonfarm payrolls release to the day of the nonfarm payroll release on the

surprise component of that releasef—_?] Concretely, the regression that is estimated is

SOLL\T - <P271|T = Asr + 1, (15)

where gpﬁT denotes the Kalman smoothed estimates of the h-quarter-ahead forecast for any

variable being predicted in the SPF, s, denotes the surprise component of the nonfarm pay-

Note that although MMS is a survey, it is quite different from the SPF in that it asks respondents
to predict a specific macroeconomic news announcement that is just about to be released, rather than the
trajectory of the economy over the next year or so.

12Qur daily asset price data are closing prices, that are clearly measured well after 8:30 AM.
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rolls release, 7, is an error term, and the regression is run only over days on which there
is a nonfarm payrolls release. This gives us a sample size of 182 — one observation for each
monthly nonfarm payroll release from 1990Q3 to 2005Q4. The regression gives an estimate of
the average effect of a one unit (100,000) positive nonfarm payrolls surprise on ¢”. OLS coef-
ficient estimates from equation are given in Table 6, along with t-statistics constructed
using heteroskedasticity-robust standard errors. Most entries are highly statistically signif-
icant with any of predictors (b)-(e). The estimated coefficients seem to be of a reasonable
magnitude. For example, using predictors (d) and model K2, a 100,000 positive nonfarm
payrolls surprise (which is approximately a one standard deviation announcement surprise)
is estimated to raise one-quarter-ahead growth forecasts by 6/100ths of a percentage point
and to raise four-quarter-ahead growth forecasts by 1/100th of a percentage point. And
the same positive labor market news is estimated to raise four-quarter inflation forecasts by
1/100th of a percentage points, and to raise four-quarter T-Bill yield forecasts by 3 basis
points. These estimated effects are all small, but it seems reasonable that forecasts are not
adjusted much in response to a one-standard deviation surprise in employment growth for

one month. And, though small, these effects are all highly significant.

5.4 Using our Forecasts of Survey Forecasts as Forecasts of Future
data

So far in this paper, we have focused on forecasting upcoming releases of surveys of forecast-
ers. Part of our motivation for doing so is that these surveys, though released infrequently,
might contain useful information about future outcomes. If our forecasts are conditional
expectations of the upcoming survey forecasts, and those survey forecasts are in turn condi-
tional expectations of actual future outcomes then, by the law of iterated expectations, our
forecasts must also be conditional expectations of those actual future outcomes.
Accordingly, it is natural to ask how our daily forecasts for upcoming survey releases

fare when they are interpreted as forecasts of actual future outcomes. We can compare
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this with a benchmark of a random walk forecast. Though this may seem like a very naive
benchmark, it is well-known that it is quite hard to beat (see, for example, Atkeson and
Ohanian (2001)), particularly for such a short sample period.

We therefore computed the RMSPE of our pseudo-out-of-sample forecasts for upcoming

SPF releases, interpreted as forecasts of the actual outcomes. That is to say, we computed

RMSPE;, = \/1/T* > (Yen — fv&t+h)2

where 1, denotes the realization in quarter ¢ + h, ff*h denotes our pseudo-out-of-sample

prediction of f™" the h-period-ahead survey forecast taken in quarter ¢, and 7 denotes the
number of out-of-sample predictions. And we also computed the RMSPE of a random walk

forecast. That is, we computed

RMSPEy = \/1/T*> (Yssn — Y1-1)2

Table 7 reports the relative RMSPE from these two methods for forecasting .,
RMSPE;/RMSPE;, for models M1, M2, M3, K1 and K2 with predictor (d), for § =
1,2/3,1/ 3 Entries in the Table less than one indicate that the forecasts of fi™" give
better predictors of y;,, than the random walk forecasts. Note that for § = 2/3,1/3 the
random walk forecast might have an unfair artificial advantage in this comparison, because
these might correspond to forecasts made before 1, 1 was knownE It turns out that our

predictions of survey forecasts beat the random walk forecast in forecasting future real GDP

13Results for the other predictors are not shown, so as to conserve space, but are available in an unpublished
appendix at http://www.unc.edu/ eghysels/EGpaper.htm .

149 = 1/3 corresponds to forecasts made during the last month of quarter ¢ — 1, when agents do not know
Yi—1. 0 = 2/3 corresponds to forecasts made during the first month of quarter ¢, when agents know data
from the previous quarter on T-Bill yields and may or may not know other data for quarter ¢ — 1, depending
on the timing of releases. The SPF does not send out their questionnaires for quarter ¢ until the data for
quarter ¢t — 1 have been released, so the random walk forecast is always a forecast that could be implemented
for 8 = 1. Data releases are of course subject to revision, and we ignore this, as our random walk forecasts
use revised data.
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growth and CPI inflation. The latter is perhaps not surprising in the light of the results of
Ang, Bekaert and Wei (2005). On the other hand our predictions of survey forecasts do less
well than the random walk forecast in predicting future yields. Results for unemployment are
mixed, but our predictions of survey forecasts generally underperform here as well. Taken
together, these results indicate that daily forecasts for upcoming survey releases, in addition
to being of interest in their own right, may also be useful as forecasts of actual future

outcomes.

6 Conclusions

Survey forecasts provide useful information about agents’ expectations, and perhaps also
about the likely future evolution of the economy. Or at least, policy makers and financial
markets appear to perceive this to be the case, judging by the amount of attention that is
paid to these survey forecasts. However, since they are released infrequently, these surveys
are often stale, and it would seem useful to be able to measure respondents’ expectations,
and to predict upcoming survey releases, at a higher frequency. We have proposed methods
for doing so using daily financial market data, and found that the resulting predictions allow
researchers to anticipate a substantial portion of the revisions to survey forecasts. We have
also shown how daily estimates of respondents’ expectations can allow us to measure the
effects of events and news announcements on these expectations. MIDAS methods can also
be used for forecasting outcomes (as opposed to survey expectations) using daily asset price

data. We leave this for future research.
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A Derivation of projection equation

In this appendix we derive equation ([5)). We noted that according to equation (4]) the partial
sums process S, = Y7, ., vq behaves like a random walk and therefore the price p] behaves
like a random walk plus noise. Note that this is a 'local behavior’ during the quarter from
t — 1 to t. Here we will assume a standard random walk plus noise process (as if it applied
throughout, not just locally) to derive an approximate prediction formula. To distinguish
the model from that in section 2 we use, at first different notation, and subsequently map
the results into the setting of section 2. More specifically, we start from the standard random

walk plus noise model (see e.g. Whittle (1983) and Harvey and De Rossi (2004)):

Pro= (A1)
N

where ¢, and 7, are mutually uncorrelated Gaussian white noise disturbances with variances

oz and o} respectively. Define the signal-to-noise ratio ¢ = o2/07 > 0 then the one-sided

signal extraction filter for g, given {p;—;}32, denoted fi,, has weights w; (see Whittle (1983)
and Harvey and De Rossi (2004)):

fop = ijﬁt—j
§=0
w@; = (L+Q(=¢) (A.2)

where ¢ = [(1/¢® + 49 — 2 — ¢]/2. This formula is approximate, in the sense that it applies to
observations "near" ¢, whereas observations in the remote past have weights of the two-sided

filter, namely (1 + ¢)(—¢)?/(1 — ¢)IF] From equation (A.2) we can derive the first-difference

15See e.g. Harvey and De Rossi (2004) equations (2.11), (2.13) and (2.15) for further discussion. One
can also derive exact weights for a finite sample, see Whittle (1983), chapter 7. This would involve a lot of
cumbersome notation, which we avoid here.
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version Ap; = 7, namely:

fop = ijﬁt—j
=0
= woAp: + (w1 + wo)APi—1 + (w2 + w1 + @) ADt—a - ..

= woft—i‘(wl‘i‘wo)ft 1+ (w2 + w1 + @o)F—z ...

=1 j= 0
z+1
= (140 rt—I—Z 1+§ ]
= > 1= (=™ (A.3)
=0

As noted, the partial sum process S, implied by equation behaves locally like a random
walk plus noise. Hence, we can use the above formula as an approximation, treating returns
as if they are zero prior to the beginning of the quarter (d < 0 in section 2) and substituting
into (3)) yields equation . The formula is only an approximation and a more rigorous
formula can be derived, using the finite sample exact filters weights. Deriving such filters is
rather involved, see e.g. Whittle (1983) and Schleicher (2003), and we don’t really need the

exact filter weights for motivational purpose.
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Percentage Points at Annual Rate

Fig. 1: Filtered Estimates of 2—Quarter GDP Growth Forecasts from Model K1 with predictors (d)
Actual SPF median forecasts are shown by dots
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Percentage Points at Annual Rate

Fig. 2: Filtered Estimates of 2—Quarter GDP Growth Forecasts from Model K2 with predictors (d)

Actual SPF median forecasts are shown by dots
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Percentage Points at Annual Rate

Fig. 3: Smoothed Estimates of 2—Quarter GDP Growth Forecasts from Model K1 with predictors (d)
Actual SPF median forecasts are shown by dots
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Percentage Points at Annual Rate

Fig. 4: Smoothed Estimates of 2—Quarter GDP Growth Forecasts from Model K2 with predictors (d)
Actual SPF median forecasts are shown by dots
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