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Increasing Returns and Optimal
Oscillating Labor Supply

Abstract

Models featuring increasing returns to scale in at least one factor of production
have been used to study two separate phenomena: (1) multiplicity of self-fulfilling
rational expectations equilibria (i.e.sunspots), and (2) production schedules that
optimally feature bunching. We show in a continuous-time model with increasing
returns to labor (IRL) that if the economy features multiple competitive equilibria,
the optimal path of investment, employment and consumption cannot be constant,
or even smoothly-varying. Any macroeconomic policies that shielded the econ-
omy from sunspot fluctuations would necessarily not be optimal. We then charac-
terize the optimal allocation (the solution to the planner’s problem) in a discrete
time version of the model. We find that the optimal investment, employment
and consumption policies under increasing returns can feature (1) discontinuous
jumps, (2) endogenous cycles (with time-varying cycle limits) and (3) stochastic
controls (lotteries). Our discrete-time model is very close to that studied by Chris-
tian and Harrison (1999); they, however, find that fluctuations are not optimal. We
show that this difference is driven by their assumption that production is linear in
capital.
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1 Introduction

Economists routinely use dynamic models which feature many competitive equi-

libria to study macroeconomic cycles. In these models, severe swings in output

and employment can follow phenomena that have no fundamental economic sig-

nificance (usually referred to assunspots). Research has naturally focused the ex-

istence and nature of endogenous equilibrium cycles, as well as on designing fiscal

and monetary policies to rule them out. However, despite their ultimate goal of

formulating macroeconomic policies, very few papers have explicitly studied the

optimal paths of employment and investment. In the context of a popular multiple-

equilibrium model, we show that thenecessaryconditions for multiple equilibria

aresufficientto preclude a smooth optimal path for investment and labor. Any

policy that successfully eliminated equilibrium cycles would thus necessarily not

be optimal.

The model we study involves increasing returns to labor to generate multiple

equilibria. This is a popular choice in the literature, and leads to a natural inter-

pretation of multiple equilibria. Intuitively, consider the simple case of a static

model in which many identical households must decide how hard to work. The

production function features increasing social returns but constant private returns

to labor. If households expect a high wage, they supply high labor to the market. If

they expect a low wage, they supply less labor to the market. Because the marginal

product of labor is increasing in aggregate labor supply, in a symmetric equilib-

rium households’ expectations are confirmed. Thus either set of expectations and
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corresponding actions satisfy the conditions for an equilibrium.

More sophisticated dynamic models exploring the connections among increas-

ing returns, expectations and equilibrium indeterminacy include Kiyotaki’s (1988)

study of equilibrium investment and government policy; Murphy, Vishny and

Shleifer’s (1989a) argument that externalities must play a key role in business

cycles; Baxter and King’s (1991) study of externalities and business cycles; Ben-

habib and Farmer’s (1994, 1996) and Farmer and Guo’s (1994, 1995) studies of

“animal spirits” models; Boldrin and Rustichini’s (1994) study of two-sector mod-

els with externalities and Subrahmanyam and Titman’s (1999) study of the role of

equity prices as an equilibrium selection mechanism.

A different literature has pursued the implications of increasing returns on

optimal production policies. In a spatial context, for example, economists have

studied how small initial differences across locations can powerfully affect the

long-run distribution of industries.1 In the same way that production bunching

across space might be optimal under increasing returns, in a dynamic setting, it

may be optimal to bunch production across time. That is, a social planner, faced

with increasing returns to labor, might optimally direct households to work hard

for brief periods of time and then relax. During the spurts of labor, households ac-

cumulate a large capital stock which they then consume during the relatively quiet

time. If households are sufficiently willing to substitute leisure between periods,

and have some means of storing output from one period to the next, they will take
1We can at best merely scratch the surface of the large literature on increasing returns,

spillovers and the development of countries and cities; see, e.g. Murphy, Vishny, and Shleifer
(1989a), Lucas (1993) or Krugman (1999).
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advantage of increasing returns to labor and work hard when labor effort is al-

ready high, because the marginal product of labor is increasing. Murphy, Shleifer

and Vishny (1989a, p. 250) recognize this point in a durable consumption goods

model with increasing returns to labor, but without capital: “[i]t is efficient for

this industry to produce at capacity some of the time and to rest other times, rather

than to always produce at a constant output level.” A complementary, data-driven

view is that business cycles are largely driven by inventory cycles. For example,

inventory adjustments account for 87 percent of the drop in GNP during the aver-

age post-war U.S. recession (Blinder and Maccini, 1991). Further, there has been

increasing interest recently in spillovers, or externalities in labor productivity, as a

part of the “new” economy. Thus the type of cycle driven by labor externalities is

not utterly unlike the kind of business cycle that characterizes the U.S. economy.

Despite this natural intuition and a decade’s worth of theoretical and applied

interest, there have been few efforts to characterize optimal resource allocations

under increasing returns to labor in the neoclassical growth model.2 Instead, most

work has focused on designing policies to eliminate equilibrium cycles in the

model. Put another way, research has concentrated on the conditions under which

competitive equilibria are unique, generally ignoring the optimal plan. For ex-

ample, Guo and Lansing (1998) show that a progressive tax can render otherwise

indeterminate equilibria locally unique, shielding the economy from sunspot fluc-

tuations.

In this paper, we characterize the connection between equilibrium indetermi-
2We will consider one exception, Christiano and Harrison (1999), in great detail below.
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nacy and optimal cycles in the neoclassical growth model with increasing returns

to labor. We begin by finding the equilibria of a continuous time neoclassical

growth model featuring increasing social returns to labor but diminishing social

returns to capital. Following Benhabib and Farmer (1994), we show that increas-

ing returns to labor in production is a necessary condition for local equilibrium

indeterminacy of the steady-state equilibrium. We establish that thisnecessary

condition for indeterminacy issufficientto ensure that the optimal paths of la-

bor and investment cannot be constant. In fact, the optimal path cannot even be

smoothly varying because we show that, if it exists, the path is not a piecewise

continuous function of time.

Instead of attempting to characterize the optimal allocation in this case (for ex-

ample, by imposing adjustment costs or recasting the problem as one of choosing

a probability distribution over effort levels) we move on to study the discrete-time

version of the model. In discrete–as opposed to continuous–time, the planner must

choose one level for effort and maintain it throughout the period. We find that the

planner’s optimal labor policy (as a function of beginning of period capital) gen-

erally features a sharp drop at a critical capital level, so that when the economy

is richer than the critical point, optimal labor effort drops to zero. At this critical

point, households consume some or all of the existing capital stock. If this critical

point lies along the optimal dynamic capital accumulation path, the economy will

feature oscillating labor supply and the capital stock will cycle over time. More-

over, we find that, although the planner could completely smooth consumption

over time, he chooses not to. Intuitively, the shadow price of consumption varies
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with effort and investment, leading the planner to trade off the utility benefits and

the technological costs of smoothing.

Even aside from the single discontinuous drop down in effort at the critical

level of capital, the optimal labor effort schedule can feature several separate dis-

continuous jumpsup at lower levels of capital. In essence, the increasing returns

to labor cause the household’s utility as a function of investment to feature several

local maxima. As beginning of period capital increases, the global maximum can

hop among these various local maxima, and their associated investment policies.

Thus not only is it possible for the optimal path of labor to cycle over time, the

limits of the cycle can, as a result of these sharp jumps up, also cycle over time.

Finally, we show that, under certain circumstances, the planner prefers using

stochastic policiesor capital gambles. This makes sense; our results are driven

by the fact that the planner’s static return function features a sharp kink at the

point where optimal labor effort drops from a positive level to zero. Faced with

an initial capital stock within the kinked region, the planner would prefer to gam-

ble over a high capital stock and a low capital stock rather than use the inherited

capital stock. Note however that the planner does not always want to use lotter-

ies; by cleverly choosing non-stochastic policies, the planner will, under certain

parameters, be able to come arbitrarily close to the solution with lotteries.

The discrete-time version of our model is close to that studied by Christiano

and Harrison (CH, 1999), who also characterize the optimal plan. They, however,

find that labor supply is smooth in the capital stock, that production cycles are

not optimal and, as a result, that the planner would not use stochastic controls if
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offered them. The key difference between our model and theirs is the social return

to capital. We assume that social returns to capital are decreasing; in contrast,

they assume that social returns to capital are constant. In essence, in our model,

with decreasing returns to capital, the planner finds it optimal to work very hard

today in order to build up a large capital stock. In the next period, although the

marginal product of labor will be higher (because the capital stock is higher) it

will be less thanlinearly higher, as in CH’s model. If the planner in CH’s model

attempted to replicate the optimal plan from our model by working hard today,

he would find that, tomorrow, labor’s productivity would be linearly higher than

today’s. But labor’s productivity is also the opportunity cost of taking vacations,

and the planner would find a vacation too expensive following a burst of effort. In

our model, labor’s product does not increase one-for-one with the capital stock as

it does in their model. Beyond some critical point, labor’s product dips enough so

that the planner prefers to take a vacation and consume leisure.

The plan of our paper is as follows: in section 2, we develop the implications

of equilibrium indeterminacy for the nature of optimal labor supply paths in the

continuous time Benhabib-Farmer model. In section 3, we study optimal resource

allocations in a discrete-time model. We characterize the planner’s static return

function and develop a simplified finite-horizon model to provide some intuition

for our results. We also provide results linking increasing returns to scale in labor

to stochastic controls. In section 4 we numerically characterize the discrete-time

planner’s problem. We choose a benchmark set of parameters and then vary all

the parameters of interest around the benchmark. Cycles are more likely to be
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optimal with large increasing returns to labor, slow capital depreciation and a low

utility time discount rate. We also compute the optimal policies with lotteries.

Section 5 briefly concludes. All proofs of our theorems and lemmas are relegated

to appendix A. In appendix B we provide a comparison with the exact Christiano-

Harrison specification.

2 Increasing Returns in Continuous Time

2.1 Increasing Returns to Labor Are Necessary for Local Equi-

librium Indeterminacy

Consider the neoclassical growth model with external returns to scale in produc-

tion. A representative household maximizes the present discounted valued of a

log-linear felicity function defined in terms of flows of consumption (c) and labor

effort (n). The discount rate is� > 0, so the maximization problem becomes:

Z 1

0

e��t [log (c)� �n] dt;

subject to:

_k = (r � Æ) k + wn+ � � c;(2.1)

and an initial conditionk (0) = k0 > 0. As usual,k denotes the level of aggregate

capital. Here, the scalar parameters�; Æ; and� are all strictly positive and the
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household takes the real interest rater, wagew and profits� as given.

Firm-level production is given by:

y = kang
h
k
��a

n1+
�g
i

where the scalar parametersa; g; �, and
 satisfya; g > 0, 1 > � > a, 1 + 
 > g

anda + g = 1. Here,k; n denote firm-level capital and labor usage, whilek; n

are the economy-wide averages. The parametersa; g govern theprivatereturns to

capital and labor (as opposed to the social returns). The social (total) production

function is given by:

y = k�n1+
 :(2.2)

Firms maximize profits, taking as given factor prices and economy-wide aver-

age input use. Profit-maximization implies:

y=k = r=a; and:(2.3)

y=n = w=g:(2.4)

By assuming constant private returns to scale (a + g = 1), firm profits equal zero

in a competitive equilibrium.
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The necessary conditions for consumer optimization are:

c =
w

�
;(2.5)

_c

c
= r � �� Æ:(2.6)

Also, the paths of capital and consumption must satisfy a transversality condition:

lim
T!1

e��T
k (T )

c (T )
= 0:(2.7)

For the remainder of the analysis, we study symmetric equilibria, in which the

aggregate quantities of capital and labor,k andn, are given by the representative

household’s optimal choice when it takesk andn as given.

Use the profit-maximization conditions, equations (2.3) and (2.4), to eliminate

factor pricesr andw from the necessary conditions from the consumer’s problem,

equations (2.5) and (2.6):

c =
g

�

y

n
;(2.8)

_c

c
= a

y

k
� �� Æ:(2.9)

After substituting out factor prices, the law of motion for capital, equation (2.1),

becomes:

_k = y � Æk � c:(2.10)
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Equations (2.2), (2.8), (2.9), (2.10), along with the transversality condition (2.7),

describe the equilibrium dynamics of the economy.

We can use the production function, equation (2.2), and the relationship of

consumption to the output-labor ratio, equation (2.8), to substitute outputy and

laborn out of the differential equations governing the evolution of consumption

(2.9) and capital (2.10). Begin by eliminating labor effort from output, so that:

y = k��=

�
�

g
c

�(1+
)=


:

Thus equilibrium consumption and capital jointly evolve according to the system

of equations:

_c

c
= a

�
�

g

� 1+





k�
�+



 c
1+



 � �� Æ;(2.11)

_k =

�
�

g

� 1+





k�
�

 c

1+



 � Æk � c:(2.12)

We next turn to determining the nature of equilibria generated by this system.

We begin by log-linearizing the system. First, defineC = log(c) andK =

log(k). The dynamic system, equations (2.11) and (2.12), can be rewritten as the

autonomous differential equations:

_C = a exp (D0 �D1K +D2C)� �� Æ(2.13)

_K = exp (D0 �D1K +D2C)� Æ � exp (C �K) :(2.14)
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For convenience, we defined the constantsD0; D1 andD2 as:

D0 =
1 + 




log

�
�

g

�
; D1 =

� + 




; andD2 =

1 + 




:

Every path for capital and consumption that satisfies the transversality condition,

equation (2.7), the system of equations (2.13) and (2.14), and the initial condition

for capital is a perfect foresight equilibrium. It is straightforward to show that

there is a unique steady-state equilibrium. DefineKss andCss as the equilib-

rium steady-state levels of capital and consumption. We exploit the following two

steady-state implications of equations (2.13) and (2.14):

exp (D0 �D1K
ss +D2C

ss) =
�+ Æ

a
;

exp (Css �Kss) =
�+ Æ

a
� Æ:

We next wish to study the local determinacy properties of the steady-state

equilibrium. Linearizing the system equilibrium equations written in terms of log

capital and log consumption, equations (2.13) and (2.14), we have:

2
64 _C

_K

3
75 =

2
64 (�+ Æ)

�
1+




�
; � (�+ Æ)

�
1 + �




�
Æ + �+Æ

a

; �

h
Æ + �(�+Æ)


a

i
3
75
2
64 C � Css

K �Kss

3
75(2.15)

LetA denote the square matrix in (2.15). We are ready to present a result concern-

ing indeterminacy which was first worked out by Benhabib and Farmer (1994).
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Theorem 1 The(Css; Kss) equilibrium is locally indeterminate if and only if:

1. Returns to labor are increasing:
 > 0,

2. The trace of the transition matrixA is negative, or:

Æ > (�+ Æ) [(1 + 
) a� �] = (
�) :

Theorem 1 holds that a necessary condition for equilibrium indeterminacy is

social returns to labor that are increasing in scale (in other words, that
 > 0).

This is intuitive; as Benhabib and Farmer (1994) explain, when
 > 0, aggregate

labor demand is upward-sloping and, in fact, steeper than aggregate labor supply

at high levels of labor. Further, when
 > 0 it is also possible that the equilibrium

is a source, so that any small deviation from the steady-state will result in an

infinite expansion. For example, we assumed that the private returns to capital,a,

are less than the social returns,�. If instead we assume thata = �, the trace of the

transition matrixA becomes tr(A) = � > 0 (violating condition 2 in theorem 1).

As a result, without a wedge between social and private returns to capital (even

though both are decreasing in scale), the equilibrium will be locally explosive.

Requiring a wedge between the social and private returns to capital is the same

as assuming that at least some of capital’s product is external to the firm. These

capital externalities militate against explosiveness of the equilibrium dynamics;

they bring the system back to the steady state after an expectations shock. Imagine
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the economy begins with capital at the steady-state level. At time zero, households

develop expectations that their neighbors will work harder than the steady-state

effort level, both in the instantt = 0, and for at least a short while thereafter. As-

sociated with this expectation of the path of average labor, households also expect

a gradual rise and then decline in average capital holding. Expecting higher short-

run (labor and capital) productivity, households increase own labor supply, which

validates their expectations of higher average labor input, and increase savings to

smooth consumption. The increased savings, in addition, augments the marginal

productivity of labor in the future. If the household fully internalized the returns

to capital (a = �), its future path of capital would continue to increase. However,

because of the wedge in capital’s product, the average household persistently un-

dersaves, allowing capital to decline.

2.2 Increasing Returns to Labor Are Sufficient to Preclude a

Smooth Optimal Path for Labor

In addition to being a necessary condition for equilibrium indeterminacy, increas-

ing returns also has implications for the Pareto optimal resource allocation in the

Benhabib-Farmer model. To study the optimal allocation, we use some of the the-

oretical apparatus of Pontryagin’s Maximum Principle (PMP). We briefly review

the required results before turning our attention to the planner’s problem.

13



Consider the followinginfinite horizon problem(or IHP):

max
u(t); 0�t

Z 1

0

e��tf
�
x (t) ; u (t)

�
dt;(2.16)

wherex(t) is a scalar function which is free ast ! 1 and has an initial value

given byx(0) = x0. The controlsu(t) 2 U � R
m influence the evolution of the

statex as:

_x (t) = g
�
x(t); u(t)

�
:

We will require that under alladmissibletrajectories of the controlsu(t) 2 U , the

integral in the objective (2.16) converges.3

The current value Hamiltonian for the infinite horizon problem is:

Hc (x; u; �) = �0f (x; u) + �g (x; u)(2.17)

We now appeal to the results in Pontryaginet al (1964, theorems 1 and 2).

Definition 1 (The Pontryagin Maximum Principle) If x?(t) and u?(t) are ad-

missible paths for the IHP and are both piecewise optimal, then there exists a

constant�0 and a continuous scalar function�(t) such that for allt � 0 :

1. �0 = 0 or 1, and(�0; � (t)) is never(0; 0).
3The gimlet-eyed reader will have noticed that we have also assumed that the objectivef and

the controlg are autonomous functions of the controls and the state. This is merely to tie this more
general discussion to our specific problem. It is otherwise innocuous.
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2. For all controlsu in U :

Hc
�
x?(t); u; �(t)

� � Hc
�
x?(t); u?(t); �(t)

�
:

3. At points whereu?(t) is continuous:

_�� �� = � @

@x
Hc (x?; u?; �) :

We next turn to the application of the PMP for the particular IHP first studied

by Benhabib and Farmer.

Definition 2 (Social Planner’s Problem) The planner maximizes:

Z 1

0

e��t
�
log
�
c(t)
�� �n(t)

�
dt;(2.18)

where the control vector[c(t); n(t)]0 � 0 for all t. The capital stockk(t) (the

single state variable) is free ast ! 1 and the initial capital stock is given by

k(0) = k0 > 0. The dynamics of the capital stock are governed by the law of

motion:

_k(t) = k(t)�n(t)1+
 � c(t)� Æk(t):

We assume, as in the decentralized model, that0 < � < 1, Æ; � > 0, and
 �
�� 1.
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Theorem 2 If 
 > 0, there does not exist a piecewise continuous optimal path for

consumption and labor for the social planner’s problem from definition 2 above.

The intuition for theorem 2 is straightforward: condition (2) of the PMP holds

that for a given level and shadow value of the state variable,k?(t) and�(t), the

controls must be chosen to maximize the current value Hamiltonian. However, at

each instant, the social planner faces increasing returns to labor but linear disutility

of work. For a given productivity of labor(k?)� and shadow value of consump-

tion �, increasing returns to labor implies that there is no interior solution to the

social planning problem at each instant. Indeed,everypiecewise continuous path

for labor and investment is dominated by some other piecewise continuous path.

We conjecture that the optimal plan may involve achatteringsolution, or arbitrar-

ily frequent discontinuous jumps in the labor and investment time paths. Romer

(1986) points out that such solutions have little economic meaning, and advises

putting more structure on problems with this feature.

The particular structure that we adopt is to move our analysis to discrete time.

This strategy has two benefits. First, moving to discrete time provides an elegant

circumvention of the chattering problem. In essence, we are requiring the planner

to commit to a particular effort level for the length of period, in the spirit of Stokey

(1981). This forces the optimal plan to be a piecewise continuous function of time.

Second, given that our results differ from those of Christiano and Harrison (1999),

moving to discrete time will permit a more direct comparison.
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3 Increasing Returns in Discrete Time

In this section we describe the discrete time analog to the continuous time social

planner’s problem from definition 2 above. We show that the static part of the

planner’s objective function features a distinct kink, that the planner’s choices of

investment and labor policies jump down at this kink and, further, that they can

jump up to the left of this kink. We also show that the planner would use certain

types of stochastic controls (that is, lotteries) if permitted.

One reason that we study a discrete-time model is to make our results com-

parable with Christiano and Harrison, who study a similar model but find that

the Pareto optimal policy involves a constant labor supply. Our model differs

from theirs in three ways. The most important difference is that we assume

diminishing–as opposed to constant–returns to scale in capital. The other dif-

ferences are the functional forms of preferences and technology; in particular, we

assume linear disutility of labor and returns to labor ofn1+
 as opposed ton2. In

appendix B we solve the exact Christiano-Harrison model with diminishing re-

turns to capital and find that it produces endogenous optimal cycles. Finally, it

is worth noting that Christiano and Harrison explicitly recognized the important

role that constant returns to capital might have in their model: “We have shown

that this [optimality of constant labor input] is so under a particular homogeneity

assumption on the resource constraint. But, standard models do not satisfy this

condition (1999, p. 24).”
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3.1 Model

At the beginning of periodt, the social planner faces the problem of choosing

streams of labor and consumption to maximize the household’s utility:

vt
�
kt
�
= max

fct+i;nt+ig
1

i=0

1X
i=0

�i
�
log
�
ct+i

�� �nt+i

�
; 0 < � < 1:(3.1)

The economy-wide technology transforms period-t labor nt and capitalkt into

output as:

Y (kt; nt) = k�t n
1+

t :(3.2)

We will generally take0 � � < 1 and
 � 0. However, note that if�1 < 
 � ��
the production function is Cobb-Douglas with decreasing (or at best constant)

returns to scale in capital and labor.

The capital stock evolves as:

kt+1 = k�t n
1+

t + (1� Æ)kt � ct:(3.3)

In each periodt, the planner maximizes the continuation utility (3.1) subject to

the capital evolution equation (3.3).

We will find it more convenient not to work with the planner’s sequence prob-

lem, equation (3.1) above, but rather with the recursive version of the planner’s
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problem. Written recursively, the planner’s problem becomes:

V (k) = max
k0;c;n

�
log(c)� �n+ �V

�
k0
��

; subject to:(3.4)

k0 = k�n1+
 + (1� Æ)k � c;

and k; k0 2 K = [kmin; kmax]; kmin > 0; kmax <1:

DefineB (K) as a space of bounded continuous functionsf : K ! R (where

R � R). Define the functional operatorT : B (K) ! B (K) as:

�T f�(k) = max
n;k0

log
�
k�n1+
 + (1� Æ)k � k0

�� �n+ �f
�
k0
�
:(3.5)

In section A.5 below we establish that the solution to the recursive problem, the

value functionV (k), is the same as the solution to the sequence problem,vt(k)

for all periodst. Moreover, we show that the operatorT satisfies the conditions

for a contraction mapping. Thus unlike the continuous time version of our model,

the discrete time version will at least have some kind of solution that we have a

hope of finding with standard techniques, even under increasing returns to scale.

3.2 The Static Return Function

We now show that we can decompose the recursive problem, equation 3.4 above,

into a static piece and a dynamic piece; moreover, we show that the static piece

is purely a function of initial capital and the choice of continuation capital. We

analyse this static return function and show that it features a distinct set of kinks
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at critical values of the current capital stock. In one region, the planner will work

hard; beyond the kinks, though, the planner will set labor effort to zero.

For a given level of capital today,k, imagine first fixing the choice of capital

tomorrow,k0, and then deciding how much to work today,n. This will generate a

one-period return functionX
�
k; k0;n

�
defined as:

X
�
k; k0;n

� � log

�
k�n1+
 + (1� Æ)k � k0

�
� �n:(3.6)

By bringing out thek� term, this may be rewritten as:

X
�
k; k0;n

�
= � log(k) + log

�
n1+
 +

(1� Æ)k � k0

k�

�
� �n:

Define:

F
�
k; k0;n

�
= log

�
n1+
 + h

�� �n; where h � (1� Æ)k � k0

k�
:(3.7)

Note thath can take on large negative or positive values. The planner’s goal,

given k; k0 is to choose effortn to maximizeF
�
k; k0;n

�
and with it the static

return functionX. ThusF
�
k; k0

�
is:

F
�
k; k0

� � max
n

�
log
�
n1+
 + h

�� �n
	
:(3.8)

Definen?
�
k; k0

�
as the optimal effort policy from this problem. The recursive
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problem (3.4) now becomes:

V (k) = max
k0

�
� log(k) + F

�
k; k0

�
+ �V (k0)

	
;

We will now characterizeF , with the goal of characterizing, to the extent possible,

V . We begin with a technical result:

Lemma 1 The functionsF
�
k; k0

�
andn?

�
k; k0

�
defined in equation (3.8) above

satisfy:

1. For all k; k0 inK�K, F is bounded and continuous.

2. For all k; k0 inK�K, n? is bounded.

We next turn to characterizing the optimal effort policy:

Lemma 2 The optimal effort policy,n?
�
k; k0

�
satisfies:

1. If 
 < 0, n?
�
k; k0

�
> 0 all k; k0 in K�K.

2. If 
 > 0 there exists a scalarhmax > 0 such that for allk; k0 in K � K
satisfyingk0 < �hmaxk

�+(1�Æ)k, the optimal effort is zero,n?(k; k0) = 0.

3. If 
 > 0 and labor effort is greater than zero,n? > 0, then labor effort must

be above a positive threshold level,n? � 
=� > 0.

Lemma 2 essentially states that increasing returns to scale in labor (that is,
 >

0) is a necessary condition for the optimality of labor cycles. If the optimal choice

of labor is smoothly varying the problem collapses to the standard neoclassical
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growth model. In the presence of increasing returns, however, the optimal choice

of labor features a discrete jump down. This will induce a set of kinks in the static

return functionF
�
k; k0

�
; everywhere thatn > 0, F will have a relatively shallow

slope ink (positive) andk0 (negative), because the planner is also adjusting labor.

In the region wheren = 0, by contrast, the slope will be relatively steeper, because

consumption will be(1� Æ)k � k0.

In figures 1 and 2 below we plot the region in which the planner works hard

and that in which he does not, and we also plot the static return functionF for

several values of
. Notice the distinct kink inF for even small values of
 > 0;

this kink disappears in the case where
 < 0, that is, diminishing returns to scale

in labor.

Lemma 2 also shows that if
 > 0 there will some region of low, but non-

zero, labor effort that the planner will simplyneverchoose. As he approaches this

region, the planner jumps down to zero. This also underlies the kinks in figure 2.

3.3 Finite Horizon

In order to understand how the infinite-horizon planner’s problem behaves,V (k),

it is useful to consider the solution to the finite horizon case. In particular, using

a finite horizon version of the planner’s problem, we show that this model can

exhibit other unusual features, even beyond oscillating labor supply. As we saw

in lemma 2 above, the planner never chooses a non-zero labor level that is also

less than
=�. Thus when
 > 0, the planner’s labor policy function can suddenly

jump down to zero. This behavior underlies the oscillations in labor and capital
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 > 0: here the planner switches from
working hard to not working at all.

in our model. However, as we show in this section, the planner’s labor supply

function can also feature jumps up. Thus the limits of the cycle can themselves

shift over time.

Intuitively, as the planner gets richer (begins with more capital), thewealthef-

fect leads him to work less but theproductivityeffect leads him to work more. This

latter effect emerges because labor’s product is proportional tok�. In the neoclas-

sical growth model capital provides two services: it is a productivity-enhancing

input to production and it is a risk-free storage technology. When
 < 0, there is

normally no benefit to using capital for storage. When
 > 0, though, the optimal

production plan may feature periods of hard work interspersed with vacations. In

the face of such a production plan, society must have a storage technology in order
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to smooth consumption over time. As we have seen, the only storage technology

available is one that also augments labor productivity, giving rise to even more

complicated dynamics than a cycle with constant limits.

With a finite horizon, there is some terminal periodT , beyond which the

household (and hence the social planner) does not survive. In this ultimate pe-

riod, t = T , we know that the optimal investment policy satisfieskT+1 = 0. As a

result, we can write down the period-T value function:

VT (kT ) = X
�
kT ; 0

�
= � log

�
kT
�
+ F

�
kT ; 0

�
:

We know from lemma 2 above that if
 > 0, F
�
kT ; 0

�
will feature a kink at a

critical capital level,~kT > 0, where the optimal labor supply jumps down to zero.

Working backwards from the terminal periodT , the planner’s value function

in the penultimate period,T � 1, is:

VT�1(kT�1) = max
kT

XT�1

�
kT�1; kT

�
+ �X

�
kT ; 0

�
:

This function has, potentially, two or more local maxima. The discontinuous

jumps in the planner’s policy functions will be associated with jumps from one

local maximum to another.

Imagine fixing the penultimate period’s capital stock,kT�1, and varying ter-

minal capital,kT , beginning from zero and moving up. At very low choices of

kT , the planner will not work today (because investment is low), but will work

tomorrrow (becausekT is low). Thus the penultimate period’s static return func-
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tion,XT�1, will have a relatively high (negative) slope inkT : because the planner

is not working in periodT � 1, changes inkT affect consumption one-for-one.

By contrast, the ultimate period’s static return function,XT , will have a relatively

small (positive) slope inkT : because the planner is working in periodT , changes

in kT have a less than one-for-one effect on consumption.

At higher choices ofkT , though, the situation is reversed. Now the planner is

working in periodT � 1 (because investment is high) and not working in period

T (because the planner has inherited a relatively high capital stock). Thus the

relative magnitudes of the slopes of the static return functions,XT�1 andXT , will

be reversed. NowXT�1 slopes down less andXT slopes up more.

As a result, there will be (at least) two local solutions to the planner’s prob-

lem; in one, he is not working today but is working tomorrow, in the other, he is

working today but is not working tomorrow. In both cases there will be an op-

timal choice of investment. The planner’s global problem is to choose which of

these local solutions is best. One can also imagine other solutions to the planner’s

problem, associated with other policy combinations, e.g. working in both periods.

The planner’s dilemma is displayed in figure 3 below, where we plot the plan-

ner’s periodT �1 value function as a function of initial capital (which the planner

inherits) and terminal capital (which the planner must choose):

VT�1
�
kT�1; kT

�
= XT�1

�
kT�1; kT

�
+ �XT

�
kT ; 0

�
:

We mark the global maxima over choices of terminal capital. Notice that the two
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local maxima occur at widely separated choices of terminal capital. As initial

capital increases, the right hand maximum, associated with high labor today and

low labor tomorrow, increases relative to the left hand maximum.

More generally, notice that the relative magnitudes of the local maxima will

depend on the planner’s penultimate wealth,kT�1; however, the planner will be

trading off thewealtheffect and theproductivityeffect of capital. At low values

of kT�1, the marginal utility of consumption will be high, prompting the planner

to work, but the marginal product of labor, which depends onk�T�1, will be low,

prompting the planner not to work. At high values ofkT�1 the opposite is true. We

know from lemma 2 that under no circumstances will be the planner be willing to

work a non-zero amount less than
=�. Thus even if the planner could equate the

marginal value of the consumption produced by labor with the (constant) marginal

cost of labor at a low level of labor, the planner would spurn such a solution.

In the special case that� = 0 the productivity effect vanishes. The planner’s

policy functions will still have downward discontinuities, but the jumps up vanish.

When� = 0 capital is only useful as a low-return storage technology In this case,

the marginal product of labor will be constant no matter what the capital stock.

Thus we can think about the planner’s problem as one of minimizing the effort cost

necessary to finance an optimal stream of consumption. We explore this special

case in some detail below.

The planner’s optimal choices of investment,kT
�
kT�1

�
and effortnT�1; nT

as a function of the penultimate period’s capital stock are displayed in figure 4

below. Notice that labor in periodT � 1 and investment both jump up at precisely
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the values of initial capital,kT�1, where the global maximum switched from one

local maximum to the other. Also notice that at this critical level of capital the

planner’s optimal choice of labor effort in the next period, periodT , falls to zero,

even as the planner’s optimal choice of labor effort in the current period, period

T � 1, jumps up.

The policies displayed in figure 4 have other notable features. First, effort in

periodT � 1 is increasing in the inherited capital stock,kT�1. Here the produc-

tivity effect is dominating (notice that these figures use a large value for capital’s

social product,� = 1); at low levels of initial capital, labor’s product is too low to

bother working (consumption can be read as the difference between the 45 degree

line and the optimal choice ofkT ). Second, effort in periodT is decreasing in the

initial capital stock,kT�1. Because in the second period the capital stock will be

completely consumed, the wealth effect dominates. Third, effort,nT�1, and in-

vestment,kT , display several (small) jumps at relatively high values of the initial

capital stock,kT�1. These are the result of the competing wealth and productivity

effects. Notice that effort tends to gradually rise, the result of the productivity

effect augmenting labor’s product, and then suddely fall, the result of the wealth

effect.

More generally, with multiple periods, the relevant objective functions can

feature multiple local maxima and hence several jumps.
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3.4 Stochastic Control

Until we now we have forced the planner to use policies that are non-stochastic;

the planner simply chooses effort and investment levels given an initial capital

level. The non-convexity in the period return function,F , identified in lemma

2, suggests that the planner would use lotteries if permitted. In this section we

liberalize the planner’s control set to permit stochastic policies. We show that, in

certain cases, the planner would in fact use lotteries to increase expected utilities;

however, these lotteries ultimately take the form of gambles over thecurrentcap-

ital stock. In our setting, such lotteries would impose aggregate risk, and would

require a counterparty willing to take the other side of a gamble involving a sig-

nificant part of a national capital stock. As a result, such gambles are probably not

a feature of the U.S. economy as whole. On the other hand, they may be feasible

for particularsectorsof the U.S. economy and for smaller, developing countries.

As the horizon faced by the planner grows to infinity, the region of capital

stocks within which the planner would use lotteries may shrink to nothing. By

sharply varying labor and investment over time, the planner may be able to get

arbitrarily close to the value function with lotteries. We show that in the case

where capital is purely a storage technology, so that� = 0, even at the infinite-

horizon limit the planner benefits from using lotteries.

Lotteries over inputs to a production function have appeared in other applica-

tions. Prescott and Townsend (1984a,b) laid the theoretical framework for their

use when contracts must satisfy an incentive compatibility constraint. Phelan and

Townsend (1991) demonstrated how to compute multi-period and infinite-horizon
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planner’s problems using lottery contracts. Lehnert (1998) used this framework

to characterize the effect of stochastic capital inputs on growth models. Most re-

cently, Paulson and Townsend (2000) have found some empirical evidence for the

presence of lottery-based contracts in micro-level data from Thailand.

Generalized Planner’s Problem With Lotteries

We follow Phelan and Townsend (1991) in generalizing our model to allow the

planner to use lotteries. As before, we require capital and effort to live in the

closed and bounded intervals of the real line,K = [kmin; kmax], kmin > 0 and

N = [0; nmax]. We now generalize the planner’s choice set each period to be a

probability measureover joint eventss in B(S), wheres is a triplet(n; k0; k), S

is the cross-productN � K � K andB(S) are all the Borel subsets ofS. The

planner’s problem now becomes:

(3.9) W (k) = max
�

Z
(n;k0;z)2N�K�K

�
log
�
z�n1+
 + (1� Æ)z � k0

�� �n

+ �W (k0)

�
�(n; k0; z) d(n; k0; z):

The choice object�(n; k0; k) is best thought of as the joint probability density over

today’s effortn, tomorrow’s capital stockk0 andtoday’scapital stockk (which we

denoted with the dummy variablez in the planner’s problem, equation 3.9).
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This optimization proceeds subject to an economy-wide resource constraint:

Z
(n;k0;z)2N�K�K

z�(n; k0; z) d(n; k0; z) = k:(C1)

This constraint requires that the expected value of the capital input actually used

in production be equal to the total outstanding stock of capital. Thus the planner

can neither gain (nor, of course, lose) capital in expected value. An alternate view

would be to rule out all lotteries that vary the capital input away from the inherited,

beginning-of-period capital stock. Such a constraint would be:

�(n; k0; z) = 0; all z 6= k:(C2)

This constraint forces the planner to put measure zero on any outcome that varies

today’s capital inputz from its initial levelk, but the planner may still use stochas-

tic choices of investment and labor effort.

Both constraints (C1) and (C2) are linear in the choice object� and define

closed and convex sets of permitted choices�. We can therefore define two addi-

tional operators as lottery-based counterparts to the operatorT defined in equation

(3.5) above. Each new operator will be associated with a different restriction on

lotteries. As before, the operators mapB (K) into itself:

TC1f = max
�

Z
S

�
log(c)� �n+ �f

�
k0
��

�
�
s) d

�
s); subject to (C1)

TC2f = max
�

Z
S

�
log(c)� �n+ �f

�
k0
��

�
�
s) d

�
s); subject to (C2)
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Here we have suppressed for notational convenience the relationships:

c = k�n1+
 + (1� Æ)k � k0; and:

s 2 S = N�K�K:

From Phelan and Townsend (1991) we know that the operatorsTC1 andTC2 are

contraction mappings. Thus we define two additional value functions as the fixed

points of the appropriate operators:

W(C1)(k) =
�TC1W(C1)

�
(k) andW(C2)(k) =

�TC2W(C2)

�
(k):

Results Without Capital Gambles

Define acapital gambleas any policy� that satisfies constraint (C1) but vio-

lates (C2). Such policies involve variations of the capital input away from the

beginning-of-period inherited capital stock. As we discussed earlier, capital gam-

bles are probably not feasible for large economies taken as a whole. Our first

result shows the effect of ruling capital gambles out:

Lemma 3
�TC2f

�
(k) =

�T f)(k) all bounded and continuous functionsf .

Notice as an immediate consequence of lemma 3 we know that the the fixed

points of the two operators,T andTC2, must be equal, hence the value functions

W(C2)(k) andV (k) must be equal.
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Results With Capital Gambles

We now explore the consequences for our model of allowing the planner to use

fair gambles over the inherited capital stock. In addition to arbitrary bounded and

continuous functionsf : K ! R � R, we will find it convenient to define the

zero functionasf (0) = 0 all k 2 K.

Lemma 4 The operatorTC1 satisfies:

1.
�TC1f

�
(k) � �T f�(k) all k 2 K,

2. 
 < 0 =) �TC1f
(0)
�
(k) =

�T f (0)�(k) all k 2 K,

3. 
 � 0 =) �TC1f
(0)
�
(k) >

�T f (0)�(k) at least onek 2 K.

Notice what lemma 4.3 doesnot say, namely, that an economy with gam-

bles would be strictly better off than an economy without gambles at the infinite-

horizon limit. Instead, the lemma applies only to the finite horizon case, when the

continuation utility is given by the zero functionf (0). Iterating backwards, how-

ever, the planner without capital gambles can choose policies that cleverly mimic

lotteries, and, indeed, can often (but not always) achieve the same utility as in

the world with capital gambles. That is, for certain parameters, it is the case that

V (k) = W(C1)(k). However, we can identify one functional form where this is

not the case:

Theorem 3 If � = 0 then:

1. If 
 < 0 thenW(C1)(k) = V (k) all k 2 K.
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2. If 
 > 
? where:


 � 
? � �

1 + �

log
��
(1� Æ)�

��1�
log(1 + �)

> 0;

thenW(C1)(k) � V (k) all k 2 K andW(C1)(k̂) > V (k̂) at least onêk 2 K.

Intuitively, when� = 0, we saw in section 3.3 that the productivity effect

vanishes and capital is only used as a low-return storage technology. Thus we can

imagine breaking the planner’s problem into two pieces. First the planner chooses

a time path for consumption that does not depend on the capital stock and then

decides how much to work in order to finance this consumption stream. When


 is large enough to overcome the effects of capital’s depreciation rate,Æ, and

the discount factor,�, it is optimal for the planner to bunch production; more-

over, the planner decides how hard to work (in those periods that he does work)

by choosing the number of vacation periods that a particular level of effort will

net him.4 Imagine beginning with initial capital of zero: the planner works hard

enough to finance, say, a three-period vacation. If the planner were instead en-

dowed with a small positive amount of capital, he responds by working a little

less, but maintaining the same target level of capital next period (enough to fi-

nance a three-period vacation). As the stock of initial capital grows, though, the

planner’s choice of how much to invest can jump down. Here the planner switches

to a policy of working hard enough to finance a two period vacation. Before the

jump, the planner’s value function will have a relatively shallow slope in initial
4Note that when capital does not depreciate, soÆ = 0, and the discount factor approaches

unity,
? approaches zero.
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capital; the planner is only adjusting one margin, how much to work. After the

jump, the planner’s value function will have a relatively steeper slope because the

planner has adjusted the amount of target capital next period. A capital-gamble

style lottery would allow the planner to convexify the kink, increasing the value

function in expected value.

4 Numerical Results

Although we were able to make some progress in characterizing the planner’s

problem in discrete time, a complete analytic characterization is impossible with-

out assuming constant returns to scale in capital, which we have seen rules out

optimal cycles. In this section we characterize the solution to the planner’s prob-

lem using numerical techniques. We begin by (briefly) justifying the technique

we use, we then establish a benchmark specification of parameters and vary pa-

rameters of interest around the benchmark. Next, we explore the implications of

theorem 3 by solving the planner’s problem when� = 0 with and without lot-

teries. One final question of interest is whether or not the solution at a particular

parameter combination will feature endogenous cycles; we explore this issue by

solving the model at many combinations of parameters and finding the regions in

parameter space where cycles arise.
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4.1 Numerical Technique

Because our basic problem is, from the standpoint of numerical techniques, quite

straightforward, we can afford to use one of the simplest numerical techniques

available, namely discrete-state dynamic programming. We specify a grid of cap-

ital pointsK:

K =
�
kmin; k2; : : : ; km�2; km�1; kmax

	
; kmin > 0:

Here the integerm is the number of grid points in the capital state space approx-

imation. Associated with every combination of capital todayk and tomorrowk0,

wherek; k0 are in K, we compute the static returnF, defined in equation (3.8)

above:

F
�
ki; kj

�
= max

n

�
log
�
k�i n

1+
 + (1� Æ)ki � kj
�� �n

�
; all ki; kj 2 K:

(Notice that by working hard enough, the planner can realize positive consumption

for any combinationki; kj, as long aski > 0.) Associated with eachki; kj there

will be an optimal choice of labor effortnij. For values ofki; kj such that:

hij � (1� Æ)ki � kj
k�i

> hmax;

we know that the optimal solution cannot be to work hard, so thatnij = 0. If

hij � hmax, we solve the planner’s first order condition (given in equation A.2)

to find a candidate solution involving high labor effort. Ifhij > 0, we also have
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to check the corner,nij = 0, because the planner might prefer not working to

working. With the static return functionF computed, we next solve a recursive

version of the planner’s problem:

V(`+1)(ki) = max
kj

�
F
�
ki; kj

�
+ �V(`)(kj)

�
; wherekj 2 K; all ki 2 K.(4.1)

We begin with an initial guess at the value functionV(0) and implement the dis-

crete operator defined by equation (4.1) until successive iterations produce value

functions that are numerically indistinguishable from one another. See the discus-

sion in Judd (1999) for a complete discussion of this technique.

4.2 Benchmark Parameterization

Because the case that we are interested in (when� < 1 and
 is relatively low)

is precisely the case without an analytic solution, we pick a central benchmark

calibration for our parameters and then vary parameters to study their effect on

our model. The benchmarks and variation ranges are given in table 1 below.

The parameter of primary interest in our model is
, which governs the total

returns to labor,1 + 
. We first vary this parameter, then the returns to capital�

(when� > 0), then the depreciation rateÆ and finally the discount factor�.

Our chosen benchmark is
 = 1=6; � = 1=3; � = 0:98; Æ = 0:1 and� =

2. We specify a relatively low value of returns to labor,1 + 
, to demonstrate

that optimal labor cycles can occur under mild increasing returns to labor. The

return to capital parameter,�, is chosen to match the social returns to capital
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used in many business cycle models. The total returns to scale in the benchmark

specification equal 1.5. Next, we select a discount factor of� = 0:98 and a

depreciation rate ofÆ = 0:1, which are reasonable calibrations for an annual

model. In the sensitivity analysis, we show that labor cycles appear under a larger

discount factor or a smaller depreciation rate.

Varying Returns to Labor: 


Figure 5 plots the optimal investment (that is, next period’s capital) and labor pol-

icy functions for the benchmark parameterization and two alternate levels of
.

Figure 6 shows the dynamics of labor effort, capital and consumption under the

benchmark and alternate levels of
. As expected, the pronounced, discontinuous

drop in the policy functions, when they occur along the optimal capital accumu-

lation path, generate cycles. (Interestingly, although consumption cycles can be

eliminated, the planner chooses not to.) Notice also that the limits of the cycles

shift over time; this is the result of the discrete jumps up in the policy functions,

discussed in section 3.3 above.

The labor and capital policy functions for all three parameterizations feature

downward discontinuities, where the social planner chooses to stop working and

consume only out of the capital stock. Examining the labor policy functions, a

larger
 implies a higher level of the labor input for any level of current capital.

Likewise, for the three values of
 considered here, a larger
 is associated with

a higher cut-off capital stock for supplying labor. As predicted by lemma 2.3

above, the minimum positive labor value (the smallest non-zero amount of labor
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Figure 5: Optimal investment and labor policies (as a function of capital) for
varying levels of
:

that the planner is willing to supply) also increases in
. Since the returns to labor

are higher, the optimal allocation involves greater labor effort for any level of the

capital stock. Examining the capital policy function, a larger
 implies a higher

level of (next period) capital for any current capital stock.

In the cases of
 =1/6 or 0.2, the optimal capital policy function does not

cross the 45 degree line at a continuous point; instead, at a point–call it~k–the

optimal investment policy features a discontinuous jump down. For both of these

parameterizations, the optimal capital sequence does not converge asymptotically,

but instead cycles between periods of positive labor input and savings to periods

of zero labor input and dissaving. Intuively, the social planner would like to find

an intermediate average level of the capital stock at which to spend his time sav-

ing, consuming and working. Such an ideal capital stock may not exist under

increasing returns. Low capital stocks do not exploit capital’s ability to augment
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labor productivity, while high capital stocks are expensive to maintain because

of capital’s diminishing marginal product. By oscillating labor supply, the social

planner takes advantage of increasing returns to labor by jumping between pos-

itive (and high) labor and zero labor. Notice than in our example, the planner

works hard in bursts of one period only; however, the planner’s vacations are typi-

cally longer than a single period. In order to smooth consumption and keep capital

near its target level, when the planner is following an oscillating labor supply pol-

icy, capital must be above the steady-state when labor is zero because households

consume out of the capital stock. Positive consumption and capital depreciation

imply capital falls during zero labor periods. On the other hand, capital is below

the steady-state when labor is positive. To finance consumption in the future zero

labor phase of the cycle, the social planner increases the capital stock during the

positive labor phase of the cycle.

For both the
 = 1=6 and
 = 0:2 cases, the capital and labor policy functions

display several upward discontinuities whenk < ~k. There are the discontinuities

discussed in section 3.3 above.

An oscillating labor plan has one built-in inefficiency: the period of high labor

effort occurs when the capital stock is lowest, but a low capital stock implies a

relatively low marginal product of labor. If the degree of increasing returns is

sufficiently low, oscillating labor supply will not be optimal. This occurs when


 = 0:05: although the policy functions continue to display the characteristic

downward discontinuity, it occurs at capital levels above the steady-state. The

capital policy function in this case crosses the 45 degree line continuously and
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from above, so there exists a steady-state optimal capital stock. Labor cycling

is not optimal because the benefit of bunching production in the face of small

increasing returns is outweighed by the cost of having to work when the capital

stock is low.

Varying the Depreciation Rate: Æ

In our model, capital provides two services to households: (i) it is a risk-free

constant returns storage technology, with a rate of return decreasing inÆ, and (ii)

an investment which augments the productivity of next period labor. We can vary

(i) by changing the depreciation rate.

Figure 7 plot the optimal investment and labor policy functions for three dif-

ferent depreciation ratesÆ = 0:1, the benchmark case,Æ = 0:075. andÆ = 0:25.

There is a general downward shift in both policy functions asÆ rises. As capital

depreciates more quickly, the planner reduces gross physical investment and la-

bor. Also, the point at which labor input goes to zero as a function of the current

capital stock decreases asÆ rises. For the largest depreciation rate,Æ = 0:25, the

optimal allocation converges to a constant labor and capital steady-state.

Varying the Returns to Capital: � > 0

One parameter of particular interest is the return to capital,�. Theorem 3 char-

acterizes the planner’s problem in the special case that� = 0; further, in section

4.3 below we compute numerical solutions using lotteries in that case. However,

it is also interesting to study the effect of increasing� outside of this special case.
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Figure 7: Effect of varying the depreciation rate,Æ.

Figure 8 displays the optimal policies for three levels of�, f1=6; 1=3; 1=2g.
As � increases, the critical capital level at which the investment policy jumps

down,~k, shifts out. In all cases (as, indeed, in the case when� = 0) endogenous

cycles arise. Thus the average capital level during oscillations is increasing in�.

Finally, notice that the sharp jumps up in the policy functions appear at all levels

of �, so the limits of the cycles will also shift.

Varying the Discount Factor: �

The discount factor� defines the length of the period. As� approaches 1, the

discrete time model becomes more like the continuous model. Low values of�

correspond to a longer horizon during which the planner must fix inputs.

We consider three levels for�, f0:8; 0:98; 0:99g. In figure 9, we plot the in-

vestment and labor policy functions for the benchmark model at these three dis-

count factors. As� rises, the policy functions all shift up, implying higher average
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Figure 8: Effect of varying returns to capital,�.

capital and effort levels. Also, the critical capital level~k shifts to the right.

For the lowest value of�, 0.8, cycles do not arise endogenously. This arises

from the discrete-time formulation; from our analysis of the benchmark model,

the optimal allocation involves keeping capital close to a target steady-state. Such

a policy becomes more difficult to implement using cycles if the planner is forced

to maintain a labor choice over a longer and longer horizon.

4.3 Capital Gambles When� = 0

Theorem 3 assures us that capital gambles will strictly improve welfare (in ex-

pected value) when� = 0 and
 is large enough to stimulate cycles. Under our

benchmark parameterization, the critical value of
 is about 0.0910; thus our cen-

tral level of
, 1/6, is large enough to provoke cycles and hence for lotteries to be

welfare-improving. We now display some numerical results for our benchmark

model (with� = 0) with and without capital gambles.
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Figure 9: Effect of varying the discount factor,�.

We calculated the optimal stochastic policy using the linear programming

techniques pioneered by Phelan and Townsend (1991). Our particular application

here of these techniques is quite straightforward; unlike Phelan and Townsend’s

problem, our model does not feature moral hazard or exogenous shocks, so our

lotteries do not have to satisfy incentive-compatibility or Bayes-consistency con-

straints. In the same way that we compute non-stochastic policies using discrete-

space approximations to the operatorT , we compute optimal stochastic policies

using a discrete-space approximation to the operatorTC1. Instead of choosing

a general measure over the Borel subsets of effort, investment and capital, we

choose a probability mass function over investment and capital grid points.

Figure 10 displays the levels and slopes ofW(C1)(k) andV (k), the value func-

tions with and without capital-gamble style lotteries. Without lotteries, the value

functionV displays several distinct kinks, while the planner uses lotteries to con-

vexify around these kinks, so thatW is linear in these regions. The effect of
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lotteries on the slopes of the value functions is quite striking: without lotteries,

the slope of the value function swings wildly, while with lotteries it is smoothly

decreasing, and flat at the kinks inV . Notice that the planner does not always

use lotteries; in regions whereV is not kinked, the planner can do no better with

lotteries than without them.

Figure 11 displays the associated investment and effort policies. Notice that, in

the case of lotteries, we display theexpectedvalues of investment and labor. The

planner is using lotteries to bounce between two extreme points–high labor and

high investment against low labor and low investment. As a result, even though the

expected value of next period’s capital level crosses the 45-degree line smoothly

and from above, there is no steady-state capital in the usual sense. Instead, the

planner is undertakingex antecapital gambles between a higher and a lower cap-

ital stock.
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Figure 10: Value functions with and without capital gambles.
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4.4 Optimality of Cycles

We now present results from jointly varying the parameters�; �; 
 over a wide

range. Instead of presenting the policy functions in each case, we determine

whether, under each parameter combination, the policies give rise to endogenous

cycles. Figure 12 displays the results in(�; 
) space, and figure 13 displays the re-

sults in(�; 
) space. The results show that cycles are less likely at lower values of

�; a higher value of
 is required to overcome the natural tendency of the planner

to converge to a fixed capital stock as the horizon grows. Also, as� grows, cy-

cles become less likely. Thus as the model approaches Christiano and Harrison’s

� = 1 case, cycles gradually vanish from the model.
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Table 1: Benchmark parameterization and variations

Parameter min benchmark max

 Labor’s externality -1/3 1/6 2
� Capital’s product 0 1/3 0.8
� Discount factor 0 0.98 0.999
Æ Capital survival 0.10
� Disutility of labor 2
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Figure 12: Cycles in(�; 
) space.
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5 Conclusion

Consider two economies, called “A” and “B”. In both economies technological

progress allows workers to communicate their ideas, needs and resources much

more effectively than before; so much so, in fact, that labor productivity notice-

ably increases even as the aggregate supply of labor also increases. In economy

A, thanks to strenuous interventions by the government, investment, employment

and output fluctuate little. In economy B, by contrast, investment, employment

and output fluctuate, often apparently at random. In economy B, inventories of

goods accumulate towards the ends of booms, and then run down, signaling the

beginning of recession. Employment peaks, paradoxically, exactly when the cap-

ital stock has run down significantly and thus augments labor’s productivity the

least. In which economy are households better off?

This paper is, at least in part, a plea not to dismiss the possibility that economy

B is actually following the optimal path. We showed that, within an increasing-

returns model, multiple competitive equilibria exist precisely in those cases when

it is at least possible that the optimal path of output is not constant.

Indeed, we showed that the optimal policy under increasing returns can feature

(1) endogenous cycles, (2) shifting endpoints for these cycles and (3) stochastic

capital gambles. None of these phenomena are normally taken as the hallmarks

of wise economic policy; and yet, in certain cases in our model, they are precisely

that.

Our results abstracted from many features of the real world, and thus should
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not be taken as a positive prescription to allow (or even encourage) cycles. In

particular, the sole welfare cost of our cycles came from the fluctuations in aggre-

gate consumption. In reality, because households retain a significant amount of

idiosyncratic risk, it is likely that some fraction of households would bear most of

the consumption declines associated with the cycles.
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A Proofs

A.1 Proof of Theorem 1

We can easily compute the eigenvalues� of the linear system given by equation
(2.15) by solving the characteristic equation:

det(A� �I) = 0:

The eigenvalues� are the solution to the quadratic equation:

�2 � tr(A)� + det(A) = 0:

Applying the quadratic formula:

� =
1

2

�
tr(A)�

q
(tr(A))2 � 4 det(A)

�
:

The eigenvalues will have opposite signs if and only ifdet(A) < 0. Thus, for
any given starting value of capital, there will a unique path to the steady-state if
and only ifdet(A) < 0. In the same way, for any given starting value of capital
close to the steady-state, there will be many paths to the steady-state (that is, both
values of� will be negative) if and onlydet(A) > 0 and tr(A) < 0.

The determinant is given by:

det (A) =
(1� �) (� + Æ)




�
�+ Æ

a
� Æ

�
:

Given our previous assumptions on the parameters,0 < a < � < 1 and�; Æ > 0,
it must be true that:

sign(det (A)) = sign(
) :

Notice that
 > 0 is sufficient to rule out the usual local saddle-path stability.
Condition 2 of the theorem gives the negative trace condition.

A.2 Proof of Theorem 2

Proof by contradiction. Assume first that there exist paths for capital, consump-
tion and labork?(t); c?(t); n?(t) where the control function is piecewise contin-
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uous and the state is piecewise differentiable, that maximizes the social welfare
function, equation (2.18). According to the maximum principle, at each instant
the current value Hamiltonian is maximized atc?(t); n?(t). Then:

�0 [log(c)� �n] + �
�
(k?)� n1+
 � c� Æk?

�
� �0 [log(c

?)� �n?] + �
�
(k?)� (n?)1+
 � c? � Æk?

�
for all (c; n) 2 U

For the particular problem that we are studying, households can never be satiated;
thus the objective can never be disregarded. Thus we can dispense with the case
of �0 = 0, where the Hamiltonian would be strictly decreasing in consumption,
and increasing in labor effort.

We wish to show that an alternate choice of policies,(c?; �n?), increases the
value ofHc above(c?; n?) for some� > 0. Plugging in our conjectured improved
control pair, the above inequality becomes:

� (k?)� (n?)1+
 ��1+
 � 1
� � � (� � 1)n?:(A.1)

Let v(�) andw(�) denote the left and right-hand side of (A.1). The functions
coincide when� = 1, and both are differentiable in�. If v0 6= w0 at� = 1, then the
functions cross at this point, and condition (A.1) must be violated for some�. The
more interesting case, whenv0 = w0 is illustrated in figure 14 below. If
 > 0,
thenv is convex and increasing in� andv > w for � 6= 1.
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A.3 Proof of Lemma 1

We first show thatn?
�
k; k0

�
is bounded, and then it a natural result thatF is also

bounded.
First notice that the variableh =

�
(1� Æ)k� k0

�
k�� defined in equation (3.7)

above issufficientfor F
�
k; k0

�
, so thatF is a function ofk andk0 only as they

affecth. Now we can write the derivative ofF as:

Fn

�
h(k; k0);n

�
=

(1 + 
)n


n1+
 + h
� �:(A.2)

Thus if we were to imagine the planner choosing an unboundedly large level of
effort, we can find the limit of this derivative:

lim
n!1

Fn

�
h;n

�
= �� < 0:

If 
 > 0, the functionF is non-monotone inn and also non-concave, thus opening
the possibility of a corner solution. However, ifh > 0 and
 > 0, thenFn(h;n =
0) = �� also. The planner might like to force labor effort even lower than zero,
but, of course, cannot. Thus it is the left constraint we have to check.

So now we have established thatF is the upper envelope of two functions:F
andF . These functions are defined as:

F
�
h(k; k0)

�
= log

�
n1+
 + h

�� �n; where:(A.3)

n : n1+
 � [(1 + 
)=�]n
 + h = 0; and(A.4)

F
�
h(k; k0)

�
= log(h):(A.5)

If there is no interior solution to the planner’s first order condition (A.4), we take
it as undefined. Figure 15 below plotsF ; F and their upper envelope.

We are guaranteed thath is finite by our assumptions onK. This then in turn
guarantees us thatn (if it exists) is also finite. Optimal laborn? is either 0 orn,
both of which are finite. But ifn andh are finite,F must also be bounded.

A.4 Proof of Lemma 2

To show lemma 2.1, we show thatF (k; k0;n) is strictly concave inn if 
 < 0,
so that the planner is always picking an interior choice ofn, n > 0. The second
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derivative ofF is given by:

d2

dn2
F
�
k; k0;n

�
=




n
M(n)� �M(n)

�2
; where:

M(n) � (1 + 
)n


n1+
 + h
:

Hereh is the convenient function ofk andk0, h =
�
(1� Æ)k� k0

�
k�� first defined

in equation (3.7) above. When
 < 0, M(n) > 0 if n > 0, so the sign of the
second derivative ofF in n is certainly negative if
 is negative.

To show lemma 2.2, notice first that an interior solution to the static problem
requires that labor be chosen so thatFn

�
h(k; k0);n

�
= 0, orH(n)+h = 0, where:

H(n) � n1+
 � 1 + 


�
n
 :

Positive values ofh are associated with negative investment and increased con-
sumption today relative to tomorrow. The largerh is, the better off the planner is
today. We show thatH(n) + h = 0 will always have a unique solution inn if

 < 0 but may have no solutions if
 > 0 andh is large and positive.

Notice that if
 < 0, H(n) becomes unboundedly negative asn approaches 0
from the left; further,H 0(n) is positive everywheren � 0 soH(n) is monotone

56



increasing. Thus for allh 2 (�1;1) a single value ofn will satisfy the planner’s
first order condition inn: H(n) + h = 0.

If instead
 > 0, we showH(n) has a finite minimum and hence for large
positive values ofh, no value ofn � 0 satisfiesH(n)+h = 0. For such values of
h the planner must set effort to zero (although he may choose to do so at smaller
values as well). The first and second derivatives ofH(n) are:

H 0(n) = (1 + 
)n
�1[n� (
=�)]

H 00(n) = 
(1 + 
)n
�2[n� (
 � 1)=�]:

ThusH(n) forms an upward-pointing parabola inn when
 > 0, with a global
minimum atn = 
=�. If there are two solutions toH(n) + h = 0 we need
only check the one to the right of the parabolic minimum, because the planner’s
objective function slopes down to the left of this point. At the parabolic minimum,
H takes on the value:

H
�

=�

�
= �1




�



�

�1+


:

Note thatH
�

=�

�
< 0 in the
 > 0 case. Thus for values ofh greater thanhmax:

hmax = �H�
=��;(A.6)

the planner’s first order conditionH(n) + h = 0 has no non-imaginary solution,
and the planner must setn = 0.

The final element of the lemma, lemma 3, requires us to show that if
 > 0, the
planner’s choice of optimal effortjumpsdown to zero at a certain point. In other
words, there is some region of labor effort greater than zero which the planner
never chooses. But we have seen that the planner never chooses labor effortn <

=� as this puts him on the down-sloping part of the parabolaH(n).

A.5 Proof that the Planner’s Problem is a Contraction Map-
ping

The planner’s problem is inherently a sequence problem. (Here we follow Stokey
and Lucas (1989).) In equation (3.1) above we defined the planner’s continuation
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utility at periodt when beginning with a capital stock ofkt asvt
�
kt
�
. This is the

solution to the sequence problem. In equation (3.4) above we wrote the planner’s
problem recursively and definedV (k) at the value function. We now show that:

vt(k) = V (k); all k 2 K:

We begin by re-writing the sequence problem using the static return function
X defined in equation (3.6) above:

vt
�
kt
�
= max

fkt+igi=1i=0

1X
i=0

�iX
�
kt+i; kt+i+1

�
; kt+i 2 K; i = 0; 1; 2; : : :1:(A.7)

Next, we show thatvt
�
kt
�

must be finite for all starting values of capital. Define
the sequence�t as the optimal plan from the planner’s sequence problem, (A.7)
above:

�t =
�
k?t+1; k

?
t+2; : : :

	
:

We now show that the present-discounted value of following the capital plan�t
from periodt forward is less than the present discounted value of animpossible
plan. We then show that the PDV of this impossible plan is bounded. The par-
ticular impossible plan that we will consider will be this: the planner will follow
the optimal path�t going forward, except that each period we will allow him to
completely consume the current capital stock without running it down; the next
period, even after his capital binge, the capital stock called for by�t appears (by
magic). Thus the value of the optimal plan is given by:

1X
i=0

�iX
�
k?t+i; k

?
t+i+1

�
<

1X
i=0

�iX
�
k?t+i; 0

�
;

�
1X
i=0

�iX
�
kmax; 0

�
;
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for simplicity, assume thatkmax > hmax, defined in equation (A.6) above:

=
1X
i=0

�i log
�
kmax

�
;

=
1

1� �
log
�
kmax

�
<1:

Next we turn to the recursive problem, equation (3.4) above. DefineB (K) as
a space of bounded continuous functionsf : K ! R (whereR � R). Consider
the functional operatorT : B (K) ! B (K) defined as:

�T f�(k) = max
k02K

�
X
�
k; k0

�
+ �f

�
k0
��

; all k inK.

We now show thatT satisfies Blackwell’s sufficient conditions for a contraction,
monotonicity and discounting.

First we show thatT satisfies monotonicity. If the functionsfa; f b are both in
B (K) andfa(k) � f b(k) all k in K, we must show thatT fa(k) � T f b(k) all k
inK:

�T f b
�
(k) = max

k02K

�
X
�
k; k0

�
+ �f b

�
k0
��

;

= max
k02K

�
X
�
k; k0

�
+ �fa

�
k0
�
+ �

�
f b
�
k0
�� fa

�
k0
���

;

� �T fa
�
(k) + �max

k0

�
f b
�
k0
�� fa

�
k0
��

;

� �T fa
�
(k):

Next we show thatT satisfies discounting. For anyf 2 B (K) we must show
that there is0 < � < 1 such that

�T (f + a)
�
(k) � �T f�(k) + �a for a � 0 and
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k inK:

�T (f + a)
�
(k) = max

k02K

�
X
�
k; k0

�
+ �f

�
k0
�
+ �a

�
;

= max
k02K

�
X
�
k; k0

�
+ �f

�
k0
��

+ �a;

=
�T f�(k) + �a:

Therefore, any value for� such that� � � < 1 will satisfy the condition. We
assumed that the discount factor� was strictly between 0 and 1.

A.6 Proof of Lemma 3

Begin by defining the budget setB(k) as:

B(k) =

��
n; k0

� 2 N�K : k�n1+
 + (1� Æ)k � k0 � 0:

�

Notice parenthetically that if
 > 0, B(k) is non-convex. Definegk to be the
shared objective,g : b 2 B(k)! R:

gk = log
�
k�n1+
 + (1� Æ)k � k0

�� �n + �f
�
k0
�
:

For allk 2 K, gk will be a finite, real-valued function of all pointsb in the budget
setB(k) except for those points at the edges of the budget set, where consumption
is zero. At these points,gk will be negative infinity. Define the set of pointsb?

k as:

b
?
k �

�
b 2 B(k) : gk(b) � gk(b

0); all b0 2 B(k).

�

Defineg?k asgk(b) for b in b?
k. Notice thatg?k will be finite, because for allk > 0

the planner can find a policyn; k0 that delivers non-zero consumption. Now, notice
that from constraint (C2) above, the choice object�

�
n; k0; z

�
must satisfy:

Z
N�K

�
�
n; k0; z

�
d
�
n; k0

�
=

�
1 z = k;
0 z 6= k:

60



We can therefore write the problem as one of choosing lotteries�k(b) for each
capital stockk and pointb in the budget setB(k). Therefore:Z

B(k)

gk(b)�k(b) db � g?k all �k(b):

The best that the planner can do is write lotteries whose support is onlyb
?
k. But

these lotteries can never produce outcomes greater thang?k, which is available to
the planner without lotteries. As a result, it must be the case that:�TC2f

�
(k) =

�T f�(k); all k 2 K:

This concludes the proof.

A.7 Proof of Lemma 4

The first item in the lemma is easy: because the planner can always replicate any
non-stochastic plan with degenerate lotteries, the planner can never do worse with
lotteries; thusTC1f � T f .

Before addressing parts 2 and 3 of the lemma, we analyze the joint distribution
� further. Note that� may be written as:

�
�
n; k0; k

�
= �(k)�

�
n; k0jk�:

Here�(k) is the capital gamble and� is the ex post lottery over effort and invest-
ment conditional on outcomes of the capital gamble. We know from lemma 3 that
the conditional distributions�

�
n; k0jk� are degenerate; thus the general contracts

can be written as a stochastic part (the capital gamble) and a non-stochastic part
(the optimal choice of effort and investment given an outcomek from the capital
gamble). Now the operatorTC1 can be written as:

TC1f = max
�

Z
K

�(z)

�
max
n;k0

log
�
z�n1+
 + (1� Æ)z � k0

�� �n+ �f
�
k0
��

dz:

The constraint (C1) is now written as:Z
K

�(z)z dz = k:

Turn now to item 2 of the lemma. Intuitively, without increasing returns to
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labor, the planner varies effort continuously with the capital stock. Because agents
are risk-averse, the planner finds no benefit in using stochastic controls (or, of
course, sharply varying effort and investment over time). If
 < 0 then the static
return functionF defined in equation (3.8) above is concave inn for all n � 0.
The planner’s problem is now:

TC1 = max
�(k)

Z
K

�(k)

�
max
n;k0

� log(k) + F
�
k; k0;n

�
+ �f (0)

�
k0
��

dk:

The optimal investment policy is clearly degenerate,k0 = 0 for all values ofk.
Further, becauseF is concave for alln � 0, the optimal effort policy can be
found at the critical point whereFn

�
k; k0;n

�
= 0, defined in equation A.2 above.

Here:

�
n(k)

�1+
 � 1 + 


�

�
n(k)

�

+ (1� Æ)k1�� = 0;(A.8)

for all k 2 K. As a result, we know that if
 < 0, optimal effortn is non-zero
and smoothly decreasing ink for all k > 0. DefineF (0)(k) to be the static return
functionF (k; 0;n) when effortn is replaced by its optimal level,n. The slope of
F (0)(k) becomes:

d

dk
F (0)(k) =

d

dk
F
�
k; 0;n

�
+

d

dn
F
�
k; 0;n

�
:

When
 < 0 all of these derivatives exist and, from equation (A.8) above:

d

dn
F
�
k; 0;n

�
= 0;

all k > 0. Thus the second derivative is:

d

dk
F (0)(k) = ��(1� �)

k��2n1+
 + 1� Æ

c
�
�
k��2n1+
 + 1� Æ

�2
c2

< 0:

Thus the payoff function is strictly concave everywhere ink > 0 and the planner
has no motive to use lotteries. This gives us the second item in the lemma.

Turning now to the final item: when
 � 0, we show that the planner’s optimal
choice of labor effort will, for values ofk � ~k, put the planner at the corner
solutionn = 0, inducing a kink in the payoff functionF (0)(k). Although the
household is risk-averse, the sudden change in the slope of the payoff function
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will create a region where the household prefers capital gambles. To see this,
consider again the locus of effort points defined byFn(k; 0;n) = 0, equation
(A.8) above. This may be re-written as:

n1+
 � 1 + 


�
n
 = �(1� Æ)k1��:

For
 � 0, the left hand side (LHS) of this equation is convex increasing inn � 0.
The global minimum is at the critical pointn = 
=�, at which point the LHS is:

LHS

�
n =




�

�
= �1




�



�

�1+


< 0:

Thus for values of initial capital greater than the critical pointkCRIT:

kCRIT =
1

1� Æ

1




�



�

�1+


;

there is no real solution to equation A.8; for values of the capital stockk > kCRIT,
the optimal policy must be to set effort to zero. At the other extreme, for very
small values of initial capitalk ! 0, we know that the optimal policy is to work
hard. At some intermediate capital point,0 < ~k � kCRIT, the policy switches from
working hard to not working at all. We know that the slope of the value function
F (0)(k) is lower at any capital level when the household works than when it does
not (because it is consuming more in the former case than in the latter). Although
the derivative of the value function is not defined at the kink~k, we know that in
an�-neighborhood of~k:

lim
�!0

d

dk
F (0)(k)

����
k=~k��

� d

dk
F (0)(k)

����
k=~k+�

> 0:

Marginal utility is briefly increasing in wealth around the kink. In the neighbor-
hood of~k, the agent becomes in effect a risk-lover, prompting the social planner
to implement capital gambles.

A.8 Proof of Theorem 3

We begin with part 1 of the theorem. We know from lemma 2 that when
 < 0 the
planner’s static problem is smooth; his choice of labor effort never drops to zero
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no matter how rich he is. As a result, the planner’s static return functionF does
not feature a kink. But the planner’s static objective isX = � log(k) + F ; with
the assumption that� = 0 this collapses toX = F , so we are also assured that the
planner’s static objective,X, is smooth and concave everywhere. From the proof
of lemma 4 above we see that in such cases, there are no gains even in the finite
horizon to capital gambles when the static objective is smooth. With a smooth and
concave static objective, the infinite horizon value function inherits the properties
of the static objective, and so is also smooth and concave. Thus there are no kinks
to be convexified around with lotteries, and so capital gambles provide no service,
and are ruled out by risk aversion.

The proof of the second part of the theorem proceeds as follows: (1) We es-
tablish that
 � 
? is sufficient to establish that cycles are optimal; (2) We show
that if cycles are optimal the planner works hard at low capital stocks but does not
work at all at higher capital stocks; (3) We show that in the neighborhood of this
critical capital region the planner’s value functionV (k) is kinked; finally (4) we
appeal to lemma 4 so thatTC1V (k) > V (k) in this neighborhood.

The planner’s sequence problem is:

max
fct;nt: t�0g

1X
t=0

�t

�
log(ct)� �nt

�
;(SP)

subject to:kt+1 = (1� Æ)kt + n1+

t � ct; andkt � 0; t = 1; 2; : : :

If the non-negativity constraint on capital does not bind, the Euler equation implies
that consumption follows the sequence:

ct+1 = (1� Æ)�ct:(A.9)

But the non-negativity constraint will in general bind. If it binds every period, then
the planner follows a constant-effort policy in whichkt = 0 always. If it binds in
some periods but not others, the planner follows a cyclical policy in whichkt > 0
in some period butkt = 0 in others. Definev as the value of the constant-work
policy:

v = max
c

1X
t=0

�t
�
log(c)� �c1=(1+
)

	
:

Now define aT�period cycle as a policy of working hard in the initial period,
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t = 0, but exertingnoeffort in the subsequentT � 1 periods,t = 1; 2; : : : ; T � 1.
The non-negativity constraint on capital binds only from periodt = �1 to t = 0
and from periodT � 1 to T and so on. In the other periods,t = 0; 1; : : : ; T � 2,
consumption follows the Euler-equation path, equation (A.9).

Let �T (k0; kT ) be the value to aT�period cycle when the planner begins with
initial capitalk0 but must bequeath capitalkT at the end of the cycle:

�T (k0; kT ) = max
n;c0;::: ;cT�1

(
T�1X
t=0

�t log(ct)

)
� �n; subject to:

k1 = (1� Æ)k0 � c0 + n1+
 ; kt+1 = (1� Æ)kt � ct; t = 1; : : : ; T � 1:

This problem can be rewritten as:

�T (k0; kT ) = max
n

m log

�
1

m

�
n1+
 + (1� Æ)k0 � kT

(1� Æ)T�1

��
� �n+M

(A.10)

Here:

m =
1� �T

1� �

M = log
�
(1� Æ)�

�� � � �T

(1� �)2
� T � 1

1� �
�T

�
:

The planner’s choice ofn, givenT , pins down initial consumption,c0; the Euler
equation (A.9) pins down the subsequent trajectory of consumption for the balance
of the cycle.

Note that the constant-labor policy is just equal to the value of pursuing a
one-period cycle endlessly,v = (1=(1 � �))�1(0; 0). With this in mind, we can
compute the value of pursuing a two-period cycle endlessly;1=(1� �)�2(0; 0). It
turns out that:

�1(0; 0) = (1 + 
)

�
log

�
1 + 


�

�
� 1

�
;

�2(0; 0) = (1 + �)(1 + 
)

�
log

�
1 + 


�

�
� 1

�
+M:
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The associated value functions are�1=(1 � �) for the constant-effort policy, and
�2=(1 � �2) for the two-period cycle. For the two period cycle to provide more
utility than the constant-effort case, it must be the case that:


 � �

1 + �

log
��
(1� Æ)�

��1�
log(1 + �)

This is exactly our definition of
? from the theorem. Thus we know that when

 � 
? some form of cycle will be optimal.

Let V (k) be the fixed point ofT as before; also letc(k) andn(k) denote the
optimal consumption and effort policies associated withV (k).

We now argue that:

V (k) = max
T

�
�T (k; 0) + �

�T (0; 0)

1� �T

�
:

Consider the case when
 = 
?. As we saw, a two-period cycle provided more
utility than the constant-labor policy. Could the planner do better than a two-
cycle? The only other possibility is that the planner work some positive amount
each period. If that is the case, then the non-negativity constraints on capital never
bind, and from the sequence problem (SP) above:

nt+1 =
�
(1� Æ)�

�1=

nt:

However, because(1 � Æ)� < 1 and
 > 0, this implies thatnt+1 < nt, or that
consumption falls smoothly over time. This in turn implies that at some period
� in the future, no matter how largen0 is, n� < 
=�. This is contradiction of
lemma 2.3, which holds that effort is either zero or greater than
=�. Thus the
non-negativity constraints must bind sometime. If they do not bind every period,
the planner works some amount and consumption is guided by the unconstrained
Euler equation thereafter, until the non-negativity constraint binds again.

Consider the policy associated with aT�cycle. When initial capital is zero,
the planner works and consumesn0 andc0 given by:

n0 = m(T )
1 + 


�
;

c0 =
1

m(T )
n1+

0 :
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We can then derive the end-of-period capital stock,k1, associated with this policy.
After substituting back in for the constant termm(T ) we find that:

k1 =

�
� � �T

1� �T

��
1� �T

1� �

1 + 


�

�1+


:

In the same way, we can find the penultimate positive capital stock,kT�1:

kT�1
(1� Æ)T�2

=

�
�T�1 � �T

1� �T

��
1� �T

1� �

1 + 


�

�1+


:

Denote this capital stockk(T ); for all capitalk > k(T ) the planner’s optimal
policy is to consume a portion of the capital stock and exert zero effort. At some
capital stock0 < � < k(T ), the planner begins again to work. For capital stocks
k(T ) > k > � the planner’s optimal policy is to exert no effort and consume
the capital stock entirely, settingk0 = 0. For capital sotcksk < � the planner’s
optimal policy is to work hard and setk0 � k(T ). By the envelope theorem we
know that, for some small� > 0:

d

dk
V (k)

����
k=�+�

=
@F (k; 0)

@k
;

d

dk
V (k)

����
k=���

=
@F (k; k0)

@k
:

From lemma 4, we know, whenk0 is large relative tok (as is the case here), that:

@F (k; 0)

@k
>

@F (k; k0)

@k
:

At the higher capital stock, the planner does not work, while at the lower, he does.
Hence in a local region around� the planner is a risk lover. Hence the planner
would prefer a fair gamble with expected value� than� with certainty.
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B Comparison with Christiano and Harrison

Following section 6.2 of Christiano and Harrison, assume a social planner maxi-
mizes:

1X
t=0

�t [log (ct) + � log (1� nt)] ;(B.1)

where� > 0 andct; nt � 0. The law of motion for capital is:

kt+1 � (kt)
� (nt)

2 + (1� Æ) kt � ct;(B.2)

andk0 is given. We generalize CH by allowing for either diminishing or constant
returns to capital0 � � � 1.

Under constant returns to capital� = 1, CH show that the optimal labor
supply is constant. It is useful to review CH’s derivation of the optimal allocation.
Without satiation, equation (B.2) holds with equality and we use it to substitutect
out of the objective, obtaining:

1X
t=0

�t
�
log
�
kt (nt)

2 + (1� Æ) kt � kt+1

�
+ � log (1� nt)

	
:(B.3)

Defining�t as the gross growth rate of capital,kt+1=kt, this expression becomes:

1X
t=0

�t
�
log (kt) + log

�
(nt)

2 + (1� Æ)� �t
�
+ � log (1� nt)

	
:(B.4)

CH show that the discounted sum of the log capital stock can be expressed as
a function ofk0 and thef�tg1t=0 sequence:5

1X
t=0

�t log (kt) =
1

1� �
log (k0) +

�

1� �

1X
t=0

�t log (�t) :(B.5)

5Rearranging the elements of an infinite sum requires the sum to be well defined for appropriate
sequences, which holds in this case.
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Substituting (B.5) into (B.4), the social planner’s objective becomes:

(B.6)
1

1� �
log (k0) +

1X
t=0

�t

�
log
��
nt

�2
+

(1� Æ)� �t
�
+

�

1� �
log
�
�t
�
+ � log

�
1� nt

��
;

subject tont � 0.6

The dynamic problem in equation (B.6) can be converted into a sequence of
static problems. Begin by noticing that consumption in periodt can be written as
a product of the preceding values of capital growth�t, the initial capital stockk0,
and the current consumption-capital ratio,ct=kt:

ct =

�
ct
kt

�
kt;

=

�
ct
kt

�
�t�1�t�2 � � ��0k0:

Use the budget constraint (B.2) to write consumptionct as a function of current
and future capital,kt; kt+1. Substituting produces:

ct =
�
(nt)

2 + 1� Æ � �t
�
�t�1�t�2 � � ��0k0:

The time zero welfare contribution of consumption at timet is then:

�t log (ct) = �t

 
log (k0) + log

�
(nt)

2 + 1� Æ � �t
�
+

t�1X
j=0

log (�t)

!

The separability between differently dated choice variables in (B.6) is a result of
constant returns to capital in production and log preferences over consumption.

We modify CH by assuming diminishing instead of constant returns to capital.
CH find this assumption useful, in part, because it delivers a closed form solution
for the optimal resource allocation. Linear production in capital is often used in
endogenous-growth models; by contrast, business cycle modelling in an animal

6Bounds on�t, which reflect the requirement thatct; kt � 0, never bind because of Inada
conditions.
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spirits context more commonly uses decreasing returns to capital.7

Intuitively, if production is linear in capital, an oscillating path for labor is
less likely to be optimal. Suppose the planner is trying to improve on a constant
labor supply allocation by taking advantage of increasing returns to labor. Imagine
that, instead of supplying the same amount of labor for two periods in a row, the
planner increases labor supply this period in order to finance consumption both
this period and next, when the planner decreases labor supply. By concentrating
labor effort in the first period, the planner takes advantage of increasing returns
to scale, achieving the same output (in present value) at lower utility cost (again,
in present value). However, the capital stored by the planner this period (in order
to finance consumption next period) increases the marginal productivity of labor
next period. Moreover, this increase is always independent of the current level of
the capital stock, because production is linear in capital. Thus, with the higher
labor productivity in the next period, the planner faces an additional incentive to
work.8 Without diminishing returns to capital, the effect on the productivity of
future labor grows linearly as greater savings is undertaken.

Let us continue characterizing the optimal allocation when� = 1. The planner
chooses�t = �; nt = n for all t � 0. to maximize:

log
�
n2 + 1� Æ � �

�
+

�

1� �
log (�) + � log (1� n) ;

subject ton � 0. CH show that, givenn, the problem is strictly concave in�, and
concentrate the objective function into solely a function ofn:

L (n) =
1

1� �
log
�
n2 + 1� Æ

�
+ � log (1� n) :

7As an example, most of the papers we cite in our introduction use models with diminishing
returns to capital.

8This argument may seem to suggest that the optimal resource allocation involves infinite labor
supply and utility. There are two things preventing this. First, CH households face high utility
penalties as labor grows–which bounds the amount of labor effort in the presence of arbitrary
increasing returns. Second, the discrete time formulation also limits the usefulness of extremely
high labor allocations. In essence, the household would like to work very hard for a very brief
period of time, but the discrete-time formulation forces the household to choose its labor effort
choice for an entire period.
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Figure 16 plots the functionL. The local maximum is reached at~n, where:

~n =
1

2

h
� +

p
�2 � 4�

i
;� =

2

2 + � (1� �)
; � =

� (1� �) (1� Æ)

2 + � (1� �)
(B.7)

The globally optimal labor input is time invariant, independent of the capital stock
and equals eithern = 0 or n = ~n.

Figure 16 is drawn so thatL (~n) > L (0). This inequality may be reversed
for some parameterizations, in which case not working is optimal. In the zero
labor optimal allocation, the household consumes a fraction of the undepreciated
capital stock each period. In the neoclassical model, Inada conditions typically
rule out the optimality of zero labor; however, with preferences (B.1) and resource
constraint (B.2), the marginal product of labor is zero and the marginal disutility
of work is finite atn = 0.

Next, we seek to show that it is possible forL(~n) < L(0). LetG = L (~n) �
L (0). If we definex = 1� Æ; z = 1� �; thenG is given by:

G (x; z; �) = z�1 log

"�
~np
x

�2

+ 1

#
+ � log (1� ~n)

where ~n is defined by (B.7). Using the envelope theorem,@G=@x < 0. An
increase in the retention rate makes it more likely thatL(~n) < L(0) and zero labor
is optimal. The maximum value we can select forx, and still have real-valued~n
and0 � Æ < 1, isx? (z; �) = min f1= [�z (2 + �z)] ; 1g.

If �z(2 + �z) > 1, then:

~n =
1

2 + �z
:

In this case:

G [x? (z; �) ; z; �] < 0 iff:

log

�
2 (1 + �z)

2 + �z

�
< �z log

�
2 + �z

1 + �z

�

To illustrate the possibility of zero labor being optimal, assume�z = 1. Then
G < 0 sincelog(4=3) < log(3=2).

The optimality of such a corner solution is more likely for larger values of
�, which implies a greater disutility of work, and for lower values ofÆ, which
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increases the usefulness of capital for storage.
Next, consider the case of diminishing returns to capital. Since the model no

longer admits a closed form solution, we take a stand on parameter values. The
parameters(�; �; Æ) =

�
2:0; 1:03�1=4; 0:02

�
match those chosen by CH. Whereas

CH choose� = 1, we set� = 1=3. We compute the optimal solution by discrete
discounted dynamic programming on a finite capital grid using value function
iteration.

Figure 17 plots the optimal policy functions for investment (next period capi-
tal), labor and consumption as a function of the current period capital stock. Note
the discontinuous drop in labor at approximately~k � 6:2. At low capital levels,
labor input is high in order to increase the capital stock, which increases the future
marginal product of labor. For sufficiently high levels of capitalk > ~k, however,
labor input is set equal to zero. Because of diminishing returns to capital, it is
costly in terms of labor effort to produce the output necessary to maintain a high
capital stock. Instead, the social planner halts production and allows the capital
stock to decline due to depreciation and the consumption of existing capital.

Next, note the associated discontinuity in the capital policy, which occurs at
the same capital level as the labor policy. Fork < ~k, the capital policy function
lies above the 45 degree line; hence, the social planner engages in net investment.
For any0 < k0 < ~k, in a finite number of periods the capital stock will leave the
(0; ~k) region for the first, but not the last time. Once the capital stock is greater
than~k, the capital policy function lies below the 45 degree line. Instead of net
investment, there is disinvestment. In this region, since labor is zero, any con-
sumption comes from undepreciated capital. For this reason as well as standard
depreciation, the capital stock falls. High levels of the capital stock are expensive
to maintain in terms of labor effort and the social planner finds it optimal to shut
down production and consume part of the capital stock. Eventually, the capital
stock falls enough to return to the(0; ~k) region.

The optimal capital policy exhibits endogenous cycles with periods of positive
net investment and high labor input, each of which is followed by declining capital
and zero labor. These cycles are displayed in figure 18 below. The policy of
production bunching in the presence of increasing returns to labor is intuitive:
intense labor supply—when the marginal product of labor is high—is followed by
a period of labor inactivity, as is the case in Murphy, Shleifer and Vishny (1989).
There are other, slight discontinuities in the capital policy function besides that at
k = ~k, although they are more difficult to see.

The consumption plan associated with the optimal investment and labor poli-
cies requires that the planner eats part of the existing capital stock. The optimal

72



allocation involving labor cycles requires the household to consume out of the
undepreciated capital stock in periods where labor equals zero. This, in turn, re-
quires that the household transform capital back into consumption goods. That is,
investment must be reversible. If investment were irreversible, by contrast, zero
labor would not be optimal because consumption would be zero (and marginal
utility infinite) in those periods. One interpretation for this reversibility is that the
capital stock includes final goods inventories, as well as equipment and structures.
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Figure 16: FunctionL(n) for various parameter combinations. The dashed hori-
zontal lines giveL(0) for each parameter combination.
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