
Avoiding Nash Inflation
Bayesian and Robust Responses to Model Uncertainty

Robert Tetlow*and Peter von zur Muehlen
Federal Reserve Board
Washington, DC 20551

revised draft : April 2003

We examine learning, model misspecification, and robust policy responses to misspecification in a
quasi-real-time environment. The laboratory for the analysis is the Sargent (1999) explanation for
the origins of inflation in the 1970s and the subsequent disinflation. Three robust policy rules are
derived that differ according to the extent that misspecification is taken as a parametric phenome-
non. These responses to drifting estimated parameters and apparent misspecification are com-
pared to the certainty-equivalent case studied by Sargent. We find gains from utilizing robust
approaches to monetary policy design, but only when the approach to robustness is carefully tai-
lored to the problem at hand. In the least parametric approach, the medicine of robust control
turns out to be too potent for the disease of misspecification. In the most parametric approach, the
response to misspecification is too weak and too misdirected to be of help. But when the robust
approach to policy is narrowly directed in the correct location, it can avoid Nash inflation and
improve social welfare. It follows that agnosticism regarding the sources of misspecification has
its pitfalls. We also find that Sargent’s story for the rise of inflation of the 1970s and its subsequent
decline in the 1980s is robust to most ways of relaxing a strong assumption in the original work.

Keywords: uncertainty, Knightian uncertainty, robust control, learning, monetary policy.

JEL codes: C6, C8.
* Corresponding author. Robert.J.Tetlow@frb.gov, telephone: (202) 452-2437, facsimile: (202) 452-5297.
The authors thank Jagjit Chada, Tim Cogley, George Evans, Sean Holly, Seppo Honkapohja, Ken Kasa, Ben McCal-
lum, Joe Pearlman, Mark Salmon and Tom Sargent for useful suggestions and encouragement. We also thank partici-
pants of “Workshop on Robustness”, April 2003 at the Federal Reserve Bank of Cleveland, a 2003 AEA session in
Washington, D.C., the conference on “Policy Rules: the next steps” at University of Cambridge, U.K., September
2002, and a Society for Computational Economics conference. All remaining errors are ours. The views expressed
herein are those of the authors alone and are not necessarily shared by the Board of Governors or its staff.



1

1. Introduction:

1. Introduction:

In practice, it is the joining of ideas and data that drives policy in the face of
uncertainty. We seek to array the probabilities of future policy outcomes, attempt
to gauge the costs of being wrong in our decisions, and endeavor to choose the
policy paths that appear to offer greater benefits and fewer risks...In practice, we
continuously monitor [the] data to test the capability of any specific model.
...When we experience outcomes that do not square with what our models have
projected, we form new hypotheses and reconstruct the models to more closely
conform with our observations.

-- Alan Greenspan (2000), pp. 162-3.

It has long been recognized that the design of monetary policy is beset by uncertainties. As

the words of the Chairman of the Federal Reserve indicate, there are two ingredients to the suc-

cessful management of those uncertainties. The first, as epitomized by the second part of the quo-

tation, has to do with adaptation of the central bank’s model in response to the flow of data; that is,

learning on the part of the central bank. The second, alluded to in the first part of the quotation,

relates to policy design in the face of this evolving view on the economy and ever-present uncer-

tainty that underlies this evolution. Both ingredients are critical.

This paper considers the design of monetary policy under uncertainty. Specifically, we use

a simple model to jointly consider three things: learning by the monetary authority; model mis-

specification; and robust policies to counter the misspecification problems. To the best of our

knowledge, this is the first paper to simultaneously consider these crucial elements of real-world

policy design.

Our laboratory for this study is a very simple model studied in Sargent’s (1999) mono-

graphThe Conquest of American Inflation, and then by Choet al. (2002), Williams (2003) and

Gerali and Lippi (2001). We re-examine Sargent’s explanation for the inflation of the 1970s in the

United States and the subsequent disinflation. According to Sargent, the rise of inflation in the

1970s and the subsequent fall in the early 1980s owes to bad inferences from the data. Central

banks in general, and the Fed in particular, induced cycles in inflation because they were using the

wrong model. And they used the wrong model because they incorrectly inferred structural param-

eters from reduced-form estimates.1 This bad inference theory of inflation dynamics predicts that

1. An alternative theory is the so-called “bad luck theory” that prevailed in the 1970s. This view says that
some bad shocks raised the inflation rate and also made disinflation unattractive to policy makers. The view
lingers today: former Fed Vice-Chair Alan Blinder describes a variant of this view in his 1987 book. See De
Long (1997) for a discourse on this subject and related themes.
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the conquest of inflation in the United States is ephemeral; we are destined to relive the bad old

days of the 1970s.2 The Sargent model is ideal for our purposes for a number of reasons. First, it

is simple enough to render some analytical results. Second, it has been studied before rendering us

a foundation of knowledge upon which to build. Third, it provides a real-world but simple charac-

terization of uncertainty and misspecification over time. Some papers evaluate the efficacy of var-

ious policies by exogenously specifying alternative true worlds, as in the rival-models

methodology employed by Levinet al. (1999, 2001).3 Others treat the misspecification as an

abstract phenomenon as is typically done in robust control literature.4 In this paper, we fully char-

acterize the misspecification and its evolution as a part of the model.

The basic result is constructed in two steps. First, a hypothetical policymaker estimates a

model of the economy using the latest available data, updating parameter estimates quarter-by-

quarter. To do the estimation, the policymaker is assumed to use a constant-gain algorithm,

described below, that allows for time variation in model coefficients. In employing constant-gain

learning, the policy maker is embracing the second part of the Greenspan credo, noted at the out-

set, to adapt his or her view in response to surprises. Second, the estimated parameters are taken

as given and the optimal policy is designed and carried out. Repeating these steps, over and over,

results in episodic inflations—reaching what is called the Nash equilibrium—followed by

“escapes” to lower inflation—the Ramsey equilibrium. This arises because at the low-inflation

Ramsey equilibrium, the reduced-form estimates of the Lucas supply curve show favorable trade-

offs for unemployment relative to inflation. Based on this inference, the authority engenders infla-

tion surprises. But the surprises bring about an increase in inflation—and more generally a change

in the time-series pattern of inflation—so that the favorable trade-off eventually disappears, and

the Nash equilibrium obtains once again.5 Eventually, a sequence of shocks arise that convince

2. See also DeLong (1997), Taylor (1997, 1998) and Cho, Williams and Sargent (2002) for arguments along
these lines.
3. In the rival models framework, two or more models are considered simultaneously, one is taken to be the
correct model, but no one knows which one. A policy is chosen that performs well in all of the candidate
models, using any of a number of criteria.
4. See,e.g., Hansen and Sargent (1995, 2003), Giannoni (2001, 2002), Tetlow and von zur Muehlen (2001b),
Choet al. (2002) and Kasa (2002), among others.
5. The classic references are Kydland and Prescott (1977) and Barro and Gordon (1983). Ireland (1999) pro-
vides a modern restatement and empirical assessment of the Barro-Gordon model. Along the same lines,
Christiano and Gust (2000) argue that expectations of high inflation will be ratified by subsequent policy
actions creating an “expectations trap”. Their story differs from the present paper on the reasons why the Fed
creates inflation: an expectations trap in their case and attempts to exploit a Phillips curve trade off in ours.
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the policy maker that a new economy has arisen; then, based on this erroneous inference, the pol-

icymaker disinflates, and the process begins anew.

The main result—episodic Nash inflations followed by disinflations to the Ramsey solu-

tion—is built up from two key assumptions in the set-up: first, the assumption of the constant-gain

estimation which acknowledges that from the authority’s perspective, the economy is subject to

drift in its structural parameters; and second, the assumption that notwithstanding this acknowl-

edgment, the policymaker takes the estimated parameters at each date as the truth, and bases pol-

icy decisions on these values. Observing that the latter assumption is at odds with the former, one

(narrow) way to look at the contribution of in this paper is that we relax the second assumption

that the authority takes estimated parameters as given. Instead, while we retain the use of the con-

stant-gain algorithm—or, equivalently, discounted recursive least squares—to update parameter

estimates, we assume that the policymaker takes seriously the uncertainty in the estimates of these

parameters. In so doing, we take on the first part of the Greenspan quotation noted above—to take

seriously the prospects of unfavorable outcomes and protect against them—in a way that previous

works in this strand of the literature have not.

We consider three different methods by which our policymaker might take uncertainty

seriously. The approaches differ according to the extent to which model uncertainty is taken as a

parametric phenomenon. The first of these methods, and the most parametric, isBayesian uncer-

tainty. Under the Bayesian approach to model uncertainty model parameters are assumed to have

known distributions, the means and variances of which vary over time, and these variances are

used to design policy.6 The seminal references in this literature include Brainard (1967), Chow

(1970) and Craine (1977). The second isstructured Knightian uncertainty where the uncertainty

is structured in the sense that it is located in one or more specific parameters of the model, but

where the true values of these parameters are known only to be bounded between minimum and

maximum conceivable values. Because the source of the misspecification is specified, but the

nature is not, structured Knightian uncertainty is less parametric than the Bayesian approach.

Among the expositors of this approach to model uncertainty are von zur Muehlen (1982), Gian-

noni (2001, 2002) and Svensson (2000).7 The third method isunstructured Knightian uncertainty

6. Consistent with the rest of the literature in this area, the sense in which we describe our policy as “Baye-
sian” is restricted. The literature takes Bayesian to mean that the authority uses statistical criteria to deter-
mine the extent to which estimated coefficients may be mismeasured and uses those criteria to adjust policy.
Not considered are Bayesian decision theoretic approaches, nor is “experimentation” to find the correct
specification as in Wieland (2003) for example.
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in which the model is assumed to be misspecified in some unstructured way leading to the formu-

lation of a game played by the central banker against a “malevolent nature”. This is the least para-

metric approach. References in this strand of the literature include Caravani (1995), Hansen and

Sargent (1995, 2002), Onatski and Stock (2002), Choet al. (2002) and Tetlow and von zur Mue-

hlen (2001b).8 We compare these potential solutions of the induction problem to the linear-qua-

dratic Gaussian control (or certainty equivalent) solution promulgated by the Tinbergen-Theil

tradition.

In considering policy responses to unstructured Knightian uncertainty, this part of the

paper takes one part of Sargent’s work and combines it with another. In so doing we are asking if

Sargent’s proposed solution to model misspecification alleviates Sargent’s induction problem,

itself a manifestation of model misspecification.9

We find that for plausible degrees of uncertainty, the Bayesian approach to uncertainty

does not materially differ from the performance of a policy of ignoring uncertainty altogether.

This result is of more than academic interest. The conduct of monetary policy under uncertainty

has become a subject of active interest, both in the academic literature, and perhaps more impor-

tantly within central banks. Besides the Fed, the European Central Bank, the Bank of England, the

Bank of Canada, Sveriges Riksbank (Sweden), the Reserve Bank of Australia, and the Reserve

Bank of New Zealand have all released working papers assessing the Bayesian approach to model

uncertainty.10 At the risk of overgeneralizing the findings, these papers generally concur with

7. There is also another, different notion of structured model uncertainty in the sense of Knight. It differs
from the method used here in that the authority is assumed to choose a policy rule that maximizes the set of
models for which the economy is stable. See Onatski and Stock (2002) and Tetlow and von zur Muehlen
(2001b).
8. Each of the senses in which our policymaker takes uncertainty seriously is based on the authority’s igno-
rance of a structurally time-invariant model. Uncertainty can also be considered from “the other side” by
considering the private sector’s ignorance of the policy rule. Tetlow and von zur Muehlen (2001a) look at
how the private sector’s need to learn Taylor-type rules might affect the choice of the rule. Closer to the
spirit of this paper, Bullard and Cho (2001) use the canonical New Keynesian macromodel to show that
some Taylor-type rules that would be well-behaved in a world of full information allow liquidity traps to
arise when private agents’ expectations are based on a misspecified model.
9. That is, we take Hansen and Sargent’s (1995) tools to Sargent’s (1999) problem. In point of fact, however,
Sargent (1999, p. 7) ascribes the particular induction problem studied here to Edmund Phelps.
10. A sampling of central bank papers on Bayesian uncertainty, in various forms, and its implications for
monetary policy include Hallet al. (1999), Martin (1999) at the Bank of England, Schellenkens (1999) and
Smets (2000) at the ECB, Shuetrim and Thompson (2000) at the Reserve Bank of Australia, Drew and Hunt
(1999) at the Reserve Bank of New Zealand, Söderström (2000) at Sveriges Riksbank, and Srour (1999) at
the Bank of Canada. Papers out of the Federal Reserve System in the United States have been legion, includ-
ing Sack (2000), Rudebusch (2001), Orphanideset al. (2000) and Tetlow (2003).
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former Fed Vice-Chairman Alan Blinder’s (1998) assessment that central banks should “compute

the direction and magnitude of [the] optimal policy move...then do less.”11

While the Bayesian approach to uncertainty furnishes few benefits, we find that the

Knightian approach to model uncertainty can do even worse, depending in part on the technique

employed and the degree of uncertainty aversion. A policymaker applying the tools of unstruc-

tured Knightian uncertainty exacerbates the cycles of Nash inflation followed by escapes that the

certainty-equivalent policy maker naively induces. For structured Knightian uncertainty, however,

some parameterizations allow an improvement in performance relative to the certainty equivalent

policy. Taken together, these results suggest that to be assured of an improvement in policy perfor-

mance the policy maker needs to have some idea of the origins of his or her specification problem.

Taking the error as a mere matter of sampling error is no help, but treating the error as utterly

mysterious is also unhelpful. An approach that is focussed with regard to the sources of misspeci-

fication, but non-parametric on its nature, fares best.

Several papers, most notably Sargent and Williams (2003), examine the implications of

different learning mechanisms and prior beliefs for the mean dynamics of inflation and the pattern

of escapes either in this model or models much like it. Among the contributions of this paper is

that it holds the learning aspect of the issue constant and addresses robust responses to the time

variation in parameters. It is the first paper of which we are aware that considers the control of a

misspecified model while putting up the plausible candidate methods for dealing with misspecifi-

cation in a horse race. It is also the first paper to consider robust control together with aspects of

learning and does so in a quasi-real-time environment. Finally, it relaxes a key assumption in the

original Sargent (1999) monograph. The rest of the paper proceeds as follows. Immediately fol-

lowing this Introduction, we introduce the very simple model used in Sargent (1999) and review

the methodology used there and here, to model escape dynamics from Nash equilibria. Section 3

provides a primer on Bayesian and robust control and applies it to this very simple example and

presents our results. A fourth section sums up and concludes.

11. The quotation, from page 11 of Blinder (1998) is actually the former Fed Vice-Chairman’s characteriza-
tion of the lesson of Brainard, although he writes approvingly of it. Blinder’s own methodology was to “use
a wide variety of models and don’t ever trust any one of them too much...[and to] simulate a policy on as
many models as possible, throw out the outlier(s), and average the rest” (p. 12). In endnote 11 he notes that
the optimal information-weighting procedure would require the use of a variance-covariance matrix. This is
an example of the Bayesian approach to model uncertainty. As discussed below, robust control methods
accept the first part of Blinder quotation—the part before the ellipses—but reject the second.
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In his 1999 monographThe Conquest of American Inflation, Thomas Sargent showed how

the induction problem a policymaker faces can result in recurring bouts of inflation outbreaks, fol-

lowed by disinflations. The induction problem is the situation the policymaker faces when he or

she (wrongly) infers structural parameters from reduced-form estimates. Sargent’s application,

and the subsequent work by Choet al. (2002), Williams (2003) and Gerali and Lippi (2001) is

based on the Phillips curve trade-off and follows in the line of research that begins with Lucas

(1972) and Sargent (1971), culminating in Lucas’s critique (1976).

In Sargent (1999), the policymaker commits two related errors. First, while the policy-

maker allows for the possibility that the coefficients of the Phillips curve (or the Lucas supply

curve) may evolve over time, no allowance is made for such time variation to influence the way

policy is formulated. If this were the only error, however, the solution might simply be a matter of

using constant-term adjustments, or time-varying coefficients models to correct the problem. The

second problem—the one emphasized in Lucas (1976)—is that the policymaker does not under-

stand his or her own role, as a part of the data generating process, in determining the evolution of

the reduced-form parameters. In this paper, we relax the first of these assumptions. In this section,

we lay out the simplest of the models that Sargent (1999) studies, the nature of the induction prob-

lem, and the updating procedure that the policymaker is assumed to use to gather information and

make inferences.

2.1 the true model:

Sargent (1999) studies several models. Here we restrict our attention to the simplest—the

static version of the classical Phillips curve—since doing so allows us to generate some results

analytically. It is also the model that is closest in spirit to the pioneering work in Lucas (1972).

Lastly, it has the advantage of keeping the notation simple; it allows us to eschew the use of time

subscripts except where time variation in beliefs makes it necessary. The models consists of just

two equations, a Lucas supply curve, and a crude policy reaction function:

(1)

(2)

where  and  are the unemployment and inflation rates, respectively;  is the mathematical

U U∗ θ π Eπ–( )– υ1+=

Eπ π̂ υ2+=

U π Eπ
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expectation of inflation, conditional on information available at the end of periodt-1, and  is the

target rate of inflation set by the central bank. Rational expectations mean that: . In this

simple model,  is taken as a control variable, and so equation (2) can be interpreted as a policy

rule with a control error.

2.2 policy objectives:

Following Sargent (1999), the periodic loss function to be minimized is assumed to be

quadratic in unemployment and inflation with the parameter  measuring the disutility of unem-

ployment relative to inflation:

(3)

This loss function should be thought of as theex post loss that the authority uses to compute the

performance of a given strategy. In some circumstances, the authority will choose policiesex ante

based on criteria that include uncertainty aversion, as discussed below. After the fact, however,

performance will be measured by equation (3).

2.3 Equilibrium concepts:

By substituting equation (1) into equation (3), we can solve for the central bank’s payoff

function:

(4)

Minimization of (4) by the choice of  yields the best-response function:

(5)

A rational-expectations equilibrium (REE) is a set of arguments,  that satisfies the struc-

tural model given by equation (1), and the rational expectations restriction that subjective and

objective expectations coincide: . Note that the rational-expectations restriction can also

be thought of as the best-response function of the collective of atomistic private agents. ANash

equilibrium (NE) is a pair of arguments,  that lies on the best-response function of both the

central bank and private agents. That is, it satisfies  and . The presence of

 as an argument to the NE reflects the fact that in computing the NE, the policymaker takes

private-sector inflation expectations as given. Given equation (5), the NE for this economy is:

π̂

Eπ π=

π̂

λ

L
1
2
---E λU

2 π2
+[ ]=

r π Eπ,( ) 1
2
--- λ U∗ θ π Eπ–( )–( )2 π2

+[ ]=

π

π̂ λθ

1 λθ2
+

------------------U∗ λθ2

1 λθ2
+

------------------Eπ+ B Eπ( )≡=

U π Eπ, ,

Eπ π=

π Eπ,

π̂ B Eπ( )= Eπ π̂=

Eπ
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(6)

Equation (6) shows that inflation varies positively with the distaste of unemployment in the

authority’s loss function, the slope of the Lucas supply curve, and the natural rate of unemploy-

ment.

TheRamsey equilibrium (RE) differs from the Nash equilibrium in that the central bank is

assumed to have the power to choose expected inflation, rather than taking it as given. This is

equivalent to saying the central bank has a commitment technology that allows it to deliver (up to

a random error), a given inflation rate for all time that is then ratified by agents’ expectations.12

Thus, the RE is defined by  and is the solution to the problem:

(7)

subject to . Substituting this condition into equation (7) and differentiating renders:

(8)

So in the presence of a commitment technology that would make the Ramsey equilibrium feasi-

ble, the policymaker would set the inflation rate to zero. By comparison, adopting as we do the

same calibration as Sargent (1999, chapter 7), , the Nash equilibrium

implies the setting of a positive inflation rate: .

3. Controlling an Uncertain Economy

Section 2 discussed the true data generating process for the economy and reviewed the

equilibrium concepts that define the full-information equilibria. In this section, we introduce our

departure from the full-information environment. We begin by specifying the perceived model of

the economy; that is, the econometric equation estimated by the monetary authority in the Tinber-

gen-Theil tradition. Then we discuss the method by which the authority updates his or her model

of the economy over time. Finally, we address our four models of control, beginning with the lin-

ear-quadratic Gaussian (LQG), or certainty equivalent case. From there, we study the Bayesian

prescription for parameter uncertainty: adjusting the LQG response for uncertainty as captured by

the standard error of parameter estimates. Then we study robust policy from the perspective of

12. One way to think of the Ramsey equilibrium as compared to the Nash equilibrium is from the perspec-
tive of game theory. The RE is the Stackelberg game counterpart to the Nash game.

π̂n λθU∗=

r π π,( )

π̂
argmin

π〈 〉= r π π,( )
argmin

π〈 〉
1
2
--- λ U∗ θ π Eπ–( )–( )2 π2

+[ ]=

Eπ π π̂= =

π̂r
0=

U∗ λ θ, ,{ } 5 1 1, ,{ }=

π̂n
5=
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structured and unstructured model uncertainty. In each subsection, we characterize the authority’s

decision rule and compute the paths for inflation and the rule parameters.

3.1 the perceived model:

Let the central bank’s perceived model be:

(9)

where  is a random error, taken to be independently and identically distributed, and  is a dis-

tortion representing possible specification errors. When designing robust policy,  is taken as the

instrument of a hostile opponent (nature) in a Stackelberg game, as we shall outline a bit later. In

the special case where , and the estimated parameters are taken as if they were known, pol-

icy is certainty equivalent. To this point, the presence of  is the only discrepancy from the envi-

ronment that Sargent describes. The policymaker chooses a set of feedback coefficients, , of the

perceived model’s parameters to guide policy:

(10)

where, in general, . Simply put, our policymaker runs a regression, of a particular

type to be discussed below, to extract regression coefficients, , , and then uses these

estimates to formulate policy. If the policymaker knows the true parameters of the model, the cer-

tainty-equivalent (linear-quadratic Gaussian, or LQG) policy corresponds with the (discretionary)

Nash equilibrium. The question is whether the authority’s ignorance of his or her own role in gen-

erating misspecifications is sufficient for any or all of the approaches for responding to uncer-

tainty to dominate the LQG criteria. Sargent (1999) assesses the LQG criteria for controlling the

economy, effectively ignoring the model uncertainty that using the constant-gain algorithm for

updating coefficient estimates explicitly admits. We relax this restriction. The ways in which we

do this, and the results we obtain, are studied in the next section.

3.2 discounted recursive least squares:

As in Sargent (1999), we assume that the policymaker updates estimates of the economy

on a period-by-period basis. If this were done using least squares, the gain from adding periods of

observations would be , which converges on zero as . This is sensible provided one

accepts that the true economy is time invariant. Under such circumstances, the first observation in

U γ0 γ1π ε ω+ + +=

ε ω

ω

ω 0=

ω

F

π̂ F γ0 γ1,( )Z=

Z 1 U,( )'=

γ i i 0 1,=

1 t⁄ t ∞→
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a time series is just as valuable for discerning the true parameters as the most-recent observation.

If, however, the policymaker wishes to entertain the possibility that the true model parameters

shift over time, he or she may wish to weight recent observations more heavily than distant ones.

This can be done by utilizing discounted recursive least squares, otherwise known as constant-

gain learning:

(11)

(12)

where ,  and  with  being a ‘forgetting factor’ measuring

the rate at which old information is discounted. Note that we now show time subscripts reflecting

the evolution, as perceived by the policymaker, of coefficients over time. Equations (11) and (12)

differ from recursive least squares only in that the gain associated with each new observation is

fixed at a constant, , instead of a variable that is strictly decreasing in time. In equation (11), the

vector  is thet-dated slice of the 2-by-t period vector time series of estimated model parame-

ters;  is the “precision matrix” as of date t (and a part of a 2-by-2-by-T vector time series); and

the term in parentheses is the observation error in the regression that the policymaker conducts. So

equation (11) says the change in the estimated parameters is a weighted function of the observa-

tion error. In equation (12), the precision matrix is shown to evolve according to a constant pro-

portion, , of the discrepancy between the variance-covariance matrix of observed regression

variables, , and the inherited precision. The constant gain has a natural Bayesian interpreta-

tion in that  can be thought of as the arrival rate of unobservable regime shifts.

In addition, for two of the cases we study below, we condition policy responses on esti-

mates of the standard error of parameter estimates. To facilitate this calculation in the (pseudo)

real-time environment we work with, we model the mean squared error, , and the 2-by-2 matrix

of standard errors, , in a fashion analogous to equations (11) and (12) above:

(13)

(14)

Equations (11) and (12) constitute a learning rule, but certainly not the only one that we

could have specified. Our choice of this particular one reflects our focus in this paper on the issue

γ t 1+ γ t gPt
1–
Xt Ut γ tXt–( )+=

Pt 1+ Pt g XtXt' Pt–( )+=

γ t γ0t γ1t '= Xt 1 πt= g 1 ρ–= ρ

g

γ t

Pt

g

XX'

g

M

σ

Mt 1+ Mt g Ut γ tXt–( )2
Mt–[ ]+=

σt 1+ Mt 1+ Pt 1+⁄=
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of control of the economy, taking as given a simple model of learning. It also reflects its prior use

by Sargent. A different approach would have been to address whether and how a misinformed

central banker might come to learn the true structure of the economy. However, since a part of

what we focus on presumes that the authority does not believe the true model is learnable, a

detailed investigation of learning models would be a sizable digression for this paper.

With the true economy specified by equations (1) and (2), and the most general specifica-

tion of the estimated economy being equation (9), the system can be set in motion, drawing

shocks, , generating observed variables, , from which regression

coefficients  are derived. Then, based on the estimated coefficients, the authority

chooses a response function.

3.3 the optimal certainty-equivalent rule

With LQG optimization, we can write the Lagrangian for the authority’s problem as:13

(15)

where we note that the policymaker has taken , in equation (9), to be zero. The problem yields

the following first-order conditions:

(16)

(17)

from which we can write the target rate of inflation as:

(18)

where the second equality comes from substituting in equation (9) with . Note that the

first equality is the same as for the Nash equilibrium--when . In the true economy, agents

take the authority’s inflation target as given and, basing inflation expectations on that target, react

accordingly. Substituting  into equation (1), the implied paths of unemployment and inflation

are:

(19)

13. Once again, we elect to suppress the time subscripts and the evolution of beliefs in recognition that the
policymaker takes the evolution of the estimated parameters as a random process.

υ υ1t υ2t= X Ut πt=

γ γ0t γ1t=

min
π〈 〉

1
2
--- λU

2 π2
+[ ] φ U γ0 γ1π––[ ]+

ωt

π γ1φ– 0=

λU φ+ 0=

π̂ce λγ1U– λγ0– γ1 1 λγ1+
2( )⁄= =

Eε 0=

γ1 θ–=

π̂ce

πt λ– γ0tγ1t 1 λγ1t
2

+( )⁄ υ2t+=
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(20)

With, , also taken from Sargent (1999), equations (19) and (20) become the

(true) data-generating process from which the policymaker re-estimates parameters

through time.

A stochastic simulation of the system under constant-gain learning with  is

shown in Figure 1. As Sargent (1999), Choet al. (2002), Kasa (2003), and Williams (2003) have

shown, when the policymaker uses a constant-gain algorithm, like the discounted recursive least

squares algorithm used here, the model generates escape dynamics wherein the economy will tend

towards the Nash equilibrium, so long as the perceived trade-off between inflation and unemploy-

ment is regarded as favorable; that is, when . Under such conditions, the

policymaker, taking  as predetermined, can produce large decreases in unemployment for a

monetary surprise of a given size. The ultimate result, however, is to raise the inherited inflation

rate each period until it is high enough that the marginal benefits of inflation surprises are no

longer larger than the costs. This is the Nash equilibrium. As is well known, under least-squares

learning, the Nash equilibrium is self-fulfilling, meaning that there is no tendency for the mone-

tary authority to doubt its beliefs of the structure of the economy in the presence of stochastic

shocks. Under constant-gain learning, however, the Nash equilibrium is not sustainable.

Once the Nash equilibrium is obtained, a sequence of shocks eventually arises that makes

it worthwhile for the authority to disinflate—to “escape” from the Nash equilibrium. During the

course of an escape, the perceived slope falls, in absolute terms, from its Nash equilibrium level of

minus one, to nearly zero. Given this new-found belief, the optimal policy is to set inflation near

zero: This is the Ramsey equilibrium. In the neighborhood of the Ramsey equilibrium—that is,

when —the authority believes in a (distorted) version of the natural rate hypothesis,

accepts that there is no trade-off between inflation and unemployment, and therefore does not try

to produce inflation surprises. However once the Phillips curve becomes vertical, the random dis-

turbances lead the authority to back to the Nash equilibrium.

Ut Ut
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In fact, the economy rarely gets close to its Nash equilibrium before a chance sequence of

shocks combines with the perceived steepness of the supply curve to induce a disinflationary epi-

sode. The precise timing of escapes from Nash inflation depends on the sequence of shocks. Cho

et al. (2002) and Williams (2003) discuss the necessary conditions in some detail. Nonetheless,

the pattern described in the text is clear: recurring episodes of rising inflation, reaching near the

Nash equilibrium, followed by discrete disinflations; and then the process begins anew.

3.4 the optimal Bayesian rule

As argued above, discounted learning is based on the notion that parameters vary over

time. Yet the LQG policymaker ignores this idea when setting the policy response. The Sargent

characterization of policymaking seems contradictory in this sense. One possible response to the

parameter variation shown in Figure 1 is to take it as a purely statistical phenomenon, much like

Blinder (1998), following Brainard (1967), has advocated.14 In present circumstances, this

amounts to respecifying the loss function as follows:

= (21)

= (22)

where we have assumed that the error terms,  and  are independent, and as before, .

Let  represent the matrix of standard errors associated with the estimated , and  repre-

sent an uncertainty aversion parameter, of sorts. If , the authority lets its uncertainty aver-

sion be represented simply by , and the response to parameter uncertainty is determined in the

familiar way. Purely for demonstrative purposes however, we allow the authority to consider

adopting a  which can be thought of as representing a distrust of the estimated model that

exceeds that which would be determined by unquestioned econometric criteria alone; this distrust,

14. Cogley and Sargent (2001) in a thorough and interesting paper use Bayesian econometrics to address the
drift in estimated coefficients over time that the Fed would observe and the consequent likelihood of “forget-
ting the natural rate hypothesis”. Their paper differs in many ways from ours. One is that drifting parameters
are assumed to follow a random walk in their paper whereas here they evolve according to the specification
error and subsequent policy errors the policy maker commits. More generally, they do not consider robust
policies in response to parameter drift. One way to think about how the Bayesian control case here differs
from standard work is that the dynamics of misspecification here generate time variation in coefficients that
violate the usual assumption in Bayesian analysis that coefficients follow a random walk. We are grateful to
Tim Cogley for pointing this fact out to us.
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however, manifests itself in the usual Bayesian way in that it is intimately connected to the preci-

sion of estimated parameters over time. With this in mind, the first-order condition for this prob-

lem can then be written as:

(23)

which implies that the policymaker’s optimal inflation target is:

(24)

In equation (24), the inflation target for the Bayesian policymaker differs from the LQG policy in

equation (18) only in the presence of , and the terms in , which will vary over time. So the dif-

ference over time in the performance of the economy under the two policies (holding constant the

sequence of shocks to which the economy is subjected) is in the matrix, , and the associated dif-

ferences in the vector, . A value of  accentuates whatever effect that  might have.

The effect of  is attenuating in its implications for policy: that is, relative to the LQG or cer-

tainty equivalent policy, it reduces the target inflation rate, all else equal. The effect of

could be attenuating, or anti-attenuating. Moreover, it is also worth recalling that generally

. It follows that the Bayesian policy could call for policy that is more, or less, aggressive

than the CE policy.

In fact, using the same parameters and the same sequence of random shocks as in Figure 1,

and setting , the performance of the economy under the control of the Bayesian policy-

maker differs only marginally from that of the LQG policy, as shown in Figure 2a. The Bayesian

policy supports Nash and Ramsey equilibria with about the same inflation rates as in the LQG

case, although there is one fewer escape than in the LQG case. The facts are that despite the mis-

specification of the model, the time variation in the estimated parameters is insufficient to induce

a substantial alteration the designated policy. In this model, the t-statistic associated with the

intercept is high. However, equation (24) indicates that it is the precision of the slope coefficient

that matters. In fact, the absolute t-statistic on  is generally low, particularly in the neighbor-

hood of the Ramsey equilibrium. So the Bayesian response to this imprecision is not substantial

despite the fact that the estimate of the key slope parameter is not a good one. Blinder’s advocacy

of the Brainard principle notwithstanding, a straight-forward application of the Bayesian

approach to model uncertainty offers no solution to the problem studied here.
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It is worth emphasizing that this result obtains despite the use of constant-gain learning.

By shortening the effective horizon over which the standard errors are computed, shown in equa-

tions (12), (13) and (14), constant-gain learning has a tendency to blow up standard errors from

what they would be under least-squares learning. Thus, even with , we are allowing some

policymaker skepticism creep into his or her decision making, to little avail.

There are at least some hints of this result in the literature. It is primarily in papers that

work with artificial examples, such as Brainard’s original 1967 paper, and more recently Söder-

ström (1999) that uncertainty in the Bayesian sense has appeared to matter. In papers that employ

real-world examples such as the attempts by Sack (2000) and Rudebusch (2001) to explain the

observed “timidity” of U.S. monetary policy, uncertainty has been insufficient as an explana-

tion.15

Now suppose the authority behaved as if the estimated standard errors were much higher;

in particular, suppose it set , which is arguably a substantial degree of uncertainty aver-

sion. Figure 2b shows that when a Bayesian policymaker controls the economy in this way, the

same general pattern emerges: Nash and Ramsey equilibria are about the same as in the LQG, but

the escapes from the Nash equilibria are even less frequent than before. In fact, there is just one

escape during the period shown in the figure. However, while the reduction in the number of

escapes avoids some cycling in the economy, it does so at the cost of keeping inflation at the

higher Nash rate of five percent for longer periods; as such, welfare is actually lower under the

Bayesian response to model uncertainty than it is under LQG, as we shall discuss later on.

15. It has been suggested to us that a Bayesian policymaker that engages in optimal experimentation might
turn in a better performance than what is suggested here. We do not undertake this line of enquiry here for
four reasons. First, it takes us away from our main concern which is robust policy making and diverts it to
the important but separate issue of learning. (Tetlow and von zur Muehlen (2003) take up certain issues
involving the choice of learning mechanisms.) Second, considering experimentation by the Bayesian policy-
maker would eliminate the “fair fight” aspect of the current comparison by giving the Bayesian an advantage
over the alternatives. Third, Beck and Wieland (2002) show in a model not very different from ours that it is
not optimal for an authority to do experimentation. The reason is that in a world where the time-inconsis-
tency problem is at work the cost of experimentation in an economy is higher than the benefit of a greater
flow of information owing to the distortion. And fourth, we know by the nature of the misspecification prob-
lem here that it is not a deficiency of statistical information that underlines the problem.

ψ 1=

ψ 5=
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Figure 2b
Response to Bayesian Parameter Risk
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3.5 robust policy I: unstructured model uncertainty

In this subsection and the next one, we consider a policymaker that takes a more jaundiced

view of the specification of the model. In particular, the authority is now assumed to behave as if

the model were misspecified in an imprecise way. In the present subsection, we considerunstruc-

tured model uncertainty, where the authority is assumed to have areference model that is approx-

imately correct, but faces local Knightian uncertainty the model’s specification, the location of

which is unspecified. The difference from the Bayesian concept of parameter uncertainty dis-

cussed in the previous subsection is three fold: First, in this subsection, the authority is assumed

not to have a prior on the location of the model’s possible misspecification; it could be misspeci-

fied parameters, shock processes, or a missing non-linearity. Second, because the authority

accepts that its problem stems from misspecification, as opposed to sampling error, no standard

error is assigned to the uncertainty. The best the policymaker can do is to specify a neighborhood

within which the uncertainty is assumed to lie. Third, having defined a set of models within which

the true model is believed to exist, the policymaker is assumed to conduct policy to minimize the

worst-case outcome within that set. That is, the authority solves a minimax problem. Sworder

(1965) and Gilboa and Schmeidler (1989) show how Knightian uncertainty leads to a minimax

specification for decision making. Utilizing a minimax criterion ensures that the authority has

chosen a rule that will perform adequately for any model within the allowable set. An alternative

but equivalent way of thinking about unstructured model uncertainty in relation to Bayesian

parameter uncertainty is that the former is as non-parametric as is feasible while the latter is para-

metric.

It is important to recognize that the set of allowable models need not be large and need not

include wildly improbable models. Provided that the range of models contained within the allow-

able set is “reasonable”, there is nothing paranoid in the authority’s response to model uncer-

tainty.16 This is not the only way in which one can specify model uncertainty in the sense of

Knight. In the next subsection, we shall specify another, more structured notion of Knightian

uncertainty, where the assumption that the location of model misspecification is unknown is

dropped. That is, we will grant the authority knowledge of the location of the misspecification,

but not enough about its nature to assign probabilities to model parameters.

16. In fact, von zur Muehlen (1982) shows that for a linear model, the minimax solution to structured
Knightian uncertainty is the same response one would obtain for a uniform distribution of parameters. Under
either assumption, the only relevant cases are the boundary values for the parameters.
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Without a location for the uncertainty, all specification errors appear to our authority as a

vector of residuals. As Hansen and Sargent (1995, 2002) have argued, this results quite naturally

in the policymaker acting as though he or she were the leader in a two-player Stackelberg game

played against a “malevolent nature”. The idea is that the misspecification is of unknown origin,

but it will show up as outsized and deleterious residuals just when the policymaker attempts to

exploit the model, conditional on the estimated parameters, to achieve policy objectives. The

authority is best able to avoid disappointment by acting as though nature gets to choose a

sequence of shocks to maximizethe policymaker’s loss, within some bounds, after the policy-

maker has chosen a policy rule. It follows that the policymaker will choose the rule for which the

maximum loss that can be inflicted by nature is at its minimum. Getting beyond the Stackelberg

game metaphor, what this set-up does is ensure that the chosen rule is optimal for the complete

class of models in the allowable set.

In terms of equation (9), robustness against unstructured model uncertainty is invoked by

activating the expectations distortion variable—that is, the “residual,” . The assumption that

the reference model is taken only to be an approximation of the truth is captured by an added con-

straint, equation (25) below, on what would otherwise be the standard LQG problem of the mini-

mization of equation (15):

(25)

A small value for  reflects an assumption on the part of the authority that the approximation of

the reference model is a close one. We use Hansen and Sargent (2002) as a guide to specify the

following multiplier game:

(26)

where  is the Lagrange multiplier associated with the constraint imposed on optimization by

nature’s attempt to do damage to our policymaker’s plans. In the game laid out in equation (26),

the value of  is, in some sense, a choice parameter, reflecting the extent to which the authority

wishes to protect against uncertain damage.17 Hansen and Sargent refer to  as a preference for

robustness. Nature’s influence on welfare is more limited as ; when  the authority

chooses not to protect against model uncertainty (or equivalently there is noex ante model uncer-

tainty). As  falls, the authority’s preference for robustness is increasing and consequently

nature’s influence on policy is rising. When  reaches , policy is at its most uncertainty aver-
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sive; this is the  solution; see, e.g., Whittle (1990, pp. 207-13), Caravani (1995). Thus, the

value  in this problem of unstructured model uncertainty plays a role comparable to that of the

extreme bounds in the structured model uncertainty problem of the previous subsection. There is

also a connection between unstructured model uncertainty and the Bayesian approach to uncer-

tainty covered in subsection 3.4. Adam (2002) shows that the  problem can be thought of as

the selection of an objective function wherein the choice of the optimal Bayesian decision rule is

invariant to any non-degenerative set of priors over the models in the allowable set. That is, the

 rule is the optimal Bayesian rule in a world where priors are unknown and there are no well-

defined priors over the priors.

Substituting for  using equation (9), the first-order conditions with respect to  and

are:

(27)

(28)

Equation (28) clearly shows that the magnitude of  matters in determining the outcome, and

since  determines , it matters for equation (27) as well.

Satisfaction of the second-order condition for equation (28) requires . When

, the loss function is affine with respect to , meaning there is no uncertainty aversion.

Were  permitted to be less than , this would be tantamount to assuming the policymaker is an

uncertainty seeker, in which case nature would always choose  guaranteeing the maxi-

mum possible loss to the authority. Thus the minimum value for  is —that is, the  solu-

tion—plus a small increment. When  gets large, the solution approaches the LQG solution as we

shall presently show.

Solving the first-order conditions for  and , and using theu superscript to note solution

values for the unstructured model uncertainty problem, we have:

17. We say in the text that  is a choice parameter “in some sense” because there is the delicate, almost exis-
tential issue of whether one can choose how much to hedge against model misspecification of a given mag-
nitude, or whether that parameter is given by tastes. Formally, the “choice” of  is directly determined by
the magnitude of uncertainty, . This is easy to see in the present example: Solve equation (28)for  and set

, this being nature’s best choice when . This gives . Looking at this, we
can see that as ,  and when , . This implies a direct relationship between and in
this sense, the two are inextricable.
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(29)

(30)

Notice that as the penalty on nature’s control, , rises towards infinity,  approaches zero, and

 which is the certainty equivalent solution. Conversely, as ,

approaches  from below and .18

When the policymaker has doubts about the veracity of the reference model, inflation will

be higher than in the certainty equivalent case (holding constant ):

(31)

It is easy to show that Ramsey equilibrium remains at zero and equation (31) implies that the

Nash inflation rate will be higher than its counterpart under the certainty equivalent policy, all else

equal. If could assume that the , we would have no need to run the simulation; we would

know a priori that unstructured robust policymaking produces more volatility and higher average

rates of inflation than the certainty equivalent policy. However, feedback of policy to subsequent

estimates of  means that in general .

The preceding has shown how unstructured model uncertainty, and the policymaker’s

aversion to it, can be modeled as a two-player game, and equivalently as a multiplier problem with

the weight on the multiplier representing the authority’s aversion to uncertainty. With this in

mind, in Figures 3a and 3b, we show the dynamic solutions for our model economy with two dif-

ferent settings for : —which is close to the  solution, the most highly uncer-

tainty-averse solution that is feasible—and  which is somewhat uncertainty aversive.

Figure 3a exhibits extreme swings in inflation. The dependence of inflation on the value of

, shown analytically in equation (29), is dramatically demonstrated by the heights reached at

various periods in the upper panel of the figure. At the same time, escapes to lower inflation rates

18. Note that the self-confirming equilibrium--that is, the equilibrium at which the authority would not con-
clude that his or her working model of the economy is misspecified--is, for the unstructured robust control-
ler:  which becomes the NE as . By contrast, as  (from above)
the solution converges on the solution. With  and ,  when  (the NE and LQG
solutions), while  when  (the  solution).
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are legion. Thus, the policymaker avoids Nash inflation by inducing frequent escapes, but at the

cost of periods of even higher inflation and considerable volatility. The solution clearly shows that

in comparison to Figure 1, (approximately)  control—the most extreme conception of uncer-

tainty aversion—is an excessive response to the model uncertainty that is generated by the mone-

tary authority’s not understanding his or her own role in the data generating process. Figure 3b,

however, is more similar to Figure 1. For example, over the 4,000 periods shown, Figure 3b shows

seven escapes from the Nash equilibrium. The Ramsey inflation rate remains at zero implying that

robust control of unstructured model uncertainty results in larger swings in inflation than under

LQG control, even when the preference for robustness is relatively mild. As we should expect

from equation (29), the inflation rate at the Nash equilibrium is higher than in the LQG case, but

lower than in the case, because it varies positively with the policy maker’s preference for

robustness. A lower value of  also tends to accelerate the dynamics of escapes for precisely the

same reason: As suggested by Williams (2003), a higher preference for robustness leads to a more

reactive response of inflation to revisions in , speeding the progress toward the Nash equilibrium

level, and increasing the frequency of escapes.

We shall have something to say about the welfare implications of this policy response a bit

later, but the suggestion here is that robust policy in the sense of Hansen and Sargent (2002) is not

the right medicine for the comparatively mild specification error that is being committed here.

Whether this negative outcome to this approach to model uncertainty is germane to this problem

or applies to a broader set of conceivable model misspecifications would appear to be a useful line

of research.19

19. Our finding may explain why quantitative applications of robust control of this type have focussed on
events that lie outside of American monetary experience, namely various hyperinflations and financial cri-
ses. See, e.g., Kasa (2003) and Marcet and Nicolini (2003).
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Figure 3b
Robust Response to Unstructured Model Uncertainty
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3.6 robust policy II: structured model uncertainty

In the previous subsection, the authority was assumed to have no knowledge of the loca-

tion of Knightian uncertainty. Here we relax this restriction by allowing the authority to conjec-

ture that the form of its model is correct, but the coefficients may be wrong. In this regard, our

policymaker facingstructured model uncertainty shares some characteristics with the Bayesian

authority. In particular, both policymakers narrow the focus of their attention to the two coeffi-

cients, the , We might add that in so doing, the authority’s assumption regarding the location of

the uncertainty is aligned with what is being updated over time by the estimation procedure. But

unlike the Bayesian controller, here the authority is assumed to be unable (or unwilling) to assign

a probability distribution over parameters. Instead, we shall assume that a range of possible

parameters is posited. The policymaker in this sub-section utilizes a robust policy rule that is less

parametric than the Bayesian but more than the unstructured robust controller.

There are several variations on structured model uncertainty that one could adopt. Some,

like Onatski (1999), Onatski and Stock (2000), and Tetlow and von zur Muehlen (2001) use a sta-

bility maximization criterion whereby the policymaker chooses the feedback parameters to maxi-

mize the range of models for which the economy is stable. Others, like von zur Muehlen (1982),

Giannoni (2000, 2002), Svensson (2001) and Tetlow and von zur Muehlen (2001) assume a per-

formance maximization criterion, where a standard loss function is minimized but conditioned on,

once again, a malevolent nature choosing the set of parameters that maximizes the authority’s loss

function. Our formulation shares some characteristics with all of the papers named in the preced-

ing sentence, but the closest counterpart for what we do is Giannoni (2002).

As in Giannoni (2001, 2002), we assume that the authority chooses as its upper and lower

parameter bounds the mean value of the estimates of , plus and minus a scalar, , times the esti-

mated standard error of coefficients, . Note, however, that unlike in the existing literature,

the estimates of the coefficients, the standard errors, and the upper and lower bounds, all vary over

time and are conditioned on the constant-gain learning. Formally, the upper bound for a parameter

 is:

(32)

where  is theith diagonal element of the matrix . The lower bound is defined analogously.

Giannoni (2002) shows, for a different model than this one, that nature’s best choice (the worst
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case for the authority) will always be one of the corner solutions within the range of possible

parameter values, a finding that we confirmed for our model. So nature, in her malevolence,

chooses  among the combinations , ,  and , to

maximize the loss function:

(33)

given the monetary authority’s best response, , where thes superscript designates the solution

for thestructured-uncertainty problem. It turns out that for any choice of , the loss-maximizing

set of the boundary parameters,  is the upper bound for both parameters when the last observed

inflation rate is positive, , and the upper bound for  and the lower bound for , when

. Formally, this means that all datest:

(34)

Given this combination of worst-case parameters, the best response by the monetary authority is a

feedback rule of the same form as equation (19), but with the parameterization governed by the

boundary values specified by equation (34):

(35)

Figure 4a shows the implications of this robust response to structured model uncertainty for the

traditional boundary width . The sign switching of the worst-case value of  against

which the policymaker protects itself produces a similar switching in the inflation rate, so that

inflation is very volatile. At the same time, however, the average inflation rate is zero, meaning

that the robust policy maker is able to avoid Nash inflation, albeit at the cost of substantial volatil-

ity.

Before leaving this subject and turning to the welfare implications of these policies, it is

useful to consider the implications of an alternative choice for , the width of the standard error

band from which the authority picks best and worst case policies. Figure 4b shows the results for

a much narrower band width, . In this instance, the monetary authority is unable to pre-

vent a creep upward toward the Nash inflation rate.
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The logic of the result is straightforward: when  is large enough, the authority acts as

though inflation could be near the Nash rate and decides, therefore, not to produce the sequence of

inflation surprises to bring the inflation rate up to the Nash equilibrium. And while this policy

induces a great deal of volatility in inflation, the resulting imprecision in the estimated slope

parameter helps ensure that policy remains protective against high inflation. When  is small, the

authority does not protect against the possibility of the Nash inflation, or something like it. This

induces the same sequence of inflation surprises as under the certainty-equivalent policy, albeit

somewhat smaller so that inflation creeps up slowly. The poor control of inflation, however, is not

accompanied by a substantial increase in the standard error of the estimated , so that having

gotten “behind the curve” on inflation in the early going, there is no mechanism to catch up.20

3.7 welfare: a summing up

The figures do a reasonable job of summarizing the performance of the economy. Most of

what one needs to know to assess policy can be gleaned from the extremities of inflation that are

reached in the simulations and the incidence of disinflations. Nevertheless, it is interesting to

examine the extent to which welfare is affected,ex post, by the use of tools for handling model

uncertainties. To this end, we computed the losses from the stochastic simulations shown in the

figures using theex post calculation of equation (3), averaged over time. As in the figures, five

thousand observations were computed with the first 1000 discarded; the same set of stochastic

shocks was used for each exercise. The results are shown in Table 1 below where the answer for

the LQG rule has been normalized to unity without loss of generality.

20. Sargent and Williams (2003) find that through altering the prior distribution for  by replacing the dis-
counted recursive least squares equations, (11) and (12), with Kalman filters, the pattern and direction of
escapes can be dramatically influenced. They concern themselves with the case of certainty-equivalent poli-
cies, but the boundary widths on the parameters chosen by the structured robust policy maker here can be
loosely interpreted along the lines of the prior distributions in their paper. As in our case, the occurrence of
escapes and the sustainability of the self-fulfilling equilibrium in their paper depend on the prior for the
slope parameter (here, the supports of the slope parameter).

δ

δ

γ1

γ
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To begin, let us compare our base-case LQG policy against the hypothetical results where

private agents believe in the Nash equilibrium or the Ramsey equilibrium. Comparing the two

memo items at the bottom of the table shows the gains that would accrue to the monetary author-

ity if it were able to commit to the Ramsey equilibrium. Whether measured against the Nash equi-

librium result, or the certainty equivalent (or LQG) result, the benefits of commitment, if it were

feasible, are substantial.

The rest of the table shows that all of the approaches that take uncertainty seriously none-

theless bring about no improvement in policy performance with the exception of one of the struc-

tured robust control results, shown in line (6).21 The unstructured robust control approaches to the

induction problem are uniformly deleterious, with results that might be described as very poor

Table 1
Comparative loss from alternative approaches to model uncertainty

Experiment Parameter settings H2 loss

(1) Certainty equivalent (LQG) 1

(2) Bayesian 1.07

(3) Bayesian 1.26

(4) Unstructured robust 1.64

(5) Unstructured robust 2.52

(6) Structured robust 0.90

(7) Structured robust 1.10

memo items:

(8) Ramsey equilibrium n/a 0.77

(9) Nash equilibrium n/a 1.54

Notes: These are the results from stochastic simulations of the model for 5000 dates and
discarding the first 1000 observations, evaluating equation (3).
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when the authority is particularly uncertainty averse. That said, even the case in line (5) where

is one of fairly substantial uncertainty aversion; its loss, while consequential, is far

from catastrophic. This suggests that the small doses of unstructured robust policymaking to

hedge against misspecificationsother than the one studied here would not come at great cost.

Table 2 below allows us to study the relationship between the preference for robustness

under the uncertainty aversion of a Bayesian policy maker on the one hand and unstructured

robust control policy maker on the other. Uncertainty aversion of the Bayesian variety is indexed

by  with higher values representing greater degrees of aversion, and is summarized in the

left-hand panel of the table. Increasing uncertainty aversion in Knightian sense is characterized by

the choice of  with low values of  being associated with higher degrees of uncertainty

aversion; results for these policies are shown on the right-hand side of the table. The first row of

the table shows that the certainty equivalence results are nested in both policies. As we move

down the table, however, we see that both policies feature increasing deterioration in policy per-

formance as the degree of uncertainty aversion increases. The second and fifth columns of the

table show the number of escapes under each policy, given the preference for robustness. The

Bayesian policy features fewer and fewer escapes as  rises. The unstructured robust authority,

on the other hand, experiences more and more escapes as its preference for robustness increases.

Yet in both cases, overall performance deteriorates with increasing uncertainty aversion. In short,

neither policy is capable of overcoming the Nash inflation problem.

21. Qualitatively speaking, none of these results depend on the length of the simulation. However, the extent
to which the structured robust control with  underperforms relative to the LQG policy climbs with the
length of the simulation because the inflation rate asymptotes to the Nash inflation rate.
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Table 2
Performance of Bayesian and Unstructured Robust Policies

as a Function of Risk or Uncertainty Aversion

Bayesian Control Unstructured Robust Control

(1) (2) (3) (4) (5) (6)

escape loss escape loss

0 5 1 5 1

1 4 1.07 6 5 1.03

2 3 1.14 2 5 1.22

5 1 1.26 1.5 5 1.40

10 0 1.53 1.1 7 1.64

20 0 1.61 1.05 9 1.86

50 0 1.70 1.01 many 2.53

Notes:  is the multiple by which the standard error of the estimated coefficients in multi-
plied by as a hedge against misspecification prior to choosing the policy rule under Bayesian
control;  is the preference for robustness parameter under unstructured robust control, with

 corresponding with no preference for robustness at all (the linear-quadratic Gauss-
ian policy) and  corresponding to the most uncertainty averse ( ) solution.

ψ µ

∞

ψ

µ
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Table 3 demonstrates the influence of  on performance under structured robust control.

Recall that  is the multiple of estimated standard errors around the sample means of the  that

the authority sets as the boundaries within which the true model parameters may lie. The table

reveals a backward-bending relationship between  and the normalized loss. The reasons are as

noted in the previous subsection: when  is “too low”, there is insufficient protection against

Nash-like inflation to prevent a drift upward in inflation and once this drift is ongoing, the preci-

sion in the estimated  is quite low. Deteriorating economic performance does not induce

increasing uncertainty aversion because the worsening conditions do not manifest themselves in

less precise coefficient estimates. Once the value of  reaches a certain threshold, protection

against Nash inflation is established and the average inflation rate is zero. For this model and its

calibration, it takes relatively little uncertainty aversion (defined as it is here) to prevent an upward

creep in inflation. Once this minimal level of  is established, any further increases are uniformly

deleterious to performance.

Table 3
Performance of Structured Robust Policies

as a function of Boundary Width

Normalized loss

0 1.22

.1 1.23

.2 1.10

.25 .79

.5 .81

1 .84

2 .90

3 .97

Notes: mapping of boundary width, , where  is the multiple of the
standard error of estimated parameter, , against loss normalized
such that under linear-quadratic-Gaussian control is equal to unity.
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More generally, the results show that the appropriate response of monetary policy to

uncertainty in a real-time environment like the one described by Chairman Greenspan in the quo-

tation that opened this article requires some knowledge of the origins of the misspecification

against which the authority seeks protection. The Bayesian policy response to model uncertainty

does not improve policy because the problem the policymaker is trying to solve is not one of sam-

pling error; the fluctuations in the estimated parameters are not random in the way the Bayesian

assumes. This much is not surprising, at least after the fact. What is perhaps a bit more surprising

is that it is not the case that designing policy to protect misspecification of completely unknown

origins will lead to improvements in performance relative to ignoring the misspecification in the

first place. Rather, we have found that the policy maker needs to come to terms with the sources of

misspecification in broad terms in order to ensure an improvement in policy performance.

4. Concluding remarks

This paper has examined robust policy design in the presence of misspecification and

learning in a quasi-real-time environment. Our testing ground has been a re-examination of Tho-

mas Sargent’s explanation of the great inflation of the 1970s and its “conquest” in the 1980s. In

the original work, the monetary authority was assumed to re-estimate his or her reference model

in such a way as to suggest doubts about the constancy of the estimated parameters. And yet the

policymaker was not allowed to carry forward those doubts to the question of policy design. We

have relaxed this restriction by allowing the monetary authority to seek protection against model

misspecification in three possible ways.

First, the policymaker was permitted to take the estimated standard errors of the parame-

ters into account when designing policy, as a Bayesian would do. In this regard, we investigated

the advice of Blinder (1998), based on Brainard (1967), among others. We found that contrary to

conventional wisdom, responding to model uncertainty via the Bayesian approach produced

results that differ only in small ways from the certainty equivalent case. This result obtains despite

a modeling structure, with discounted history, that biases upward, in some sense, the standard

errors that condition the Bayesian response, and despite the fact that the Bayesian policy maker

has correctly assumed the location of the misspecification. We conclude that if policy makers,

operating in a world of uncertainty, were to follow Blinder’s advice to “do less” than the certainty

equivalent policy response to shocks, and did so using the usual Bayesian statistical criteria, they

would find no relief from their problem. The reason the Bayesian response to model uncertainty is
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not successful is straightforward: it is designed to counter misspecification in the form of random

coefficients when the problem here, rather than being random in this sense, is induced by the

authority’s failure to recognize its role as a part of the data generating process. Moreover, our

checks of robustness of this result, combined with some hints in the literature, suggest that this

finding is likely to have pertinence beyond the current setting.

Second, we allowed the policy maker to entertain uncertainty in the sense of Knight, using

two different formulations. In one formulation, we allowed the policy maker to use unstructured

robust control, meaning that we allowed him or her to protect against modeling errors of uncertain

magnitude and unknown origin. In this instance, we were following a line of research by Hansen

and Sargent (1995, 2002) on handling model uncertainty. In the other formulation, we allowed the

policymaker to protect against structured modeling errors, meaning the errors were in a known

location, but with no prior knowledge regarding the magnitude of the misspecification. In this

instance, we were following a line of research by von zur Muehlen (1982) and Giannoni (2001,

2002).

We found that protecting against model misspecification of the Hansen-Sargent variety

resulted in a deterioration of economic performance in all senses of the term. The robust response

to uncertainty of unspecified origin resulted in higher average levels of inflation, more frequent

escapes and thus more volatility. Economic performance as measured by evaluating the author-

ity’s loss function was worse than performance under the certainty-equivalent policy. This finding

suggests that the kind of misspecification entertained in Sargent (1999), Cho, Williams and Sar-

gent (2002) and adopted here is not severe enough to justify the Hansen-Sargent (1995,2002)

treatment: the medicine of robust policy is worse than the disease.22 On the surface of it, this is a

surprising result since it is arguably this sort of specification error that this approach was meant to

handle. Recently, however, there have been indications that the kind of hands-off, completely non-

parametric approach has its drawbacks. Onatski and Williams (2003) and Levin and Williams

(2003) suggest that unstructured robust control needs to be used with care.

The results for structured robust control, that is robust policy making as envisioned by

Giannoni (2002) among others, are intriguing. There, we found that a small, judiciously chosen

degree of preference for robustness can result in the avoidance of Nash inflation and an improve-

22. That performance under uncertainty-sensitive policy design with a misspecified model could still be
worse than if the possibility of misspecification were ignored was certainly not an implausible outcome;
Kilponen (2001), for example, notes this can arise.



37

5. References:

ment in overall economic performance. At the same time, a high degree of inflation variability

must be tolerated. These results suggest that a policy maker that investigates the sources of mis-

specification can improve policy outcomes even if he or she cannot correct the specification error

directly, provided that some narrowing down of the sources of the misspecification is possible.

Taken together the results here strengthen the Sargent explanation for the inflation of the

1970s. Had the recurring bouts of Nash inflation followed by bouts of disinflation disappeared

with the economy under the control of many or all of these policies, the results would have sug-

gested that Sargent’s findings were a manifestation of the assumed naiveté of the policy maker.

And while it is reasonable to question whether central bankers would forget the lessons of history

and allow high inflation to re-assert itself, it is worth noting that commentary describing inflation

as yesterday’s war abounds. Furthermore, well-known economists such as Ray Fair (1999) and

William Brainard and George Perry (2000), all known to offer policy advice on macroeconomic

issues, question the validity of the natural rate hypothesis, very much along the lines predicted by

Sargent.
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