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Quantifying and Qualifying USGS ShakeMap
Uncertainty

By David J. Wald, Kuo-Wan Lin, and Vincent Quitoriano

Abstract

We describe algorithms for quantifying and qualifying uncertainties associated with USGS
ShakeMap ground motions. The uncertainty values computed consist of latitude/longitude grid-
based multiplicative factors that scale the standard deviation associated with the ground motion
prediction equation (GMPE) used within the ShakeMap algorithm for estimating ground motions.
The resulting grid-based "uncertainty map" is essential for evaluation of losses derived using
ShakeMaps as the hazard input. For ShakeMap, ground motion uncertainty at any point is
dominated by two main factors: (i) the influence of any proximal ground motion observations, and
(i1) the uncertainty of estimating ground motions from the GMPE, most notably, elevated
uncertainty due to initial, unconstrained source rupture geometry. The uncertainty is highest for
larger magnitude earthquakes when source finiteness is not yet constrained and, hence, the distance
to rupture is also uncertain. In addition to a spatially-dependant, quantitative assessment, many
users may prefer a simple, qualitative grading for the entire ShakeMap. We developed a grading
scale that allows one to quickly gauge the appropriate level of confidence when using rapidly
produced ShakeMaps as part of the post-earthquake decision-making process or for qualitative
assessments of archived or historical earthquake ShakeMaps. We describe an uncertainty letter
grading ("A" through "F", for high to poor quality, respectively) based on the uncertainty map. A
middle-range ("C") grade corresponds to a ShakeMap for a moderate-magnitude earthquake
suitably represented with a point-source location. Lower grades “D” and “F” are assigned for larger
events (M>6) where finite-source dimensions are not yet constrained. The addition of ground
motion observations (or observed macroseismic intensities) reduces uncertainties over data-
constrained portions of the map. Higher grades ("A" and "B") correspond to ShakeMaps with
constrained fault dimensions and numerous stations, depending on the density of station/data
coverage. Due to these dependencies, the letter grade can change with subsequent ShakeMap
revisions if more data are added or when finite-faulting dimensions are added. We emphasize that
the greatest uncertainties are associated with unconstrained source dimensions for large
earthquakes where the distance term in the GMPE is most uncertain; this uncertainty thus scales
with magnitude (and consequently rupture dimension). Since this distance uncertainty produces
potentially large uncertainties in ShakeMap ground-motion estimates, this factor dominates over
compensating constraints for all but the most dense station distributions.



Introduction

ShakeMap, a software package that portrays the extent of potentially damaging shaking
following an earthquake, was primarily developed to display, and render more useful, densely
recorded ground motion recordings for California. Built into ShakeMap are predictive tools meant
for estimating ground motions in areas of sparse station coverage as well as interpolating between
recorded and estimated peak motions. ShakeMap is produced domestically and internationally, and
ranges from rather dense station coverage (California) to non-existent, particularly in real time
(much of the globe). Any particular ShakeMap can be controlled by either observations or
predictions, and in fact any one map is likely to have areas over which one or the other prevails.

ShakeMaps used for post-earthquake response and loss assessment are constrained in part
by rapidly gathered ground motions and by intensity data via the Internet coupled with rupture
dimensions resolved with rapid finite-fault analyses. Systematic estimation of site amplification on
a regional or global basis, the inclusion of sparse strong-motion data and macroseismic intensities,
incorporating modeled or observed rupture dimensions, and empirically predicting regionally-
specific ground-motion amplitudes all provide different constraints, and contribute in unique ways
to the uncertainties.

True ground motions for moderate to large earthquakes are highly variable spatially. In
ShakeMap, this spatial complexity is variably sampled, leading to a rather complicated, sometimes
unintuitive, pattern of shaking uncertainties. Ways to address this challenge by quantifying and
then qualifying uncertainty for ShakeMap shaking patterns will be discussed later.

The short description of uncertainty is that shaking is well-constrained near seismic
recording stations, and is poorly constrained away from stations where ground motion predictions
must be relied on. Hence, a quick glance at any ShakeMap (for example, for the Northridge
earthquake shown in Figure 1) allows a quick assessment of where the map is well constrained and
where it is not. However, the actual uncertainties are more complicated and a subset of these
complexities, particularly those that dominate the uncertainty will be discussed later.

Since uncertainties for the shaking-hazard estimates contribute to subsequent uncertainties
in loss estimates, we first discuss our approach to quantify the ShakeMap uncertainty as a function
of spatial location on the map grid. The uncertainty values computed consist of latitude/longitude
grid-based multiplicative factors to be scaled by the standard deviation of the ground motion
prediction equation (GMPE) used for that earthquake.

Several manual and automated systems now use ShakeMap peak-parametric values (peak
acceleration, velocity and spectral accelerations) for loss estimation, including the Federal
Emergency Management Agencies’ (National Institute of Building Sciences and Federal
Emergency Management Agency, 2003) widely deployed Hazards U.S. (HAZUS) methodology
software. The HAZUS methodology is also used directly in the ShakeCast system (Porter, 2008;
Wald and others, 2008). At this time, these systems do not take advantage of the knowledge of the
spatial uncertainties now quantified via ShakeMap. However, Luco & Karaka (2007) indicate ways
to take into account the ShakeMap spatially-varying uncertainties directly into loss uncertainty by
combining building-fragility curves with ShakeMaps of the mean ground-motion estimates as well
as their uncertainties. They provide an example of these calculations using the 1994 Northridge
earthquake. The result is a map of post-earthquake damage-state probabilities for each of the
generic building types and code levels. We expect other loss modelers will become rapidly more
aware of and more capable of taking advantage of ShakeMap’s newly-developed quantified
ground-motion uncertainties.

Given a grid of uncertainty values for a given ShakeMap, we also describe a simple
approach for providing a qualitative-uncertainty “grade” for each event for more general



assessment of ShakeMaps. This grading scale will allow one to quickly gauge the appropriate level
of confidence when using rapidly produced ShakeMaps as part of the post-earthquake critical
decision-making process as well as for qualitative assessments of archived or historical-earthquake
ShakeMaps used for loss calibration or other purposes (for example, Allen and others, 2008).
Finally, we provide several examples with ShakeMaps for important earthquakes to illustrate both
the qualitative uncertainty assessment as well as the underlying quantitative uncertainty
computations.

USGS Peak Velocity Map (in cm/s) : Northridge
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Figure 1. ShakeMap peak-velocity maps for the magnitude 6.7, 1994, Northridge, CA, earthquake. Strong
motion stations are shown as triangles. The black rectangle represents the surface projection of the fault
from Wald and others (1996). Contour interval is 10 cm/s.



Quantitative Shaking Uncertainty Calculations

The accuracy of a given ShakeMap varies spatially over the map area and depends on a
number of contributing factors (Lin and others, 2005). However, the uncertainty is usually
dominated by two aspects: (1) spatial variability of peak ground motions near intensity
observations or recording stations (and hence, variability of observation density), and (2) the
aleatory uncertainty associated with empirical ground-motion estimation relations used to fill in
station gaps. These two sources of variability in estimating ShakeMap uncertainty are discussed;
other secondary factors are also being analyzed and are therefore mentioned in passing.

Spatial variability of peak ground motions can be generalized in the form of a rapidly
increasing variability with increasing distance from the nearest recording station or macroseismic
observation. Aleatory variability, in contrast, is more complicated and becomes more significant as
the fault dimensions get larger (about magnitude 5.5 and greater), particularly when the fault
location and dimensions are not yet ascertained. Without an accurate representation of the fault-
rupture geometry, the appropriate distance to a particular location—which is needed when using a
forward ground-motion prediction equation—is poorly constrained. Not knowing the true distance
to the fault rupture contributes significant uncertainty, particularly in the near-fault region, and this
uncertainty scales with magnitude.

Our goal in quantifying ShakeMap uncertainty is to produce a grid of latitude and longitude
pairs that contain not only the various peak ground-motion parameters at each point, but also
contain the variance at that point for each ground-motion parameter. The average over this grid is
later converted to an overall qualitative assignment of ShakeMap accuracy, as discussed in the next
section. To describe the computation of ShakeMap uncertainty values at each grid point, we
consider three end member cases.

Case 1) Small to moderate sized earthquake, suitable for a point source representation.

When a grid point is near a station (within 10 km), uncertainty is controlled by proximity to
that station as defined by variability quantified by (Boore and others, 2003):

X > 2 0.6A
?AlogY :‘jindobs(”%)F(A) and le_;\/_ (1)

i%ldobs
is the standard deviation of an individual observation about a regression, and N is the number of
recordings used in the average of a group of recordings in a small region. F(A) is a function that
accounts for spatial correlation of the motion, where A is the distance between the sites. For this
study we assumed that N is large enough so that the //N term can be neglected. Thus, the spatial
variability in ground motion reduces to zero as the distance between a grid point and the nearest
station decreases to zero (fig. 2, from Boore and others, 2003). With a large grid-point-to-station
distance, the spatial variability in ground motion approaches the standard deviation of the GMPE.
The cut-off distance for computing spatial variability in ground motion is set at 10 km in our study.
For distances greater than 10 km, the total aleatory uncertainty (sigma) of (Boore and
others, 1997) ground-motion prediction equations is used:

where o, ,,,, 18 the standard deviation of differences in the logarithm of the peak motion Y, o

2 2
o _aleatory = \/ O _interevent TO _intraevent (2)



With several ShakeMap data points (seismic station amplitudes), a bias term between the
forward ground-motion predictions and the data can be removed, thereby effectively removing the
inter-event term. However, when no data are available, no event-specific bias correction can be
made and both the intra- and inter-event terms contribute (Equation 2). Note that under these
conditions, the uncertainty can range from 0.0 to 1.0 times &. (For extended sources, ground motion
uncertainties are possible with multiplicative factors as large as several times G.)

— \/2*0,188 (o, larger comp., M6.0-8.9: Joyner, pers. commun.)
—— Giog. ppha = 0-27*(1-eXp(-V(0.6"A))) (eyeball fit)
~+  Chiba (Kawakami & Mogi, 2003)
O SMART1 (Kawakami & Mogi, 2003) '
o SIGNAL (Kawakami & Mogi, 2003)
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Figure 2. Standard deviation of difference of the largest peak horizontal acceleration as a function of inter-
station spacing. F(A) given in equation 1 is shown by the curve. Data include Northridge earthquake strong
motions (Boore, 1997) and previous studies as indicated (figure from Boore and others, 2003).



Case 2) Large earthquake, where fault rupture geometry and dimensions are not known.

For earthquakes of magnitude 5.5 and larger, the fault dimension affects one’s measure of
the distance from the fault to the site of interest. When employing the Joyner-Boore distance
measure used for forward ground-motion estimation, the fault-rupture dimension must be known.
Recall that the Joyner-Boore distance is defined as the closest distance from a site to the surface
projection of the fault rupture. If necessary, initial ShakeMaps are produced without knowledge of
the rupture dimensions. Again, the uncertainty is generally low near the seismic stations, but at
some distance from the stations it is constrained only by the forward predictions using a GMPE and
knowledge of the site condition. In this case, distance adjustments are made to convert the point-
source (epicentral) distance used to the appropriate Joyner-Boore distance for the GMPE used. The
aleatory uncertainty must also then be adjusted. The results and the approach defined in (EPRI,
2003), in which the distance adjustment is determined for the case where the rupture orientation is
assumed to be uniformly distributed in azimuth from O to 360 degrees and for a mixture of strike-
slip and reverse ruptures using random epicenters is adopted. Note that Scherbaum and others
(2004a) regressed simulated ground motions to provide an analogous approach to source-to-site
distance correction, allowing conversion from most distance measure to Joyne-Boore distances.
However, the conversion provided by EPRI (2003) where previously adopted here.

For simulated ruptures, (EPRI, 2003):

e Computed the appropriate distance measure and corresponding median ground-motion
parameter,

e Considered the geometric mean of all these simulation values to be the median ground
motion for that epicentral distance and magnitude,

e Inverted the median ground motion to find the distance that corresponds to that median
ground motion value,

e Determined a distance-adjustment factor for each epicentral distance, magnitude, and
ground motion parameter, and

e Fit these distance-adjustment factors with a functional form, and provided the necessary
coefficients in a series of look up tables.

Using the distance-correction factor then simply entails employing these distance-
adjustment relationships (EPRI, 2003) that translate epicentral to the equivalent Joyner-Boore
distance:

x {1=1/cosh(C| +C (M = 6)+C In(r))} (3),

r =r
Joyner — Boore  Epicentral

) > C +C_(M-6)
where r'=.[r" +h 4), and h=e 4 3 (),
Epicentral

VJopner—soore 1S the Joyner-Boore distance, r,.,,,,, 18 the epicentral distance, M is the

magnitude of the earthquake, and CI to C5 are the (EPRI, 2003) model coefficients (which vary by
ground-motion model and seismic frequency) given in Table 1.



Table 1. Distance adjustment from epicentral to Joyner-Boore distance coefficients for equations 3
and 5 (random epicenters) [from Table 3-38 of (EPRI 2003)]

Frequency(Hz) | C1 C2 C3 C4 C5

0.5 -0.4098 -1.394 1.003 1.235 1.421
1.0 -0.4060 -1.394 1.003 1.237 1.424
2.5 -0.4066 -1.394 1.003 1.235 1.426
PGA -0.4517 -1.394 1.003 1.239 1.431

For large events, using the epicentral distance would underestimate ground motions near a
finite fault (since it is the maximum possible source-station distance). Hence, when the fault
geometry and orientation is not known, we have adopted these distance adjusted ground motions
for ShakeMap production and a mean value of ground motion at each point is provided rather than
the simple epicentral distance-based estimation. As described above, the mean value is based on
random-fault geometry and epicenter. (If and when faulting geometry is established, actual Joyner-
Boore distances are computed from the fault location (see Case 3).)

The variability associated with this distance adjustment is also derived in EPRI (2003). The
variability in the median ground motion, due to the randomness in epicenter location and rupture
orientation, was used to compute a ground motion standard deviation and we employ their
equations to compute the additional component of aleatory uncertainty:

eC1+C2(M—6)+C3(M—6)2

o _addptsr= x[1=1/cosh(f,)]x 1/cosh(f,) (6),
1 = pCHCS(M=6) 4 ,C6+CT(M=6) X Fppicontral N,
fb — eC8+C9(M—6) % ln(r'/h) , (8),

v .2 2 __Cl10+C11(M—-6)
r= rEpicentml +h > h =e (9)’

where o _aapsr 1 the point source aleatory, ;... 1S the epicentral distance, M is the

magnitude of the earthquake, and C1 to C11 are the model coefficients given in Table 2 (from
EPRI, 2003). We can then combine this additional point source variability (Equation 7) with that
associated with the prediction equation (Equation 2):

o_total = J P _aleatory + o2 _addptsr  (10)



Table 2. Additional aleatory variability (random epicenters) coefficients for equations 6-9 [from
Table 3—42 of (EPRI 2003)]

Frequency(Hz) | C1 | C2 C3 C4 (&5 c6 | cC7 & C9 Cl0 [ Cll
0.5 -1.502 0.5506 -0.03874 -0.8330 -0.01935 -1.341 -0.6375 -0.1008 0.3328 1.564 1.635
1.0 -1.604 0.6415 -0.05674 -0.8626 -0.01209 -1.177 -0.7274 -0.1472 0.4290 1.722 1.635
2.5 -1.430 0.5386 -0.03777 -0.7968 -0.04394 -1.378 -0.6413 -0.1241 0.3472 1.607 1.630
PGA -1.407 0.5926 -0.05345 -0.8708 -0.001605 -1.305 -0.7161 -0.1846 0.3675 1.599 1.629

In case 2, the multiplicative factor for ¢ (not considering stations for the moment) can be
greater than 1.0, and approaches approximately 3.0 for magnitude 8 earthquakes.

Case 3) Large earthquake, where fault rupture geometry and dimensions are known.

Here, the uncertainty is greatly reduced in comparison to the point-source approximation as
the site-to-source distance can be calculated accurately. In case 3, the multiplicative factor for o
cannot be greater than 1.0, and as in case 1, it is lower near stations.

The calculations described above provide a single uncertainty value at each grid point used
to compute the ShakeMap (see Wald and others, 2005, for more details on ShakeMap
interpolation). At this time these values are not frequency- or ShakeMap metric-dependent, as
discussed later. From a bookkeeping perspective, these values are provided in the output grid file
associated with each ShakeMap (Wald and others, 2005). For each grid, the nominal value of ¢ for
that event is given such that total uncertainty values at a given point are the product of the grid
value and the GMPE o value provided.

Qualitative Uncertainty Assignments

In addition to a spatially-dependant, quantitative assessment, many users seem to prefer a
simple, qualitative grading for the entire ShakeMap. To do so, the mean uncertainty over the
ShakeMap area at on-land grid cells that have intensities of VI (6.0) or greater is computed. This
requirement focuses the calculation of uncertainty only on portions of the map with potentially
damaging ground motions. In contrast, inclusion of lower intensities would make the average
uncertainty map-scale dependent. Under such circumstances, simply resizing the map could result
in a different uncertainly grade, a condition that should be avoided.

For all on-shore grids points, for which the computed intensity is greater than VI, the
average uncertainty factor, o, is computed by summing grid-cell uncertainties and dividing by the
total number of cells meeting these criteria. For each cell, the scale factor is the value determined
for adjusting the GMPE o value based on the appropriate case outlined above.

After computing the mean uncertainty value for the region of intensity VI or higher, letter
grading "A" through "F", for high to poor quality, respectively, are assigned based on a subjective
assignment of the average values to grades. Our goal was to have the middle-range ("C") grade
correspond to a ShakeMap for a moderate-magnitude earthquake suitably represented with a point
source location. Thus, we assign a value of & of 1.0 (that is, 1.0 times the aleatory uncertainty for
the GMPE used) to the letter grade of “C” which refers to an “average” performance.




“- ‘
i

ulF
_w

A

il

| — H‘“w ‘”mm_ HI.-__ﬂ“—
| i

m

\

INSTRUMENTAL H
R I T A A

Figure 3. ShakeMap Instrumental Intensity maps for the 1994 Northridge, CA, earthquake. A) Constrained
only by magnitude (M6.7) and epicenter, using median distance estimates (see text for details); B)

strong motion stations (triangles), and inter-event bias term (see text);

C) Constrained by magnitude, and fault dimensions (black rectangle represents the surface projection of the

I

Constrained by magnitude, epicenter

fault from Wald and others (1996); D) Constrained by magnitude, fault dimensions, stations, and inter-event

bias.

For larger events (M>6) where finite source dimensions are not yet constrained, higher
average uncertainty values of 6 > 1.0 indicate more poorly constrained ShakeMaps and are
assigned lower grades “D” and “F”. The addition of ground-motion observations (or observed
macroseismic intensities) reduces the average uncertainties (o < 1), by reducing uncertainties over



data-constrained portions of the map. Higher grades ("A" and "B") correspond to ShakeMaps with
constrained fault dimensions and numerous ground-motion observations, depending on the density
of station/data coverage. Thus, the letter grade can change with subsequent ShakeMap revisions if
more data are added, or when finite-faulting dimensions are established and introduced into the
ShakeMap input constraints (see Wald and others, 2005).
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Figure 4. ShakeMap uncertainty maps for the 1994 Northridge, CA, earthquake corresponding to intensity
maps in Figure 3. A) Constrained only by magnitude (M6.7) and epicenter, using median distance estimates
(see text for details); B) Constrained by magnitude, epicenter, strong motion stations (triangles), and inter-
event bias term (see text); C) Constrained by magnitude, and fault dimensions (black rectangle represents the
surface projection of the fault from Wald and others (1996); D) Constrained by magnitude, fault dimensions,
stations, and inter-event bias. Scale bar on right depicts spatial uncertainty as a linear multiplicative factor to
the GMPE uncertainty; Letters refer to the corresponding letter “grade” (see text for details).
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For rapid and easy assessments of the uncertainty of a ShakeMap, color-coding is
introduced such that red-colored areas are poorly constrained, white-colored areas are as uncertain
as the ground motion prediction equation, and blue-colored areas are better constrained (near to
constraining seismic stations). Color-coding of the average uncertainty, o, is similarly colored,
commensurate with the letter grade assigned. The scale bar shown in Figure 4 and examined more
closely with Figure 5 is the qualitative-uncertainty scale bar used in subsequent uncertainty figures.
Letter grades “A” thru “F” indicate high to poor quality maps, respectively delimited by ranges of
the average-uncertainty label to the right. Numerical limits of 0.96, 0.98, 1.05, and 1.25 delimited
subjective letter-grade cutoffs. The average value, and the corresponding letter grade on the scale to
the right, is displayed on the bottom left of the uncertainty ShakeMap (see for example, Figure 4).
The region of intensity VI or higher, over which the average uncertainty is computed, is show with
a bold, black line (fig. 4).

For a map to be mostly red (“D” or “F” grades), fault finiteness must be substantial and the
fault location unknown. White maps (“C” grades) are either small events with few data, or larger
events for which the fault location and dimensions are specified. Blue maps (“A” or “B” grades)
require numerous seismic stations and, for large events, specification of the fault dimensions. This
grading scale allows one to quickly gauge the appropriate level of confidence when using rapidly
produced ShakeMaps as part of the post-earthquake, decision-making process and for qualitative
assessments of archived or historical earthquake ShakeMaps.

Another way to consider the uncertainty scale bar is in terms of absolute uncertainty of the
intensity values mapped. It turns out, conveniently, the color “white” (uncertainty factor of 1.0)
indicates a = 1 intensity unit uncertainty. Since ¢ for peak ground velocity is approximately a factor
of 2.0 (Boore and others, 1997), and instrumental intensity increases approximately one unit of
intensity for a factor of two increase in velocity (Wald and others, 1999), for an uncertainty scaling
factor of 1.0 the intensity uncertainty is approximately + 1 intensity unit.

Initially, we considered other algorithms for computing the average uncertainty. For
example, there are some advantages to only considering those areas of the ShakeMap that have a
population actually exposed to the shaking. The rational there was that uncertainties in shaking
were only relevant for areas where there are exposed assets that could experience damage, and at
intensity levels at which damage could occur. That is, uncertainty in shaking values within
urbanized areas should be considered. Using the LandScan2006 (Bhaduri, 2002) database, the
average uncertainty scaled by the intensity level as well as the logarithm of the population at that
grid cell, normalized by the grid cell area is computed:

U=t i(MM(i) -6.0) x log(Pop(i)) x o(i)
Aredi)

i=1

Subsequent testing against numerous earthquakes revealed that this approach suffered from
several shortcomings. First, the lack of exposed population implies the maps have low uncertainty,
whereas there may be critical facilities (for example, power plants, pipelines, or airports, etc.)
where there is no permanent population in the census or LandScan data. In assessing impact,
accuracy of the shaking estimates at these facilities could be an important factor to consider.
Second, for a ShakeMap with a large source area away from a populated region, the calculation
weighting population density would minimize the true uncertainty in ground shaking over most of
the ShakeMap. Such an approach would be confusing, particularly without direct referral to a
corresponding population map.

11



Likewise, there are two main reasons why uncertainties for small- to moderate-sized
earthquakes that do not generate intensity VI are not considered. First, the lack of damage means
loss calculations are not needed. Second, a lower overall range of intensities is produced (I-V) than
for larger events (I-X), so the total potential range of intensities, and thus uncertainties, is rather
limited.

<«— (Ototal = 1.3 Ocwmee (near unknown source)

1.25
<— Ototal = 1.15 Oemee (PGA uncertainty =
PGA x exp(1.150) to PGA/exp(1.150)

- 1.05
c <—— (Ototal = 1.0 Ocmet
o= (PGA uncertainty = PGA x exp(10) to PGA/exp(10)
A
&

m, <«——— Ototal = 0.0 (PGA uncertainty = 0.0; no uncertainty at seismic station)

Figure 5. ShakeMap uncertainty scale bar. The decimal values at the right of the scale bar are the
multiplicative factor to scale the uncertainty from the ground-motion prediction equation used. Zero
uncertainty (blue) occurs at seismic stations; high uncertainty (red) occurs close to a unconstrained finite-
fault source region. Letter “grades” are provided for the average uncertainty on a given ShakeMap, on land
and within the zone of intensity VI or greater. See text for further details.

ShakeMap Uncertainty Examples

In this section, illustrative examples showing a wide range of the uncertainty cases are
presented. For each case, the example represents actual data and constraints, with varying choices
of which subsets of the data to use. In near real-time ShakeMap applications, the availability of data
for different regions domestically and around the globe vary dramatically, and these examples were
chosen to be illustrative the range of possible source and data constraints expected.

Northridge, California

A comprehensive example of the uncertainty calculation is presented in Figures 3 and 4 for
the case of the 1994 magnitude 6.7 Northridge, California, earthquake. The maps on Figure 3 are
ShakeMaps, with increasing source and data constraints (Figures 3A-D), and thus increasing
overall accuracy (Figures 4A-D).

Figure 3A shows a ShakeMap based on magnitude, epicenter, and a point source rather than
a finite fault representation. Thus, epicentral distance is used to compute ground motions. Figure
4A, the corresponding uncertainty map, shows a representative pattern with accuracy indicated by
reddish, donut shape. Since the epicenter must be on the fault, the true distance there is known (and
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is zero). Uncertainty is at its maximum at approximately one fault distance from the epicenter,
because that location could be either on the fault or as far as one-fault-length away. With greater
distances, the uncertainty returns to the background 1-sigma level of the prediction equation used
since epicentral versus fault distance approach the same value.

Figure 6. ShakeMap Instrumental Intensity maps for the 1999 Koeceli, Turkey, earthquake. A) Constrained
only by magnitude (M7.6) and epicenter, using median distance estimates (see text for details); B)
Constrained by magnitude, epicenter, strong motion stations (triangles), and inter-event bias term (see text);
C) Constrained by magnitude, and fault dimensions (black line represents the fault trace); D) Constrained by
magnitude, fault dimensions, stations, and inter-event bias.

Figure 3B shows a ShakeMap with the additional constraints provided by a few hundred
strong-motion peak values, and thus represents a very well-constrained map, even though the
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source dimensions have not been specified. The corresponding uncertainty map in Figure 4B has
significant regions with blue coloring indicating proximity to the strong-motion stations, while
areas with few stations are indicated by areas of red with more uncertain shaking levels. Recall, if
at any time a grid point is closer to a station than 10 km, the variability associated with that grid to
station distance (Equation 1) controls the uncertainty and is thus lower. Since the average
uncertainty-scaling factor is less that 0.96, this ShakeMap receives a letter grade of “A” (fig. 4B).

0 50 100 ( \
[GRADE: F (Miean sigma: 1.346)| [ WM = 6.0 | [GRADE: C (Mean sigma: 1.000)| S »-
= g T — — —

e ——
50 100
GRADE: F (Mean sigma: 1.327)| [ e— IV = 6.0 ]

Figure 7. ShakeMap uncertainty maps for the, 1999 Koeceli, Turkey, earthquake corresponding to intensity
maps in Figure 6. A) Constrained only by magnitude (M6.7) and epicenter, using median distance estimates
(see text for details); B) Constrained by magnitude, epicenter, strong-motion stations (triangles), and inter-
event bias term (see text); C) Constrained by magnitude, and fault dimensions (black line represents the fault
trace); D) Constrained by magnitude, fault dimensions, stations, and inter-event bias. The uncertainty color
scale and corresponding letter “grades” are shown in Figure 4.
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For the ShakeMap in Figure 3C, fault finiteness is added, improving the distance measure to
BE 7, er—soore » DUL fOT this example, the strong-motion stations have been removed. Adding the fault

dimension alone is equivalent to Case 3 described above, so the uncertainty is uniform (Fig. 4D),
with a ratio equal to 1.0 times sigma, since fault distances are known at all points on the map. The
ShakeMap is effectively the direct application of the GMPE, unimproved by any ground-motion
recordings; this is the equivalent of an earthquake scenario, where source is specified but no data
exist.

Finally, for a well constrained ShakeMap, with both abundant strong-motion data and
specified fault dimensions (Figure 3D), uncertainty in all areas is equal to or less than 1.0 times
sigma. In Figure 4D, the corresponding uncertainty map, blue indicates location of strong motion
stations where no there is no uncertainty in the shaking level since the value is recorded there. All
other portions of the map are white, indicating 1-sigma uncertainty values given the known fault
location.

For the Northridge earthquake the source dimension was limited (roughly 20 km in length
and 20 km in width), so the distance correction term (Equation 3) and the corresponding
o _addptsrc are relatively small additional uncertainty. Thus, even in the case shown in Figure 3A,
with simple point source representation, the corresponding letter grade is “D” not “F” (Figure 4A).
Larger magnitude earthquakes, with larger fault dimensions, can indicate larger uncertainties, as is
the case in the next example.

Izmit, Turkey

Figures 6 and 7 show analogous ShakeMaps and corresponding uncertainty maps for the
1999 Izmit, Turkey, (M7.6) earthquake, which resulted in over 17,000 fatalities. In this case, the
actual strike-slip fault dimension was approximately 120 km, so that lack of knowledge of the fault
dimension greatly reduces the ability to predict ground motions employing an empirical GMPE. In
addition, strong-motion station coverage in Turkey is less dense than for California, so that within
the scale of the ShakeMap, only a dozen or so stations were available for this earthquake.

Since the fault is so large, the lack of knowledge of its location results in a prominent, red
donut-shaped uncertainty ring (fig. 7A). The amplitude of the uncertainty scale factor is larger than
for Northridge since the rupture dimension is roughly 5 times larger. Note that not only are peak
uncertainty values larger, but large uncertainty values also extend over a region that scales in radius
with the fault dimension (roughly 120 km).

Interestingly, for large earthquakes, if the fault dimension is constrained, the uncertainty is
significantly reduced, indicating the importance of rapid determination of the fault finiteness in an
earthquake response situation (fig. 7C). In contrast, and perhaps counter-intuitively, adding only a
dozen strong-motion stations only slightly reduces the overall uncertainty (figs. 7B and 7C). In the
ShakeMap processing, strong-motion stations only influence a limited areal extent around the
station. While, overall, their presence allows removal of the inter-event variability via the bias
calculation, the overall uncertainty is much more sensitive to that introduced due to the lack of
knowledge of such a large fault extent.

ShakeOut Scenario, Southern California

Scenario ShakeMaps produced for the November 2008 “ShakeOut” planning exercise for
southern California (Jones and others, 2007) provide another important example of the evolution of
the ShakeMap uncertainty in California under circumstances for which the actual shaking values
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are fully “known”. That is, unlike a real earthquake, the shaking input is fully specified (fig. 8A),
and the ShakeMaps presented demonstrate the actual solution with varying and increasing degrees
of data and constraints (§B-D).
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Figure 8. ShakeMap Instrumental Intensity maps for a scenario earthquake on the southern San Andreas
fault, a M7.8 “ShakeOut” event developed for a November 2008 exercise in California (Jones and others,
2007). A) Predicted intensities using 3-D broadband simulations (Graves, written communication, 2008); B)
Constrained by magnitude (M7.8), epicenter, and %2 of existing near real-time seismic stations; C) Constrained
by magnitude (M7.8), epicenter, and all near-real time seismic stations; D) Constrained by magnitude (M7.8),
fault location (black line), all near-real time seismic stations, and inter-event bias.

Figure 8A indicates the complete, simulated intensity distribution model with 3D wave-
propagation computations by Graves (written communication, 2008). In figure 8B, what would be
expected for a ShakeMap within about 5—6 minutes of such an event is simulated, with knowledge
of the magnitude and epicenter and by randomly choosing half of the real-time strong-motion
stations in the region available to ShakeMap. This value was chosen simply to simulate what may
be available to ShakeMap given such a large event (some stations may still be triggered, and some
may have trouble communicating immediately). With half the stations, there is a reasonable
approximation (fig. 8B) to the actual intensity distribution (fig. 8 A). The corresponding uncertainty
map, shown in figure 9B, still shows considerable uncertainty since the area without stations is still
substantially larger than areas immediately adjacent to recording stations. In fact, the overall
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shaking level in areas not constrained by data is somewhat larger than the actual values; the large
uncertainty (red coloring) and overall poor grade reasonably reflects this uncertainty.

Addition of the remaining strong-motion stations allows further recovery of strong shaking
along the San Andreas fault (fig. 8C) but only marginally reduces the uncertainty away from these
sites. Not until the fault dimension is added does the uncertainty come down on average (figs. 8D
and 9D). At this point, the letter grading becomes an “A” since the distance from the fault is now
constrained. Note that even in this situation (fig. 8D), the overall shaking intensity is different
(higher) than “observed” (fig. 8A). This is due to the fact the 3D simulations produce ground
motions that attenuate with distance with different behavior than the assumed GMPE used in
ShakeMap.
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Figure 9. ShakeMap uncertainty maps corresponding to southern San Andreas Fault, M7.8 “ShakeQut”
scenario maps shown in figure 8. A) Predicted intensities using 3-D broadband simulations (Graves, 2007); B)
Constrained by magnitude (M7.8), epicenter, and %2 of existing near-real time seismic stations; C) Constrained
by magnitude (M7.8), epicenter, and all near-real time seismic stations; D) Constrained by magnitude (M7.8),
fault location (black line), all near-real time seismic stations, and inter-event hias. The uncertainty color scale
and corresponding letter “grades” are shown in Figure 4.

ShakeMap Atlas

As part of the USGS Prompt Assessment of Global Earthquakes for Response (PAGER)
Project (Wald and others, 2006), we have developed an Atlas of ShakeMaps for historical
earthquakes. The Atlas has emphasis on events that have caused casualties and those for which
secondary constraints (Macroseismic, strong motion, faulting) are available in the literature or via
databases (Allen and others, 2008).
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As an example of the procedure for generating Atlas ShakeMap, the 1994 Northridge,
California earthquake is revisited, but this time with only macroseismic data. The macroseismic
data (Modified Mercalli Intensity, MMI) are from the USGS “Did You Feel 1t?” system (Wald and
others, 1999a). Figure 10A shows the Northridge earthquake ShakeMap resulting from several
hundred intensity observations, and the resulting uncertainty map (fig. 10B). The dense MMI
observations provide shaking constraints over almost the entire near-source region, resulting in a
very low uncertainty grade, even without constraint from the fault location. Note that the addition
of “Did You Feel 1t?” data is particularly useful in some instances to reduce uncertainty for a
ShakeMap. In particular, in many areas of the United States, where few stations are available but
for which population is relatively dense, fairly low-uncertainty intensity maps can rendered rather
quickly (tens of minutes) after the event with the addition of these data.

That the observations in this case are MMI, not strong-motion recordings, means there
would be additional uncertainty associated with the conversion to peak acceleration and velocity
(Wald and others, 1999b). However, the main use of the ShakeMap Atlas events is to derive loss
functions based on MMI from historic earthquakes and their associated fatalities. In that sense, the
fact that the ShakeMaps are constrained by MMI observations does not add additional uncertainty
to the intensity map, only to the peak-acceleration, peak-velocity, and spectral-acceleration versions
of the ShakeMaps. Naturally, intensity assignments themselves are somewhat subjective and entail
their own uncertainties.

- 0.98
I 0.96

GRADE: A (Mean sigma: 0.829) =
0
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Figure 10. ShakeMap Instrumental Intensity map (left) and corresponding uncertainty map (right) for the
1994 Northridge, CA, earthquake. The ShakeMap is constrained by the magnitude (M6.7), epicenter, intensity
observations (“Did You Feel It?” circles) and inter-event bias term (see text). Compare the intensity
distribution and uncertainty maps with those constrained by strong-motion observations shown in figures 3B
and 4B, respectively.
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Figure 11. ShakeMap Instrumental Intensity map (left) and corresponding uncertainty map (right) for the
1999 Koeceli, Turkey, earthquake. The ShakeMap is constrained by the magnitude (M7.6), epicenter, intensity
observations (circles) and inter-event bias term (see text). Compare intensity distribution and uncertainty
maps with that constrained by strong-motion observations shown in figures 6D and 7D, respectively.

A second example of the uncertainties for the ShakeMap Atlas is for the 1999 Izmit,
Turkey, earthquake. In figure 11, we have now added dozens of MMI observations. Augmenting
the fault location and few strong motion stations with the MMI data results in a reasonably well-
constrained map (fig 11, right). For the purposes of loss calibration, the letter grading for such
events can be used for relative weighting of historic events. For a collection of historic earthquakes
ShakeMaps, higher quality ShakeMap can be given greater weighting than more poorly constrained
events, the latter typically being relatively large events without as much MMI data and/or lacking
fault constraints.

Discussion

While we attempt to model the dominant sources of ShakeMap uncertainty, many other
factors also contribute that are not explicitly addressed at this time. For example, with the Global
ShakeMap System, in many cases we rely on hypocentral locations that are constrained from
teleseismic data alone, with few regional or nearby seismic stations. We have yet to quantify the
contribution to shaking uncertainty due to potential hypocentral-location error (latitude, longitude,
and depth), both for the point-source approximation and as it pertains to the relative location of a
finite-fault model. For a regional network with small location errors, this contribution to
uncertainty can be ignored, but for teleseismic-source locations, errors can be on the order of 10
km. A brute force approach would be to iterate over a range of potential hypocentral locations
consistent with the location uncertainty bounds, but one must iterate both horizontally as well as
with depth.

Rapidly-determined magnitudes also are uncertain, but an overall scaling for amplitude
biases can be, in part, accommodated by the ShakeMap bias correction (Wald and others, 2005).
Hence at this time we do not explicitly account for magnitude uncertainty for rapidly determined
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ShakeMaps. For Scenario or Altas ShakeMaps, magnitudes are assumed to be either assigned or
relatively well constrained.

As far as accuracy of the chosen fault dimensions are concerned, we assume that they are
approximately as well known as those used in the derivation of the GMPE’s. Therefore uncertainty
in ShakeMap fault locations is included implicitly in the GMPE uncertainties. Currently, the
uncertainty calculations are limited to the Joyner-Boore distance measure; this needs to be
expanded to subduction zone rupture geometry uncertainty as well. As mentioned earlier, for large
earthquakes, distance-adjusted ground motions are used in ShakeMap. That is, rather than
epicentral distance, the mean distance (1’ in equations 3 and 4) is used, increasing the near-source
shaking amplitudes in comparison to epicentral distance. For subduction geometries, where 3-D
source to site measures apply in any GMPE, this correction approximately holds for shallow
ruptures and does not contribute for deep events.

While it is assumed that good station coverage helps constrain a ShakeMap overall, other
than the overall bias correction (which does improve the entire map quality), stations have little
influence other than in their immediate vicinity. Yet, these data could be used in an automated
fashion to determine source directivity (Boatwright, 2007), or source finiteness (Dreger and
Kaverina, 2000), but currently these approaches are not done as rapidly as ShakeMap in California
is delivered. In fact, the greatest uncertainties are associated with unconstrained source dimensions
for large earthquakes where the distance term in the GMPE is most uncertain; this uncertainty
scales with magnitude (and thus rupture dimension). Since this distance uncertainty can produce
large uncertainties in ShakeMap ground-motion estimates, this factor dominates over compensating
constraints for all but extremely dense station distributions.

Site amplification, both from our approximation of site conditions with geologically- (Wills
and others, 2000) or topographically-based approaches (Wald and Allen, 2007) also add uncertainty
in our shaking estimates. Likewise, potential 3-D effects can affect regions of the map in either a
focused or coherent fashion, resulting in systematic over- or under-predictions of shaking. Both
these effects are not explicitly addressed here. However, when recordings sample these effects (for
example, a station within a basin), interpolation from those observations to nearby interpolated grid
points implicitly include basin effects recorded at that station.

Future Considerations

In our analysis, we describe ShakeMap uncertainty associated with a single-parameter, peak
ground acceleration. We then assume these values can be transferred directly to peak ground
velocity and thus instrumental intensity via the established relations between peak ground
acceleration and velocity with intensity. Intuitively, spatial variability should depend not only on
distance but also on frequency, since amplitude- and frequency-dependent amplification and
attenuation trade off in complex ways. However, there are few well-established studies that
quantify the spatial variability of strong ground motions both as a function of distance from a
recording site and as a function of frequency.

Recent analyses by Goda and Hong (2008) provide the framework for simply replacing the
Boore and others (2003) peak acceleration-based function with frequency-dependent relations.
Goda and Hong (2008) summarize their findings for spatial intra-event correlation versus
separation distance for the parameters peak-ground acceleration (PGA) and peak spectral
acceleration (PSA) as shown in figure 12 (reprinted from Goda and Hong, 2008, their figure 2).
However, note that Goda and Hong (2008) have limited observations within 10 km of each other,
so these regions on the curves are largely predictive. The challenge remains to better constrain
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these relations at close distances. If the Goda and Hong (2008) curves could be verified for near-
station distances, and as a function of peak acceleration, peak velocity, and various spectral-
acceleration frequencies, we might adopt them into the general ShakeMap framework.

While the Goda and Hong PGA spatial correlation trends indicate a very similar functional
form and values as Boore and others (2003), longer-period parameters indicate more spatial
correlation than PGA. This makes sense as small-scale features are more likely to affect high-
frequency energy. Hence, we can consider the current ShakeMap uncertainties to be conservative,
likely overestimating uncertainties at longer periods, near to strong motion observations.

Using Goda and Hong (2008) relations would only affect our near-station terms, not the
dominant, overall calculations for uncertainty due to unknown source dimensions. For
implementation in ShakeMap, we could simply recast the uncertainty values with modified curves
for distances less than 10 km from a station by replacing Equation 1 with Goda and Hong’s
functions, and use their coefficients for PGA and PSA (at 0.3, 1.0, and 3.0 sec) directly, and
approximate peak-ground velocity (PGV) with the 1.0 PSA coefficients. Note, however, that station
proximity reflects low uncertainty. Hence, improved, frequency-dependant, spatial-correlation
functions will only slightly alter the uncertainty maps since overall uncertainty is dominated by
regions of the map where there are few stations and which lack constraints on source rupture
dimensions.

Other approaches to uncertainty calculations are possible, and further efforts are anticipated.
For example, Hok and Wald (2003) addressed ShakeMap uncertainties explicitly in the context of
ShakeMap calculations using a cross validation approach. By omitting individual stations from the
interpolation (one at a time) and comparing estimated and recorded values (at left-out stations),
they determined the uncertainty for that particular map. While this approach has the advantage of
explicitly determining the uncertainty, taking into account all factors that contribute to it, it can
only be determined for that particular event and station distribution. Furthermore, it can only be
computed where there are actual recordings, and, more critically, it does not provide a physical
description of the relative contributions of different sources of uncertainty, which could be used for
subsequent ShakeMap calculations. A more physical explanation also provides incentive and the
basis for which we might reduce uncertainty with more rapid recovery of fault rupture dimensions,
for example.

The added uncertainty for preliminary hypocentral locations and magnitudes determined
rapidly may require additional attention. Yet it is not obvious how to best address this problem.
One could address it in a similar way to our approach of modifying epicentral distance to a mean
distance or simply (although it would be computationally intensive) iterate on a range of locations
and compute the range of motions at each site. These approaches will be explored in efforts to
understand Global ShakeMap shaking, and thus PAGER loss, uncertainties.

An alternative approach for mapping of estimated ground motions and their associated
uncertainties would be to regress GMPEs directly from unknown fault geometry to epicentral
distance as a separate suite of relations and coefficients. This would not be a difficult task if those
developing such relations were encouraged to do so routinely in the process of developing relations
for fault distance. The question remains if there are enough data for large events to make this
correction. In fact, Scherbaum and others (2004a) regressed simulated stochastic data to provide an
analogous approach to source-to-site distance correction since presumably there were insufficient
data to warrant a strictly empirical approach. The approach taken here, after EPRI (2003) produces
a distance correction by iterating over all possible fault locations; in the existing data collections
only a few fault geometries are sampled.

Scherbaum and others (2004b) provides a logical framework for evaluating the relative
merits of GMPE:s for a particular region based on observations from an independent earthquake or
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several events. While there are considerable differences among published relations for any region,
the use of well-established relations (like Boore and others 1997), in conjunction with the built in
data-based bias correction provided in ShakeMap, reduces aleatory uncertainty in overall GMPE
estimates by requiring an overall fit to the data at hand via the bias term.

Finally, Cua and Wald (2008) further explore the Bayesian approach proposed by Ebel and
Wald (2003) to use both observed intensities and ground motions, along with ground motion
prediction equations, to estimate peak ground motions on observed-intensity and strong-motion
datasets. Cua and Wald (2008) propose a weighted-average approach for incorporating various
uncertainties associated with these different types of data (observed peak ground motions, observed
intensities, and predictions from ground motion prediction equations) into the ShakeMap ground-
motion and intensity-estimation framework. For example, they allow assignment of the uncertainty
associated with converting from observed MMI to peak ground-motion parameters and use this
explicitly when combining observed (and/or converted) peak ground motions with estimated
ground motions.
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Figure 12. Estimated spatial intra-event correlation versus separation distance (Figure 2 of Goda and Hong,
2008) for PGA, PSA at 0.3, 1.0, and 3.0 sec. Goda and Hong provide separate coefficients for both the larger as
well as the geometric mean of the two horizontal components.
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Conclusions

Algorithms for quantifying and qualifying uncertainties associated with USGS ShakeMap
ground motions have been developed and integrated into the suite of ShakeMap products. The
uncertainty values computed consist of latitude/longitude grid-based multiplicative factors that
scale the standard deviation associated with the ground-motion prediction equation (GMPE) used
within the ShakeMap algorithm for estimating ground motions. The resulting grid-based
"uncertainty map" is essential for probabilistic evaluation of losses derived using ShakeMaps as the
hazard input.

In addition to a spatially-dependant, quantitative assessment, many users may prefer a
simple, qualitative grading for the entire ShakeMap. To this end, an uncertainty letter grading ("A"
through "F", for high to poor quality, respectively) based on the uncertainty map is introduced. A
middle range ("C") grade corresponds to a ShakeMap for a moderate-magnitude earthquake
suitably represented with a point source location. Lower grades “D” and “F” are assigned for larger
events (M>6) where finite source dimensions are not yet constrained. The grading scale now
implemented in ShakeMap will allow one to quickly gauge the appropriate level of confidence
when using rapidly produced ShakeMaps as part of the post-earthquake critical decision-making
process and for qualitative assessments of archived or historical earthquake ShakeMaps (Allen and
others, 2008).

For ShakeMap, ground-motion uncertainty at any point is dominated by two main factors:
(1) the influence of any proximal ground-motion observations, and (i1) the uncertainty of estimating
ground motions from the GMPE, most notably elevated uncertainty due to initial, unconstrained
source rupture dimensions. The uncertainty is highest for larger-magnitude earthquakes when
source finiteness is not yet constrained and, hence, the site-to-source distance is also uncertain.

The addition of ground-motion observations (or observed macroseismic intensities)
mitigates uncertainties, reducing uncertainties over data-constrained portions of the map. Higher
grades ("A" and "B") correspond to ShakeMaps with constrained fault dimensions and numerous
stations, depending on the density of station/data coverage. Thus, the letter grade can change with
subsequent ShakeMap revisions if more data are added or when finite-faulting dimensions are
established. The greatest uncertainties are associated with unconstrained source dimensions for
large earthquakes where the distance term in the GMPE is most uncertain; this uncertainty scales
with magnitude (and thus rupture dimension). Since this distance uncertainty produces such
potentially large uncertainties in ShakeMap ground-motion estimates, this factor dominates over
compensating constraints for all but extremely dense station distributions. Point observations only
constrain nearby portions of the map.

While we have addressed the dominant sources of ShakeMap uncertainty, other
uncertainties have not been addressed specifically. Additional effort could be focused on
uncertainties in source location and magnitude, and geologically-based site amplification, for
example. However, many of these uncertainties have been implicitly or explicitly addressed in
other calculations. For example, location uncertainty, whether hypocentral or measured from a
finite fault is implicit in the derivation of existing GMPEs, so as long as these same uncertainties
apply in near-real time applications like ShakeMap, these uncertainties are covered.

Shaking is well constrained near seismic recording stations, and less well constrained away
from such stations. A quick glance at any ShakeMap (for example, for the Northridge earthquake
peak ground velocity map shown in Figure 1) allows a quick assessment of where the map is well
constrained and where it is not. While we have shown that the actual uncertainties for a significant
earthquake can be complicated, we must not lose sight of the fact that in areas of dense
instrumentation, the maps are well constrained. Hence, a glance at the peak-xground-motion maps
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(where stations are more visible than on the intensity maps) can often provide a proxy for
uncertainty. However, for more sparsely instrumented regions, the new uncertainty maps
themselves become an important part of the picture, particularly when making post-earthquake
response decisions or for computing losses based on ShakeMap parameters.
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