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Abstract

We describe the application of efficient numerical recursive filters to the task of convolving a
spatial distribution of ‘forcing’ terms with a quasi-Gaussian self-adjoint smoothing kernel. In
the context of variational analysis, this smoothing operation is interpreted to be a either a
covariance function of background error, or a contributing component to a covariance func-
tion of non-Gaussian profile formed by the superposition of a number of such quasi-Gaussian
smoothing operators. A superposition of positively-weighted quasi-Gaussian smoothers enables
a useful range of covariance profiles to be synthesized which, in their idealized univariate and
spatially homogeneous forms, imply power spectra that exhibit tails substantially fatter than
those corresponding to the single Gaussian of approximately equivalent width. As a conse-
quence, these synthetic covariances are more suitable statistical representations of background
error than single Gaussians in the typical situations where a broad dynamical range of scales
contribute significantly to this error.

A further expansion of the potential range of synthetic covariances is achieved by combina-
tions that also involve the negative-Laplacians of the basic component smoothers, thus enabling
the negatively-correlated side-lobes of the covariances typical of some background errors to be
more faithfully modelled. The methods we describe are not restricted to the production of
spatially-homogeneous covariances; by spatially modulating either the superposition weights or
the digital filtering coefficients themselves, it becomes possible to synthesize operators consis-
tent with the properties of covariances which display adaptive variations of amplitude, scale and
profile shape across the geographical domain. This is clearly desirable when the background
itself derives from earlier data whose spatial distribution exhibits marked inhomogeneities of
density or quality, and it is probably desirable also in the case of varying synoptic regimes
within the domain.

Among the computational aspects of the recursive filters, we treat the problems of periodic
and nonperiodic boundary conditions and an approach to achieving efficient parallelization.

1. INTRODUCTION

There are many methods available for objectively analyzing the meteorological data required
to initialize a numerical weather prediction model (for example, see Daley 1991). Those meth-
ods based on formal statistical principles (e.g., Gandin 1963, Lorenc 1986, Parrish and Derber
1992, Lorenc 1997, Courtier et al. 1998), which permit proper account to be taken of multi-
variate aspects of the problem, have now largely superseded the overtly empirical methods of
‘successive corrections’ (Bergthorssen and D66s 1955, Cressman, 1959; Barnes, 1964). Never-
theless, for specialized applications, the empirical methods continue to enjoy the advantages of
greater computational efficiency and the ability to adapt more flexibly to the typically large
inhomogeneities of density and quality of the available data. While the high efficiency of em-
pirical methods becomes progressively less of a critical factor as available computational power
continues to increase, adaptivity remains a factor of considerable importance in circumstances
where the day-to-day variability of data quality and quantity are hard to predict before-hand,



such as occurs in the processing of satellite sounding data. In this context Hayden and Purser
(1995), following up on the work of Purser and McQuigg (1982), developed a numerically ef-
ficient and spatially adaptive analysis scheme using spatial smoothers. Each spatial smoother
was built up of more basic numerical operators consisting of rather simple recursive filters acting
unidirectionally upon the gridded data residuals.

The numerical efficiency of these basic operators can also be turned to advantage within a
statistical analysis scheme, specifically in the synthesis of the effective covariance-convolution
operators needed by the descent algorithms of the large-scale linear (or, at worst, weakly non-
linear) solvers involved. The Statistical Spectral Interpolation (SSI) of the National Centers for
Environmental Prediction (NCEP) is an example of an analysis scheme in which the spectral
representation of the background error covariance is employed directly (Parrish and Derber
1992). Methods of this type are inherently limited in their ability to deal conveniently with
geographical inhomogeneities. One motivation of the present study was to develop the tool of
recursive filters to allow the operational three-dimensional variational analysis (3DVAR) scheme
to accommodate spatial inhomogeneities in the background covariance. Even inhomogeneous
covariances must preserve the symmetry of self-adjointness upon which the success of many
iterative solution algorithms depend. While this was not a property required by the smoothers
employed in the empirical (nonstatistical) analysis of Hayden and Purser (1995), it can be
engineered without great difficulty, as this paper will demonstrate.

A brief review of the ideas that underlie 3DVAR is given in section 2 in order to clarify the
points at which the recursive filter plays a part. In section 3 we set forth the relevant theory
pertaining to the construction of basic recursive filters capable of being forged into convolution
operators reasonably representing the qualities desired by modelled covariance-convolutions
within an adaptive analysis scheme with a uniform cartesian grid and with homogeneous co-
variances. Like the Gaussian covariances of Derber and Rosati (1989), which are obtained by
multiple iterations of a diffusion operator, the basic recursive filters are crafted to produce
approximately Gaussian smoothing kernels (but in fewer numerical operations than are typi-
cal in the explicit diffusion method). Some of the technicalities discussed in this section are
treated in greater detail in the appendices. Section 4 treats some more general cases where the
grid spacing may vary smoothly (but still assuming that it remains orthogonal) and where the
spatial scale of the covariance function may smoothly vary (but still assuming local isotropy of
the scale parameter). A discussion of the special case of polar grids is provided, with suggested
approaches to overcome the difficulties associated with the polar coordinate singularity. Sec-
tion 5 deals with specific proposals for the construction of non-Gaussian parameterized families
of covariance models based on linear superposition of the the quasi-Gaussian ‘building blocks’
that the recursive filters provide. One covariance family that we have found to be extremely
convenient to use and beneficial in applications comprises bell-shaped distributions with signif-
icantly fatter tails than the Gaussian. We discuss the efficient construction of approximations
to these fat-tailed distributions that allow a broader dynamical range of scales in the analysis
increments to be assimilated. In the concluding section we touch on the problems of managing
the potential for spatial adaptivity achieved by the techniques presented here. We also offer
some thoughts on the prospects of extending the freedom to provide inhomogeneous but essen-
tially isotropic covariances to more general constructions, available through refinements of the
filtering technique, by which even this restriction of local isotropy may be profitably relaxed.



2. 3DVAR

In this section we attempt to follow the notation of Ide et al. (1997), writing the abstract
vector representing the atmospheric state as x, with ‘background’ and ‘analysis’ versions of
this indicated by subscripts, that is: x; and x,. The component of error in the background is
denoted ¢:

Xp =X+ €. (2.1)

The observational data are collected into another abstract vector y, whose components are
related to the state vector x through the application of a generalized, possibly nonlinear inter-
polation operator H together with an effective measurement error €g:

Yo =H(x) + €. (2.2)

The statistical characteristics of the errors ¢, and ¢, are quite difficult to describe in complete
detail owing to numerous complicating factors. For example, the statistics of these quantities
are not really well described by normal distributions (otherwise there would be no need to pay
special attention to quality control and nonlinear balancing); the error characteristics of the
background are usually dependent upon the geographical location, the season and the synoptic
situation; the observation errors are frequently biased or contain components of mutual corre-
lation that defy simple description. Nevertheless, even a partial accounting for the statistical
behavior of errors, in the form of a relatively simple statistical analysis scheme, can provide
a valuable objective way to make the information from new observations available to a nu-
merical forecasting system. Among the common simplifying assumptions, we normally assume
unbiasedness:

() = 0, (2.3)
(€0) =

The covariance, R = (¢,€l), of observational error is assumed to be diagonal, equivalent (for
normal statistics, at least) to assuming the observational errors are statistically independent.
The corresponding covariance, B = (ebe{), of background error, however, is never assumed to
be diagonal in its representation based on the state-space constructed from the gridded value
components; the characteristically smooth form in space of background errors implies that
neighboring points have errors, in fields of the same type, that are strongly positively corre-
lated. Although the principles of variational analysis can accommodate strong nonlinearities if
required, it is often numerically convenient to exploit the typically weak nonlinearity of H by
approximating the effects on H(x) of small increments of x, using the linearization #:

Hdx = dH(x). (2.5)

The ‘primal’ variational principle in 3DVAR seeks the minimum over x of the penalty
function £1(x) defined by:

2L1(x) = (x —xp) "B (x —x3) + (y — H(x)"R™(y — H(x)), (2.6)



which may be justified by minimum-variance arguments or, more generally, by considerations
of Bayesian estimation when nonlinearities become significant (for example, see Lorenc 1986).
The solution, x = x,, then obeys:

B (x, — %) = H'R ' (y — H(x)), (2.7)
and hence, must define an increment of the form,
X, — X = BHTT, (2.8)

where

f=R '(y — H(x)). (2.9)

The inherent smoothness of the background field errors ¢, and hence that of the covariance B
of these errors, is therefore imprinted on the analysis increments themselves.

The dimensionality of f (the number of independent data) is typically much smaller than the
dimensionality of x (the number of gridded state values). If we neglect the effects of nonlinearity
(which can be accommodated easily by appropriate refinements) we find that, instead of solving
for x directly, we can instead first solve for the smaller vector f in the implied ‘dual’ variational
principle that minimizes £o(f) defined by:

2L, (f) =T (R + HBH”)f — 2f"d, (2.10)

where d is the ‘innovation’:
d=y, — H(xp). (2.11)

This duality is discussed by Courtier (1997), who shows that the primal and dual forms
imply essentially identical condition numbers for the alternative large-scale symmetric-matrix
linear inversion problems they imply when only the most basic preconditioning strategies are
employed in each case. More ingeneous strategies of preconditioning based on data clustering,
as recently proposed by Cohn et al (1998) and Daley and Barker (2000), would seem to favor the
adoption of the dual form, but consideration of some of the nonlinear aspects of the problems
make the more direct estimation of analysis increments via the primal form more attractive.
Regardless of which form of 3DVAR is adopted, given that the sizes of the symmetric ‘system
matrices’ are too large to admit direct solution in either case, one must rely on iterative methods,
such as conjugate gradient or quasi-Newton solvers, to converge towards a practical solution.
Then one finds that the most costly part of each iterative step of such a solution algorithm is
the operation of multiplying some grid-space vector v by the covariance matrix B (or at least,
a sequence of operations whose net effect and cost is equivalent to performing this operation).
This effort has to be expended precisely once per iteration whether treating the primal or the
dual form of the problem. Even one matrix-vector multiplication of this form is prohibitively
expensive to perform every iteration if it is computed explicitly with a full matrix having the
dimensionality of the gridded state x.

The difficulty is tackled by progressively reducing an operation of the form Bv into smaller,
less costly factors. In the first step, the multivariate structure of B is broken apart by the
judicious selection of a set of nonstandard analysis variables for which the contributions from



B naturally separate out. For example, a single variable representing the quasi-geostrophically
balanced combination of mass- and rotational wind-fields can be attributed a univariate spatial
covariance for its background errors quite independently of the corresponding spatial covariance
for the residual unbalanced rotational wind component. Meanwhile, the divergent wind field
can be treated independently of either. Further steps in the program of reducing the operator
B might be, next, to carry out a crude separation of a few additive components of the operator
on the basis of their characteristic spatial scales. If this can be done to render the resulting
operator components into Gaussian forms, then, in the absence of anisotropies obliquely oriented
with respect to the grid, the Gaussians themselves may be factored into the three respective
coordinate directions. Finally, along each single dimension, a final computational economy may
be gained by employing a spatially recursive filter, carefully constructed to mimic the required
Gaussian convolution operator, but at a fraction of the still considerable cost of applying directly
the explicit Gaussian convolution operator itself. It is the objective of the following sections
to reveal precisely how such a recursive filter may be fabricated and applied. However, it is
appropriate to reiterate that the virtue of a recursive filter used in this way derives merely
from its inherent computational efficiency, which, owing to the unique factorization properties
of multidimensional Gaussians, can only be exploited in two or three dimensions when the
effective convolution kernels are of approximately Gaussian form. We do not wish to imply
that the Gaussian form is inherently desirable in data assimilation. On the contrary, careful
investigation of the spatial profiles of forecast background error (Thiébaux 1976; Thiébaux et al.
1986; Hollingsworth and Lonnberg 1986) reveal covariance functions that cannot be reconciled
with the Gaussian shape alone. But, by treating the two- or three-dimensional quasi-Gaussian
filter combination as a relatively cheap ‘building block’, a far larger range of possible profile
shapes becomes accessible, by the superposition of appropriately weighted combinations of
quasi-Gaussians of different sizes and by the application of the negative-Laplacian operator to
such components in order to induce the negatively-correlated side-lobes characteristic of some
components of background error. Thus, the motivating consideration for using recursive filters
in this context is predominantly that of computational efficiency together with the recognition
that more much general forms become available through the exploitation of superposition.

3. HOMOGENEOUS RECURSIVE FILTERING THEORY

(a) Quasi-Gaussian recursive filters in one dimension
Let K/6z? denote the finite difference operator:

K(4)i/03% = —(hi—1 — 24p; + ;1) /07, (3.1)

approximating the differential operator, —d?/dz?, on a line-grid of uniform spacing dz. The
spectral representation of the operator at wavenumber k (wavelength 27 /k) is

K(k) = (2 sin (%))2

Inverting this relationship, we obtain a formula for k2 in terms of, K:

4 KU2\\?
2 .
k* = 522 <arcsm ( 5 )) .




Clearly, the same formula relates operator —d?/dz? to operator K; in fact, the algebraic ma-
nipulations we set forth here can be regarded as an application of the ‘calculus of operators’
(Dahlquist and Bjorck 1974, p. 311). Using the standard expansion:

o
arcsin(z) = Z %22 2l <1 (3.2)
=0
Where 1 (20— ! 11 113 1135
i— 1! . 3.
= . =1 —.= —.— —— 3.3
T2 (@) 32 524 7246 (3:3)
we may obtain a power expansion for k2022, and thence, the expansions for the term, (k26z2)":
J>i

The coefficients, b; ;, which are all positive and rational, are listed in Table 1 for 5 <6.

TABLE 1. COEFFICIENTS b; ; FOR QUASI-GAUSSIAN FILTERS UP TO DEGREE SIX

) j=1 Jj=2 j=3 j=4 j=5 j=6
2 1 : A
; 1 : % &
' 1 : %
5 1 3
6 1

Consider the differential operator, D,

a’ d? at d* 1 a2 &2 \"
Dm=1—-——"—+—+—F+—|—— 3.5
() 2 dr? + 214 dz* + n! 2 dr?2 ) 7 (3:5)
whose spectral representation is:
A a’k? a*k? 1 [a2k2\"
or, with c =a/dz,
A k2622 ot (k2622 2 o (2522 \"
— 2 - R
Since,
.o a’k?
Jim Dy = exp(—-), (3.7)



the substitution of each power series (3.4) up to degree n for the powers of k2 into (3.6) gives
us a way of approximating this exponential function in terms of K:

2\2 n 1 o2\" .
n=1+7 me ]+—<—) Zbg,JKJ+ — (;) b K" (3.8)

Correspondingly, there is a finite difference operator, ’Dz‘n), composed of the nth-degree expan-
sion of K implied by this approximation which, following a rearrangement of terms, we may

write:
o? byo [ o2 2 n o? g
b1 (7> +5 <7> ] Z ( ) ] K". (3.9

Note that, owing to the positivity of all the coefficients b; ;, this operator is positive definite
and therefore possesses a well-defined inverse. Note also that, for 0 > 1, the only coefficients
in (3.9) that remain significant are the ‘diagonal’ ones, b;; = 1, yielding simply the truncated
Taylor series for the exponential function of 62K /2. Shortly, we shall examine the practical
impact of the off-diagonal components, b; j, j > i, but first we describe the process of extracting
from the above algebraic developments a practical class of smoothing filters.

The reciprocal of the function exp(a?k?/2) in (3.7) is a Gaussian function in k¥ and is the
Fourier transform of a convolution operator (on the line z) whose kernel is also of Gaussian
form. Provided we can find a practical way to invert the operator equation,

* 02
D(n) =1+ bl,l 7K +

for a given input distribution, p, the resulting output, s, will be an approximation to the
convolution of p by the Gaussian function whose spectral transform is the reciprocal of the
right-hand-side of (3.7). The approximation, (Dz‘n))_l, to this convolution is what we refer to
as a ‘quasi-Gaussian filter’. The common centered second-moment of operator D(,) and its
approximation, Dz‘n), is exactly —a?, so a is a convenient measure of the intrinsic distance scale
of the smoothing filter implied by the inversion of (3.10). A useful fact is that the square of
the intrinsic scale of the composition of sequential smoothing filters is the sum of squares of the
scales of the individual components. Also, as a consequence of the statisticians’ ‘central limit
theorem’ (e.g., Wilks 1995) applied to convolutions in general, the effective convolution-kernel
of such a composition of several identical filter-factors resembles a Gaussian more closely than
does the representative factor. Thus, provided it becomes feasible to invert (3.10), we possess
the means to convolve a gridded input distribution with a smooth quasi-Gaussian kernel, at
least in one dimension.

As a matrix, DE“n) is banded and, for an infinite domain, symmetric. Conventionally, the
linear inversion of a system such as (3.10) might be effected by employing an LU factorization
(Dahlquist and Bjorck 1974) of Doy
AB, (3.11)

with lower-triangular band matrix, A4 and upper-triangular band matrix B, allowing the solution
to proceed as two steps of recursive substitution. On an infinite grid, the same principle pertains,

n)_



but with the guaranteed simplification of: (i) a translational symmetry ensuring that every row
of A is identical (allowing for the trivial translation) and every row of B is identical; (ii) ordinary
matrix symmetry by which we can ensure that B is simply the transpose of A. In this case,
the LU decomposition of ’Dz‘n) is also of the symmetric, or Cholesky type (Dahlquist and Bjorck
1974).

In the two stages of solution,

Aq = p, (3.12)
Bs = q, (3.13)

the explicit recursions of the back-substitutions are the following basic recursive filters:

n

G = Bpi+) g, (3.14)
j=1
n

si = Bai+ Y ;siv (3.15)
i=1

which are conveniently referred to as the ‘advancing’ and ‘backing’ steps respectively since, in
the first, index 7 must be treated in increasing order while, in the second, it must be treated in
decreasing order, in order that the terms on the right are already available at each step. Note
that the correspondences between notations of (3.12), (3.13) and of (3.14), (3.15) are:

Aii=Bi; = 1/B, (3.16)
Aii—j=Bii+j = —aj/B, j€[l,n]. (3.17)

Defining the total ‘substance’ implied by the distribution p to be ), dz p;, the operator D?n),
and hence its inverse, preserve this quantity. By symmetry, the factor operators, A and B must
therefore also preserve substance, implying that:

5:1—§njaj. (3.18)
7j=1

The task of distilling the coefficients «; from the parameters defining Dzkn is somewhat
technical and is relegated to Appendix A. Filters may be constructed at different orders, n, and
with or without the refinements implied by the off-diagonal coefficients, b; ;, for j > i. Forn=1
the filter response comprises back-to-back decreasing exponential functions, which Fig. 1a shows
(dashed curve) in comparison to the Gaussian function (solid curve) of the same width of one
grid unit. Better approximations to the Gaussian are obtained after application of the second-
order filters, as shown in Fig. 1b, and fourth-order filters, shown in Fig. lc, for the case of the
filter with only the diagonal coefficients b (short-dashed curves) and with all the b-coefficients
(long-dashed curves). We see that the advantage of keeping all the coefficients is greater at
higher order, where they make the resulting filter response a significantly better approximation
to the intended Gaussian function. However, the alternative treatments of the b coefficients are
virtually indistinguishable at smoothing scales of a few grid units, as the truncation errors of



the component numerical derivative operators become insignificant in comparison to the error
resulting from the finite truncation of the series for the Gaussian employed in the construction of
the filter operator. The cost of applying the filters with or without the off-diagonal b coefficients
is the same; therefore, we always adopt the more accurate formulation that includes the off-
diagonal coefficients.

We have described the idealized case of operators acting on data extending indefinitely in
both directions. In practice, we are confronted with geometrical constraints, either in the form
of definite lateral boundaries to the domain, or as periodic conditions appropriate to a cyclic
domain. Fortunately, it is possible to generalize the application of the advancing and backing
recursive filters to both of these situations. Appendix B treats the case of lateral boundaries
and shows how the effect of a continuation of the domain to infinity can be simulated by the
imposition of appropriate ‘turning’ conditions at the transition between the advancing and
backing stages. Appendix C treats the case of periodic boundary conditions. In both of these
special cases the main part of the filtering algorithm and the basic filter coefficients employed
are the same as in the case of the infinite domain. By a generalization of the treatment used
in the cyclic case, one may efficiently distribute the recursions across multiple processors of a
massively parallel computer, as we describe in appendix D.

(b) Quasi-Gaussian filters in two dimensions

Let z and y be horizontal Cartesian coordinates, k£ and [ the associated wavenumber com-
ponents. Then in two dimensions, we can exploit the factoring property of isotropic Gaussians:

2 2 21.2 272
exp (—%) = exp (—%) exp (—%) , (3.19)

where p = (k? + 12)1/ 2 is the total wavenumber. In terms of basic one-dimensional Gaussian
smoothing filters, D@ and D v) ) operating in the z and y directions, a two-dimensional
isotropic filter, G, (lso of Gau551an form, results from the successive application of the one-
dimensional factors, Dgog) and Dggi). For example, an input field, y, is smoothed to produce
the output field, 1, by the convolution:

'(p(xl) = / / Ga(xl, XQ)X(XQ)dZEQ d’y2 = Ga * X, (320)

where

() (2)
G, = D(oo) * D(Oo)

The crucial significance of the Gaussian form for the one dimensional filters is that this form
is the only shape which, upon combination by convolution in the x and y directions, produces an
isotropic product filter. In order to generalize our filters to alternative shapes, while preserving
two dimensional isotropy, we shall always attempt to base the construction of the more general
filters on the ‘building blocks’ supplied by the quasi-Gaussian products of the approximations,
DEZC))) and D(gg , to the true Gaussian smoothers. But we must first establish what is the
minimum oréer of such a filter that will preserve the isotropy of the product combination, at

least to a degree that ensures that any residual anisotropies are not obtrusively obvious.



Fig. 2 depicts the results obtained by smoothing a delta function placed at the center of
a square grid. Fig. 2a shows the result of a single application of the first-order filter, D(y), in
the x and y directions. This result is clearly neither smooth nor even approximately isotropic.
Figs. 2b and 2c¢ show the results obtained by using the filters of orders two and four. We see
that the appearance of isotropy is not adequately attained until the order exceeds two, but the
fourth-order filter shown in Fig. 2c¢ seems to provide an excellent approximation to the isotropic
Gaussian. For applications in data assimilation, it is usually worth the cost of applying a filter
of at least fourth-order if the filter is to be applied only once in each of the orthogonal grid
directions. For a roughly equivalent cost, one may also apply the simple first-order filter four
times in succession (but with a scale only a half as large in each instance); the result is shown
in Fig. 2d, but is clearly inferior to the use of the single fourth-order filter.

Very often, the physical variables of interest in an analysis are derivatives of the variables it
is convenient to base the covariance model on. For example, covariances of the steamfunction
or velocity potential (scalars) are often more convenient to handle than the derived covariances
among velocity components at two locations. Since we may wish to employ the results of our
filters as building blocks of such differentiated covariances, it is as well to examine the derivatives
of fields analogous to those of Fig. 2. In order to permit any departures from isotropy to stand
out more clearly, we take the Laplacian of the result of smoothing the delta function. Fig. 3
shows three such results (with a slightly smaller scale than was used in Fig. 2), involving single
applications (in z and y) of D,y with n being 2, 4 and 6 in panels (a), (b) and (c). Even more
so than in Fig. 2, we see that it is not until we adopt at least about fourth-order filtering that
we obtain an acceptable degree of isotropy. For reference, the ‘right answer’ obtained using the
Laplacian of the true Gaussian, GG,, is shown in Fig. 3d.

(¢) Numerical robustness and multigrid refinements

A recognized problem with high-order recursive filters (e.g., Otnes and Enochson, 1972)
is their susceptibility to numerical noise, especially as the filtering scale becomes significantly
larger than the grid scale. A natural remedy, in cases where the grid dimensions permit it, is
to employ a ‘multigrid’ strategy. A general discussion of such methods can be found in Brandt
(1977). Essentially, the field to be smoothed at a certain filtering scale is first transferred (by
adjoint-interpolation from the initial fine grid) to a grid whose coarseness is comparable with,
but still sufficiently resolves, this smoothness scale. The smoothing is performed by the high-
order recursive filter on the generally somewhat coarser grid, now without risk of numerical
noise, and at a numerical cost that is usually significantly less than the cost of the equivalent
operation applied to the original fine grid. The resulting smooth field is finally interpolated
back to the fine grid. The implied operator representing this combination of steps remains self-
adjoint and, provided the order of accuracy of the interpolations is large enough, no discernable
hint of roughness appears in the resulting smooth output.

The simplest multigrid structure is one in which the spacing in the successive grids doubles.
Then, except for the possible overlaps (which are desirable in the case of bounded domains
in order to preserve the same centered interpolation operators everywhere), each coarse grid
is a subset of its finer predecessor. For cyclic domains, this simplification obviously works
only when the periodic grid dimensions are divisible by powers of two. For bounded domains,
the judicious use of overlaps enables one to adopt the scale-doubling arrangement without
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numerical restrictions on the grid dimensions. Interpolation is assumed to occur only between
adjacent grids of the hierarchy. Interpolation from a coarse grid to the next finer grid in two
dimensions is accomplished by passing through an intermediate stage in which one dimension is
‘fine’ and the other is ‘coarse’. In this way, only one-dimensional interpolation operators need
be considered. Assuming each coarse grid overlaps the next finer grid by a sufficient margin,
all interpolations can be performed using the same standard centered formula. Table 2 lists
the coefficients for mid-point interpolation from a uniform grid at (even) orders of accuracy
between two and twelve. Experience suggests that sixth-order interpolations are adequate for
most purposes.

TABLE 2. COEFFICIENTS w; FOR UNIFORM GRID MID-POINT INTERPOLATION
AT ORDERS OF ACCURACY, n, UP TO 12.

n Y YWi/2 YWz/2  YWs/2 YWr/2  YWgy2  YWi1/2
2 2 1

4 16 9 -1

6 256 150 —25 3

8 2048 1225 —245 49 -5
10 65536 39690 —8820 2268 —405 35
12 524228 320166 —76230 22869 —5445 847 —63

If a single quasi-Gaussian smoothing is to be performed, then it might seem unduly compli-
cated and, perhaps, inefficient to perform the interpolations step-wise through the intervening
hierarchy of grid scales when a single grid-to-grid interpolation would suffice. However, for the
purposes of simulating a background covariance operator, the simple Gaussian form is inap-
propriate and the more robust and versatile covariance operators are those synthesized from
several Gaussians drawn from a range of charactersitic scales. In this context of multi-Gaussian
synthesis, the value of the multi-grid approach becomes more strikingly evident, for it not only
avoids the risk of numerical noise, but also enables a broad and numerous spectrum of com-
ponent Gaussian filter building blocks to be combined together in an efficient synthesis that
admits considerable control of the combination’s amplitude, shape and overall scale. We shall
return to a more detailed discussion of this topic in section 5.

4. INHOMOGENEOUS GENERALIZATIONS

In this section we treat cases in which the grid remains orthogonal and smooth in terms of
its resolution, but not necessarily uniform or without curvature. At the same time, we treat the
case in which the filter remains locally isotropic, but whose smoothing scale is permitted to vary
geographically. Polar grids, such as plane polars or global latitude and longitude grids, possess
special rotational symmetries which can be exploited in the case of the spatially homogeneous
smoothing filters which respect those symmetries. But polar grids also present unique difficulties
involving the polar singularities themselves, which then require special corrective measures to
be applied to the filters. We pay attention to these problems in this section and suggest some
of the remedies that are possible.
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(a) Inhomogeneities of grids or filter scales

One should not be led to believe that our construction of quasi-Gaussian filters is necessarily
restricted to perfectly uniform cartesian grids. On a smoothly varying nonuniform grid in one
dimension, the tridiagonal discretization of the differential operator d?/dz?, and polynomials
of the discretization by which the requisite powers of d?/dz? are approximated, still lead to
banded matrices that can be rendered symmetric by a similarity transformation with a diagonal
matrix related to the metrical properties of the grid. Also, we can generalize the conditions
of homogeneity of the smoothing scales to incorporate the effects of a scale that can vary
smoothly across the grid, again, without invalidating the property of self-adjointness. However,
this additional generalization requires that, in all appearances of the operator, (—(a?/2)d?/dz?),
in the counterpart to the polynomial (3.5) of this operator, a form of the second derivative factor
is substituted which is self-adjoint even when a is a function of z. Of the qualifying possibilities,
the one that is most convenient in practice and which leads to a substance-conserving filter, is
the one most closely identified with the operation of a diffusive process:

d a*(z) d

Cdr 2 dz

The operator, (4.1), would be appropriate when the grid lines along which z varies are

all parallel but, in a general orthogonal curvilinear grid, this is no longer true. The final

generalization we add in this section is the accommodation of grids with converging or diverging

grid lines. We do this by including a metric term, 7, whose reciprocal is the density of z-grid

lines so that 7 itself may be thought of as the line or area measure (according to whether the

grid is two- or three-dimensional) of the interface orthogonal to the grid line and attributed

to it in finite difference operations. Using partial derivatives to emphasize the implied multi-
dimensionality, the operator we need to generalize (4.1) is:

(4.1)

—_— T (4.2)

which is self adjoint in the sense of an inner-product defined:

(&wz/guﬁ@ywwx (4.3)

Let z; be the main grid coordinates for integers 7 and let the intermediate staggered grid of
points such as z;,1/; be a smooth interpolation from it. Likewise, by smooth interpolation, we
assume a and 7 to be available at the main and staggered grids. Define

om; = Tit1/2 — Ti—-1/2s (4.4)
5$i+1/2 = Tj41 — Ty4- (45
Recalling that o = a/dz, the simplest consistent discretization of the operator (4.2) is

10 a%(z)0s 1
<———T——>i ~ m [Ti—1/2a1271/2(53i—1/2)/537i—1/2_Ti+1/2a12+1/2(53i+1/2)/5xz‘+1/2]

1
2u;

[Vic1202 1o (=it + 82) + Vig1 /2071 j2(5i — si11)] (4-6)
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where

V; = Tiéxz-, (47)

defines the local grid cell measure (area or volume). We can relate this operator to a tridiagonal
matrix, K, that serves to generalize the K of (3.1). A representative row, i, of K, is defined by:

2).
Kii1 = — ooy (4.8)

(1/0’2)1'(1/0'2),'_1 ’

(vo?)i—12 + Wo?)is1/2

L 4.
Kii vo?); / (9
(vo?)it1)2
K. - , 4.10
s ANz (4.10)

in terms of which, the finite difference operator of (4.6) is obtained:

(_137@@> . ~ % (%UKO’\/; s) . (4.11)

where o and /v are the diagonal matrices formed from the values o; and ,/v;. The components
of the matrix K obey the approximation,

(K1, K, K j11) = [—1,2, —1] (4.12)

very closely when a, dz and 7 are all smooth and slowly varying in z, tending to these values
in the limiting case of constant a, dz and 7. Having found a consistent self-adjoint, but low-
order accurate numerical approximation to the appropriate second derivative, the suggested
refinement of accuracy available through the use of the coefficients by ; is:

10 a2(x) 0 1

Taking the exponential of this operator, but truncating all the terms comprising matrices of
half-bandwidth exceeding n, we obtaining the sought-for generalization of Df, in (3.9):

1
Diyy = Noh ( Z b, Kio ) (4.14)

While the coefficient-finding method of Appendix A is no longer applicable in the general
inhomogeneous case, Cholesky factorization is still possible, since at least the matrix sandwiched
between diagonals, 1/4/v and /v of (4.14) remains symmetric. This factorization provides the
means to construct the associated advancing and backing recursive filters. However, these filters
now have coefficients varying in space and so are slightly more complicated to apply. Also, the
method of setting end conditions described in Appendix B can no longer accurately simulate
the indefinite continuation of the grid beyond a boundary in general, but the imperfections that
result are often barely noticeable in practice.
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In order to control the amplitude of the covariance synthesized from inhomogeneous filters
of the kind we have described we need to estimate, for each point in the domain, the amplitude
of the result of applying the sequence of basic filters to a unit impulse located at this same
point. The homogeneous case conforms to the Gaussian model. The Gaussian model with
constant scale parameter a for one direction corresponds to diffusion in this direction for ‘time’
t when,

2Dt = a? (4.15)

and the impulse-response value of the result is just (47Dt) /2. In more than one dimension, the
diffusivity generalizes to a tensor and the appropriate generalization of the impulse-response,
|47rDt|_1/ 2 involves the determinant of D. But inhomogeneity of scale, which we may interpret
as inhomogeneity of the effective ‘diffusivity’ D in the diffusion analogue of our filters, leads
to impulse-response functions which differ slightly from the profile calculated on the basis of
the Gaussian model. An asymptotic analysis of this difference, which is outlined in Appendix
E, provides us with a valuable practical refinement to the Gaussian amplitude approximation.
It emerges from this analysis that, to a good approximation, the impulse-response at a given
point of simulated inhomogeneous diffusion acting for ‘time’ ¢ is the same as the amplitude
obtained by diffusing for duration ¢ with an alternative homogeneous diffusion process whose
constant diffusivity D is a local weighted-average of D. The appropriate weighted average can be
obtained by applying to D the original diffusion process, but for only half the usual ‘time’, ¢/2,
and evaluating the result of the smoothed diffusivity field D at the point under consideration.
The refinement is valid to first order in the magnitude of the modulation of D, so it is actually
sufficient (and more practical) to simply smooth the single field of |[4wDt|. Note that the
diffusion operation acting for duration ¢/2 is equivalent to the application of the ‘square-root’
(in the convolution sense) of the total filter. In many practical applications of the recursive
filter method to data analysis, this square-root filter, or at least a very good approximation to
it, is already available owing to the manner in which the total filter is synthesized from simpler
components. Thus, the amplitude refinement imposes no significant extra burden in typical
cases where, once constructed, it is subsequently applied to data numerous times.

The generalizations of the recursive filters we have described in this subsection work on
a wide variety of grids provided each grid itself contains no singularity. But this restriction
unfortunately precludes the use of the methods on a polar grid in the immediate vicinity of the
pole. In order to treat such a case, the next subsection discusses some of the special techniques
that can be brought to bear.

(b) Polar grids

We shall first treat the special case of filters with homogeneous filtering scale, a. On a
plane-polar grid or on a global grid of latitudes and longitudes, the recursive filter method
can be adapted in conjunction with Fourier transforms applied azimuthally or longitudinally
to data (providing that the longitudes are uniformly spaced and of a highly-factorable number
such as is required for the application of the ‘Fast Fourier Transform’ [FFT] algorithm). Fourier
transformation invoked in the azimuthal or longitudinal direction separates the two-dimensional
smoothing problem into independent one-dimensional filtering problems in the radial or latitu-
dinal direction for the smoothing of the zonal Fourier coefficients. Suppose § and A are latitude
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and longitude respectively. From initial data x(6, A\) we may apply the zonal transform:

(0, m) = / (0, Nexp(—2mimA\)d). (4.16)

(n

of —a?V? instead of —a? d? / dz?. But we shall see that, through the process of Fourier trans-
formation, the action of this operator is reduced to a set of one-dimensional operators acting
on the various wavenumber components separately. For constant a, the operator corresponding
to, —a?V?, takes the form in the semi-spectral domain (latitude and zonal wavenumber):

The idea is to redefine the operator D ) of (3.9) in a fully two-dimensional way as the polynomial

a’m? a? 9 0

g2 _ " ¥
A P T (4.17)

where the metric term, 7, is now defined for an earth of radius R simply as:
7(0) = R cos(0). (4.18)

Note that, for each separate zonal wavenumber m, this operator has its simplest numerical
representation in the discrete latitude grid as a tridiagonal matrix, but high-order corrective
terms can be added using the coefficients by ; in the way described in Section 4a if the half-
bandwidth n of the final operators is anticipated to be larger than one. As in the case discussed
in section 4a of a nonuniform one-dimensional grid, this is trivially transformable (through
a similarity relation) to symmetric form. As we might expect, the exponential function of
the discrete matrix representation of —(a?/2)V? is taken, but only component matrices of
half-bandwidth not exceeding n are retained, in order to obtain the representation, at each
wavenumber m, of D(y). From the derived Cholesky factors, the coefficients of the advancing
and backing basic filters are then quite easily extracted.

These filters are more expensive to apply globally than the doubly-recursive filters of Section
3 because they require a zonal Fourier transform to be applied to the input data at each latitude
and an inverse transform applied to the final output data. But they do provide a satisfactory
solution to the ‘polar problem’ in the case of homogeneous smoothing scale, a. Moreover,
they serve to regularize the zonal aspect of the filtering which, in the vicinity of the poles
where grid meridians cluster tightly together, presents numerical conditioning difficulties for
the purely recursive filters, as discussed in Section 3c. In an earlier phase of this study, two
of us (RJP and NMR) investigated filters of this semi-spectral form for a global analysis and
devised methods for constructing hybrid filters in which only the polar caps are treated by the
Fourier transform method, the data elsewhere being dealt with by the methods of Section 4a.

The main difficulty in constructing a hybrid filter of this kind is achieving a satisfactory
blending of the alternative methods at the outer reaches of each designated polar cap. Let us
suppose first that we can isolate each hemisphere (we discuss below how this can be done) so
that we effectively have only one pole to deal with. We shall order the latitude grid points
increasing towards the pole and denote by i. the first latitude grid point of the polar cap where
Fourier transformation may be applied. In order to preserve self-adjointness, it is convenient to
split the filtering in the zonal direction outside the polar cap (that is, 7 < i.) into two equal self-
adjoint halves, say (D X)_l/ 2. BEach half can then sandwich the self-adjoint meridional filter, say
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(Dy)~!. Thus, neglecting the poles the output, s, is obtained through the input, p, according
to:
DY*DyDY?s = p. (4.19)

Within the polar caps, we cannot assume separability into the two grid directions (except via
the zonal Fourier transforms), so the symbolic application of the filtering there is expressed as
the inversion of a single, but two-dimensional operator:

DFS =Pp. (4.20)

While it is clearly not possible to convert the polar filter (4.20) into the form (4.19) with a
one-dimensional factor Dy, we can trivially perform Fourier transforms on (4.19) to put it
into the same form as the operator implied by (4.20); the filter Dy is unaffected by zonal
Fourier transformation while D}(/Q separates, for each wavenumber m, into a diagonal operator
in latitude. Thus, within the polar cap, we may employ the Fourier transforms to separate the
components for each wavenumber and define a new operator,

Dy = (Dx)™/*Dp(Dx)™? (4.21)

so that the polar filtering, though still involving a fully two-dimensional operator (Dy- still
requires Fourier transformation for its efficient implementation), formally more closely resembles
the construction of (4.19). The polar filtering can now be implemented:

DV*Dy DY %s = p. (4.22)
where the difference between the new operator Dy and Dy is not expected to be very large near
the edge of the polar cap. For each wavenumber m, these operators may be blended smoothly
just inside the polar cap, i.e., for each m, the matrix components of the blended result, operator
Dy, might be given,

(Dyn)ij = (Dyv)i,j(1 — Wi;) + (Dy)i,j Wiy (4.23)

where blending weights satisfy:
W;;i=0,14,7 <iec, (4.24)

together with the condition that preserves self-adjointness:
W’L,] — Wj,i, (4.25)

and where these weights increase smoothly (in (7, 7)) to unity inside the cap.

Having arranged for the latitude grid point ordering to increase towards the poles, we shall
find that the L-U decomposition of the hybrid operator Dy~ outside the polar caps remains
unchanged from the L-U decomposition of Dy, there being no communication between the
separate meridians. Inside the caps, the partial separability is maintained only in the sense of
between different wavenumbers so, within the caps, we revert to zonal Fourier transformation
in order to complete the L-U decomposition at the ‘bottom right’ corner of each wavenumber’s
matrix. This technique, though it involves significant algorithmic complexity, does produce
satisfactory self-adjoint filtering results at an acceptable computational cost over a hemisphere.
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The input data in each hemisphere is treated using a different factorization of Dy — both
cases being of the Cholesky type, but differing through the consequences of reversing the index
ordering. Since the alternative products are, in both cases, equivalent, no discontinuity should
appear at the ‘join’ along the equator in the output.

It is possible to carry out an analogous factorization of the operators even when the filtering
scale varies with position, but the Fourier transformation within the polar caps is no longer so
directly useful, except as a way to improve the conditioning of the problem; the irreduceably two-
dimensional character of the operator, Dy, in the polar caps leads to a full matrix representation
which Fourier transformation now fails to diagonalize. Although the numerical problem is
therefore larger, the calculations are still rendered manageable provided the polar caps are
small in geographical extent and the meridional resolution is suitably reduced, as in a ‘skipped’
or ‘reduced’ latitude-longitude grid.

We have described a suite of numerical techniques by which a locally isotropic quasi-
Gaussian smoothing filter can be efficiently applied. The Gaussian profile is not necessarily
best for all applications to problems in data assimilation where the broader range of dynamical
scales offered by ‘fat-tailed’ distributions is often more desirable. The next section discusses a
further generalization to the method where, using additive combinations of pseudo-Gaussians,
we are able to synthesize locally isotropic filters with a more general profile.

5. SYNTHESIS OF A COVARIANCE IN TERMS OF (GAUSSIANS

At this point we can proceed almost directly to the construction of an analysis scheme using
a covariance model based on a quasi-Gaussian profile of appropriately chosen constant scale.
The amplitude (that is, the ‘variance’) by which the covariance may vary geographically can
be controlled, while preserving the important property of self-adjointness, by modulating the
otherwise homogeneous filter before and after application:

B(x1, x2) = w'/?(x1)G(x1, x2)w'/?(x3), (5.1)

where w(x) is the total effective weight at x applied to the Gaussian filter, G. However, it
has been recognized that objective analysis using the Gaussian shape to model the covari-
ance severely hampers the ability of the analysis to assimilate the smallest scales of sigificant
background error. In adverse configurations of the data, the problem is apt to manifest itself
in excessive and damaging extrapolation effects at the edge of isolated data voids where the
analysis strives to fit the surrounding more densely distributed data smoothly. Lorenc (1981)
provides an illustration of this effect with idealized data. The small-scale analysis increments
are inadvertently inhibited when, as with a Gaussian model, the presumed power spectrum
values at moderately large wavenumbers become much smaller than the values that the data
and experience indicate to be appropriate. Recall that the power spectrum for a spatially ho-
mogeneous covariance model is simply the Fourier transform of that covariance. For example,
the two-dimensional Gaussian function of unit integrated weight, and scale parameter, a:

1 1 —x2\?
Ga(x1,%2) = 53 OXP l—§ (M> ] , (5.2)

a
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is associated with the power spectrum,

2
Gao(k, 1) = / / Go(x,0) exp(—ik - x)dx dy = exp [—%(k2 + 12)] , (5.3)

which is itself of Gaussian form, and which therefore does possess a rapidly diminishing tail in
the spectral region of total wave numbers exceeding a few times the ‘characteristic wavenumber’,
(1/a). Clearly, the ideal remedy would be the representation of the actual covariance operator
(whatever that is); at least it should be possible, within the space of isotropic covariances,
to find one possessing more appropriate tail characteristics, although this almost certainly
necessitates exploring options other than the Gaussian family. In principle, however, by the
methods of Laplace transforms, it should be possible to synthesize almost any practical isotropic
covariance profile as a superposition of Gaussian components, as is noted by Schoenberg (1938)
and more recently discussed by Gneiting (1999):
a2
o(2). o

Bk, 1) = /OOO w (“;) exp l—“;(k? +1%)

In practice, we would wish to approximate the general superposition (5.4) by a discrete approx-
imation involving many Gaussian constituents. That is:

Bk, 1) =Y wy exp [—"2—”(18 + 12)] . (5.5)

We would also like to confine ourselves to constructions of this type that result in all the weights,
wp, being non-negative so that, in the spatial domain, the combination can be expressed in
a way that allows gradual regional variations without jeopardizing the self-adjointness that
the iterative solution algorithms depend on. The appropriate form in the physical domain is
therefore:

B(x1,x9) = Z w;/z(xl)Gap (x1, x2)w11,/2(x2). (5.6)
P

The profile of weights must be regarded as samples, at the discrete scales selected, of an under-
lying continuous weight profile. The density of selected scales per ‘octave’ (the term we shall
use for a change by a factor of two in a scale or a wavenumber) is something we must determine
according to the smoothness of the continuous weight-profile in the log-scale domain. With
an adequate scale-resolution, it then becomes possible to change the overall scale progressively
across the extent of a large domain without appreciably altering (except by linear contraction
or expansion) the intended shape of the covariance profile.

One of the simplest general families of scale profiles accommodating the requirement that
the sampled weights w, all be non-negative is what we shall call the ‘hyperGaussian’ family of
functions. For the two-dimensional isotropic hyperGaussian functions normalized to have unit
integrals, a generic member of this family is characterized by a scale parameter, o, and a shape
parameter, 7. One may regard each member function as being a continuous superposition of
isotropic Gaussians of horizontal scales exp(s) according to a weighting profile in s that is itself
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of a Gaussian form, centered on log(c) and with a dispersion parameter in s of :

[ 1 1 (s —logo)? 1 1 x \?
Hy .\ (x) = /_Oo N exp [—5 o ] 27 oxp(25) exp [—5 (exp(s)) ] ds. (5.7)

Note that, in the limiting case, v = 0, this model reverts to pure Gaussian form.

Fig. 4a illustrates the radial profile of the correlation implied by this covariance model for
v=0, 0.1, 0.2 and 0.3. The parameter -y provides control over what we may refer to, following
statistical parlance, as the ‘kurtosis’ of the distribution. Suppose we define unidirectional
moments of an isotropic distribution, H (x):

P, = / / H(x)z™ dz dy. (5.8)

Thus, for the normalized Gaussian, G, we have the moments, pug =1, p2 = a? and ps = 3a*.
Since the construction, (5.7) is a linear superposition of Gaussians, and each moment is a linear
functional of the distribution, we find that, for the hyperGaussian with shape parameter vy, the
corresponding moments are: po =1, o = 0 exp(27y) and 4 = 30* exp(8y). Then, if we adopt
the definition of kurtosis to be the nondimensional quantity:

-

we find that the kurtosis for the hyperGaussian of shape parameter v is

Ky = 3 exp(4y).

As a generic shape parameter, the kurtosis has its limitations. In particular, it is generally
not appropriate to define the kurtosis of a distribution that has regions of negative values, for
example, covariances with negative sidelobes such as those defined below.

A family of covariances whose profiles possess negative sidelobes can be generated by a very
similar superposition. We do this by replacing the Gaussian basis by the corresponding functions
obtained by taking the negative-Laplacian of each Gaussian. The resulting covariances,

H (x)=—-V?H,,(x), (5.10)

have the correlation profiles depicted in Fig. 4b. In terms of the filtering operations represented
by these profiles, the application of the Laplacian operator will require some extra cost.

A further consequence of the superposition property is that the power spectra of the hyper-
Gaussian, and its negative-Laplacian, are expressible as simple integrals:

o s —log 0)?
Hy (k) = /_OO \/217T—’Y exp [—%#] exp [—% (exp(s)k)Q] ds. (5.11)
- © s —log o)?
H(,m(k) =k? /_OO \/21”_7 exp [—%%1 exp [—% (exp(s)k)Q] ds. (5.12)
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These power spectrum families are shown, for the same range of shape parameters as before, in
Figs. ba (for H) and 5b (for H'). Note the dramatic effect on the power at small scales (large
wavenumber) that results from even small positive values of the shape parameter, .

The natural question that now arises is how fine a resolution in the log-scale, s, is required
to adequately represent these covariance models by the approximations that replace the integral
representations (with respect to s) by discrete summations. This can be answered by observing
how far the discrete approximations’ power spectra depart from the exact integral represen-
tations’ power spectra. In practice, we find that, for v = 0.3, about three scales per ‘octave’
appears to be adequate. For smaller +y it is prudent to increase this density of discrete scales. In
the context of the multigrid construction, it is clearly convenient numerically to have an integer
number of discrete smoothing scales of the basic Gaussians in each octave, or, in other words,
to have the same whole number of smoothing scales per grid of the multigrid hierarchy.

6. DISCUSSION

The problem of efficiently accommodating approximately isotropic but spatially inhomoge-
neous covariance functions in a variational analysis has been solved using recursive numerical
filters. The covariances are never explicitly computed; instead, it is their effects as convolu-
tion operators that are represented, through a sequence of applications of carefully designed
recursive filters operating along the various lines of the appropriately chosen computational
grids. In a regional analysis, there is no reason not to use the grid of the intended numerical
prediction model. In a global context, where the usual latitude and longitude grid possesses
polar singularities, we may either adopt the special methods for polar grids discussed in Section
4 or, by invoking additional interpolations, cover the global domain in overlapping maps, each
of which being furnished by an appropriate cartesian grid. For example, we can adopt square
Cartesian grids embedded in the respective polar stereographic projections for the polar cap
regions and Mercator grid elsewhere, in order to preserve the property of local isotropy, and
use the multi-Gaussian methods of synthesis of Section 5 to provide the necessary control over
the horizontal scale (needed to compensate for the map-scaling factor, if nothing else). Experi-
ments reveal no evidence that the analysis results are significantly degraded by adopting other
grids different from the model grid, provided the final conversions from one to the other are by
high-order accurate interpolations. In the case of the conversions from the polar stereographic
grid to the global latitude and longitude grid, the high-order interpolations proceed using the
so-called ‘cascade’ method (Purser and Leslie, 1991), in which the two-dimensional problem
is efficiently split into separate one-dimensional operations. However, this synthetic method
results in non-Gaussian covariances, even when Gaussians are preferred, and, since we must
account for the cost of the additional grid-to-grid interpolations, it can be more expensive than
adopting the special procedures of Section 4b. For a global analysis, the user must choose the
method best adapted to his or her requirements.

An additional development that we expect to report on soon is the further generalization of
the covariance operators to accommodate fully anisotropic effects in both two and three dimen-
sions. Recent approaches to three-dimensional data assimilation where it is not assumed that
the covariances must be locally isotropic have been reported by Desroziers (1997) and by Ri-
ishgjgaard (1998) and objective statistical methods for estimating the parameters of anisotropy

20



from the data themselves are suggested by the work of Dee and da Silva (1999) and Purser
and Parrish (2000). Algorithms exist for extending the recursive filter method in this way in a
regional domain and their application to variational data analysis looks very promising.

ACKNOWLEDGMENTS

The authors would like to thank Drs. John Derber, Dezso Devenyi, and Andrew Lorenc for
many helpful discussions and Dr. Wanqgiu Wang for valuable comments made during internal
review. We also thank Prof. Fugenia Kalnay and Drs. Stephen Lord and Roger Daley for
their encouragement and support. This work was partially supported by the NSF/NOAA Joint
Grants Program of the US Weather Research Program. This research is also in response to
requirements and funding by the Federal Aviation Administration (FAA). The views expressed
are those of the authors and do not necessarily represent the official policy or position of the
FAA.

APPENDIX A

Obtaining filter coefficients for a given scale

In section 3, Dz‘n) was defined as a real-coefficient monic polynomial of K, so we may use
this polynomial’s roots k, (whose complex members come in conjugate pairs) to perform the

operator factorization,
" - K
p:]_ /4

In terms of the shift operator, Z defined:

(Z4)i = thita, (A.2)

we have
K=-Z+2-2", (A.3)

and each factor in (A.1) is expressible:

) K (Z—-2wp+2Z71)
Kp 2 — 2w,

where
wp=1—Kp/2.

Therefore, the smaller of the two possible roots,

6= (wp+ @2 - 1Y) (A.4)

of the quadratic,
22 —2wpz +1=0,
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allows the factorization of the term,
K 1-GZ7Y (1-¢2Z
1-—= % %7 (A.5)
Kp 1—¢p 1-¢

_ [ 1-¢
Y= (1_szp_1>x

describes the application of the right-moving, complex coefficient, first-order recursive filter,

Yi = (1 - Gp)xi + i1,

whose stability is guaranteed by the property |(,| < 1 [the other root of (A.4) is its reciprocall.
Likewise, the inverse of the other operator factor on the right of (A.5) describes the operation
of a left-moving stable recursive filter. By a similar decomposition for all the p € {1,...,n},
we deduce that the operators of (3.12) and (3.13), comprising the inverses of the right-moving
and left-moving high-order filters, are formally:

" 1—gpz—1>
A= — ], A6
H( oL (A

The operation,

B=1[ (%) , (A7)

whose operator kernels are real by virtue of the occurrences of the complex k,, and hence of
the (p, in conjugate pairs, and whose coeflicients are constructible by the explicit convolution
products of Z ! and Z prescribed by (A.6) and (A.7).

We summarize the practical steps required in order to obtain these coefficients. First, one
locates the complex roots, ,, of the real-coefficient polynomial in K that defines Dz‘n). Then,
the corresponding quantities w and, in each case, the smaller of the two roots (;, are obtained.
Then the convolution polynomial (A.6) is constructed using these complex (in general) (.
Finally, we invoke (3.14) and (3.15) to get the algorithmically convenient coefficients ¢; and ~y
of this filtering scheme.

However, the complex arithmetic can be avoided by an alternative iterative method of
obtaining the convolution kernels of A and its adjoint B. According to (3.11), these are the
rows of the Cholesky factors of an infinite symmetric band matric representation of D?n), but
in practice, given sufficiently large finite symmetric matrix having the same generic rows as
Dy .y, one finds that the last rows of its Cholesky lower-triangular factor will be numerically
indistinguishable, both from each other, and from the generic row of the Cholesky factor of the
infinite matrix representation of DE“n). By an adaptation of the regular Cholesky algorithm,

Aij = ('DZJ- — Z A p A ',k)/Aj,j, 7 <1, (A.8)
k<j

Aii = (Dfi=> Ai e Ai )2, (A.9)
k<1
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one can compute successive rows until, within round-off, the subsequent differences from row
to row are negligible. This iterative approach is equally valid and never fails in practice to
reproduce the same numerical coefficients as is given by the formal root-finding procedure.

APPENDIX B

Non-periodic end conditions

Consider a mutually adjoint pair of nth-order basic recursive filters A (‘advancing’) and B
(‘backing’) on a uniform grid and with constant coefficients such that, if @ = Ap, and r = Bp,
then, for a generic grid point 1,

n

@ = ﬁpi+2j:1aﬂh‘—ja (B.1)
n

r; = ﬂpi+zj:1ajqi+j. (BQ)

On an infinite grid, assuming all data remain bounded at infinity, one can easily verify for the
symmetrized output, s:

s = BAp=ABp. (B.3)

We ask, given a finite domain, ¢ € [1, N], and assuming this interval contains the support of
input p: how does one ‘prime’ those values of s just inside the boundary at ¢ = N in order
to enable the backing filter, B when applied to q = Ap, to simulate implicitly the effect of a
continuation of the gridded values of q beyond this boundary? The solution of this puzzle is
found by exploiting the commutativity (B.3). Let 8; denote the n-vector of (sj41-n), .- -, s5)T.
Then §y are the last n values of s belonging to the actual domain while §x ., is the vector
of n values one would have obtained just beyond, in the grid were continued. Define a lower-
triangular nxn matrix, L with elements,

Li; = 1, (B.4
Liyj; = —aj, (B.5)

and an upper-triangular nxn matrix, U, with elements,

Uiitj = an—;- (B.6)
Then, since 'y, =0, it must follow from s = Ar, that

L8nyn =Usy, (B.7)

and, from s = Bq, that
L'sy =UT8n41n + Gns. (B.8)

Thus, eliminating §x.,, we obtain the turning conditions that prime the backing filter:
(LT - UTL'U)sy = anp. (B.9)
For the simplest filter pair, n =1, a3 = «, this formula reduces to

(1—a®)sy =Pan. (B.10)
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ArPENDIX C

Periodic end conditions

Preserving the notation of Appendix B, we consider the problem of defining the correct
priming vector qo for the advancing filter on a cyclic domain with period N, such that the
values obtained are consistent with the wrap-around condition, g5 = qg. In the recursion
(3.14), the sensitivity of qn to Qv -1, given that input element py is unchanged, is expressed:

dqy = Tdqo
where
0, 1, 0, , 0
T— 0, O,’ 1, , 0
Qny, Qp—1, Op_2, .., QI

Applying the chain-rule, we deduce that the sensitivity of qn to gy when the intervening input
elements, p1, ..., pN, remain unchanged, is:

dgy = TVdqo, (C.1)
or, for some linear n-vector function h of the Ply- -, PN,
an = TVqo + h(p). (C.2)

The identification of qy and qu therefore requires that
ao=(T-TY) "h, (C.3)

To solve this, a preliminary advancing recursive sweep primed using qj = 0 provides the
vector h = qj obtained as the last n output values of this inconsistent solution. Thus, from
(C.3), the proper consistent priming conditions are derived, and a second sweep completes the
result for the advancing filter.

A similar procedure is used for the backing filter on the cyclic domain, so the overall cost is
double that of the recursive filter on a nonperiodic domain of N points. For this reason, when
performance is critical, it may be preferable in practice to employ a generous overlap and the
nonperiodic version of the filter instead, as was done for the global assimilation experiments
of section 5. However, as we find in Appendix D, the extra overhead of computing the proper
cyclic condition is a factor for consideration only for serial processing; when the domain is
divided into segments, whether it is periodic or not, the recursions always need to be repeated
to achieve inter-segment consistency.

APPENDIX D

Parallel and distributed processing

Divide the domain of N points into M consecutive segments, p(!), ... p(M) (for input data)
with segment J comprising N; points (and therefore Eﬁ/le Nj = N) and consider each segment
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to be assigned to a separate processor of a parallel computer. Adapting the notation of the
earlier appendices, the problem we must then address for the advancing filter A is how most

(/)

efficiently to achieve consistency between the last n output values q N, of segment J and the

priming vector quH) in the next segment. As in the serial treatment of the cyclic case discussed

in appendix C, we deduce that
q%} = 7NN 4 2, (D.1)

so that, by concurrent computations in all M segments, the vectors h() of each is obtained
by running the advancing filters in each segment with null priming vectors. The consistency
condition:

q(()J) — TNJQE\][Y,{_II) + fl(‘]), (D.2)

provides row J of a block-matrix expression:

I, o0, ... 0, 0 a AL
TV, 1 ... 0, 0 5% h®
0 | = . (D.3)
0; : ° Ia O N :
0 0 —TNmu-1. T ~ (M) h(M)
7 7 R | 7 0

This ‘reconciliation equation’ is one that can also be distributed when several parallel lines of
data are collected together, as in a typical application in two or three dimensions. Therefore,
the wall-clock time associated with the reconciliation is usually not very significant compared to
the regular recursions the precede and follow it. For a cyclic domain, the only change is that the
block-bidiagonal matrix of (D.3) is replaced by the corresponding cyclic block-bidiagonal, with
the block, —T™™ occupying the top-right location. The final step is, of course, the properly
primed recursions performed concurrently within all processors.

APPENDIX E

Amplitude estimation for inhomogeneous quasi-Gaussian filters

The control of amplitude (variance) of the covariance filter is quite straight-forward when the
filter is spatially homogeneous but, in the inhomogeneous case, the response function is no longer
simply a Gaussian and an error is therefore incurred when amplitudes are estimated purely on
the basis of the Gaussian formula. Fortunately, when the modulation of the filter’s smoothing
scale occurs slowly and smoothly across the domain, it becomes possible to improve upon
the Gaussian amplitude formula by taking into account the local variation of the smoothing
parameters through the application of an asymptotic analysis. We present an outline of this
method as it applies to ‘first-order’ perturbations of scale in one dimension and we employ the
diffusion model to represent the overall effect of the filter. Thus, with a ‘diffusivity’ D(z), the
outcome of the spatially inhomogeneous filter is identified with the application for ‘time’ ¢ of
the diffusion equation:

dp d _dip _

— = —D— = (Dyr1)1. (E.1)

¥ dt  dz dz
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The local variation of D is described by expanding it as a series about the origin:
D(x) =Dy + Dix + Doz® + . .. : (E.2)
It is convenient to write the evolving solution in the form:
P(z, 1) = exp(g(z, 1)), (E.3)
where g is expressed as a series:
g9(z,t) =go(t) + g1 (t)z + g2 () + . ... . (E.4)

For uniform D = D, the solution that starts with a unit impulse at £ =0 and ¢ =0 has, at
future time,

1 1
o = —3 log t — 2 log(4mDy), (E.5)
1
- _ E.

with other coefficients g; vanishing. We seek to determine the principal effect on the amplitude
term, gg, of small variations in D associated with nonvanishing coefficients Dy, for k > 0.
Equating powers of z in the evolution equation for g implied by (E.1) and (E.3):

g=(Dgn)r + D(g1)?, (E.7)
we obtain, after some albegra:
k+1 k+1—j
gk=Y_ |(k+Dheso—j+ > hihgo—j_i| Dj, (E.8)
j=0 i=0
where

By symmetry, the terms D, with odd k cannot affect the amplitude to first-order in their
magnitudes. Thus, we are able to consider expansions in only even powers of x for D and hence
for g in order to obtain the first-order effect of inhomogeneity on amplitude. Expanding (E.8)
for the first few even power of x:

go = 2g2Do, (E.10)
go = 12g4Dg + 692 D3 + 49292 Do, (E.11)
gs = 30g6Dg+ 20g4Ds + 10g2 D4 + 16g2g4Dg + 4g292Do. (E.12)

We may further expand g, g4, etc., in powers of ¢ starting with terms in ¢!, for example,

gg(t) = 92’,175_1 + 92,0 + 92’115 4 ... . (E13)
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From terms ¢t=2 in (E.11):

1
i =—— E.14
927 1 4D0’ ( )
and from corresponding terms in (E.12):
D,
1= E1
91T 1202 (E.15)
With these substitutions, terms ¢~! in (E.11) imply:
D,
=——. E.16
920= 1Dy (E.16)
Then, integrating (E.10), we obtain:
1 1 \
go(t) = ~3 logt+ goo — §D2t + O(t%). (E.17)

As in the case for uniform diffusivity, the normalization of the initial unit impulse requires that
1
90,0 = — 5 log(4mDy), (E.18)

but if we absorb the first-order perturbation to gy in the form of an ‘effective’ Gaussian model’s
diffusivity, D, that is, by equating:

—% log(4nD) = —% log(4wDg) — %DQt + O(t?), (E.19)
then,
D = Dgexp(Dat), (E.20)
= Dy + DyDot + O(t?). (E.21)
Owing to the properties,
/ P(x, t/2)dz = 1, (E.22)
/ Y(z,t/2)z’dz ~ Dt, (E.23)

we may employ the approximation,
Dw~ / W(z,t/2)D(z)dz (E.24)
to acquire a serviceable and robust effective diffusivity, D, in the Gaussian amplitude formula

valid at = 0, which will largely compensate for the errors caused by the inhomogeneity. But,
generalizing this result to other locations z is equivalent to applying the ‘square-root’ filter to
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the field D(z), for which an adequate non-self-adjoint representation is available as one half of
the general construction of self-adjoint filters that we have described.

In higher dimensions the Gaussian amplitude factor now comes from the determinant |D|
of the tensorial diffusivity, D. The first-order correction can still be found by smoothing |D|
with the square-root filter, since, to a sufficient approximation, the filter is factorable into
the individual dimensions yielding the one-dimensional filters we have just analyzed and the
determinant is simply the product of the diffusivities in each of the component dimensions.
Moreover, this generalization remains valid even for anisotropic filters (to which we intend
to devote a future article), since even they can be constructed from uni-directional diffusion
operators, but acting now in mutually oblique directions.

REFERENCES
Barnes, S. L. 1964 A technique for maximizing details in numerical weather map analysis.
J. Appl. Meteor., 3, 396-409.
Bergthorssen, P., and B. 1955  Numerical weather map analysis. Tellus, 7, 329-340.
Dé6os
Brandt, A. 1977  Multilevel adaptive solutions of boundary value problems. Math.

Comp., 31, 333-390.
Cohn, S. E., A. da Silva, J. 1998  Assessing the effects of data selection with the DAO physical-space

Guo, M. Sienkiewicz, statistical analysis system. Mon. Wea. Rev., 126, 2737-3052.
and D. Lamich

Courtier, P. 1997  Dual formulations of four-dimensional variational assimilation. Quart.

J. Roy. Meteor. Soc., 123, 2449-2461.

Courtier, P., E. Andersson, 1998 The ECMWF implementation of three-dimensional variational assim-
W. Heckley, J. Pailleux, ilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc.,
D. Vasiljevic, M. 124, 1783-1807.
Hamrud, A.

Hollingsworth, F.
Rabier, M. Fisher

Cressman, G. P. 1959  An operational analysis scheme. Mon. Wea. Rev., 87, 367-374.

Dahlquist, G., and A. Bjorck 1974  Numerical Methods, Prentice Hall, 573pp.

Daley, R. A. 1991  Atmospheric Data Assimilation. Cambridge University Press, 457pp.

Daley, R., and E. Barker 2000 NAVDAS 2000 Source Book Naval Research Laboratory, Monterey, CA
93943-5502, NRL Publiciation NRL/PU/7530-00-418, 153 pp.

Dee, D. P, and A. M. da 1999 Maximum-likelihood estimation of forecast and observation error co-

Silva variance parameters. Part I: Methodology. Mon. Wea. Rev.,
127, 1822-1834.

Derber, J., and A. Rosati 1989 A global oceanic data assimilation system. J. Phys. Oceanogr., 19,
1333-1347.

Desroziers, G. 1997 A coordinate change for data assimilation in spherical geometry of
frontal structure. Mon. Wea. Rev., 125, 3030-3038.

Gandin, L. S. 1963  Objective Analysis of Meteorological Fields, Leningrad, Gidromet;
(Jerusalem, Isreal Program for Scientific Translations; 1965,
242pp.)

Gneiting, T. 1999  Correlation functions for atmospheric data analysis. Quart. J. Roy.
Meteor. Soc., 125, 2449-2464.

Hayden, C. M., and R. J. 1995 Recursive filter objective analysis of meteorological fields: applications

Purser to NESDIS operational processing. J. Appl. Meteor., 34, 3-15.

Hollingsworth, A., and P. 1986  The statistical structure of short-range forecast errors as determined

Lénnberg from radiosonde data. Part I: The wind field. Tellus, 38A, 111-
136.

28



Ide, K., P. Courtier, M. Ghil,
and A. C. Lorenc
Lorenc, A. C.

Lorenc, A. C.
Lorenc, A. C.

Otnes, R. K., and L.
Enochson

Parrish, D. F., and J. C.
Derber

Purser, R. J., and R.
McQuigg

Purser, R. J., and L. M.
Leslie

Purser, R. J., and D. F.
Parrish

Riishgjgaard, L.-P.
Schoenberg, 1. J.
Thiébaux, H. J.
Thiébaux, H. J., H. L.
Mitchell, and D. W.

Shantz
Wilks, D. S.

1997

1981

1986

1997

1972

1992

1982

1991

2000

1998

1938

1976

1986

1995

Unified notation for data assimilation: operational, sequential and
variational. J. Meteor. Soc. Japan, 75, 181-189.

A global three-dimensional multivariate statistical interpolation
scheme. Mon. Wea. Rev., 101, 701-721.

Analysis methods for numerical weather prediction. Quart. J. Roy.
Meteor. Soc., 112, 1177-1194.

Development of an operational variational Assimilation Scheme. Jour-
nal of the Meteorological Society of Japan, 75, No. 1B, 339-346.

Digital Time Series Analysis. Wiley, 467pp.

The National Meteorological Center’s Spectral Statistical-
Interpolation Analysis System. Mon. Wea.  Rev., 120,
1747-1763.

A successive correction analysis scheme using recursive numerical fil-
ters. Met. O 11 Tech. Note, No. 154, British Meteorological
Office, 17pp.

An efficient interpolation procedure for high-order three-dimensional
semi-Lagrangian models. Mon. Wea. Rev., 119, 2492-2498.

A Bayesian technique for estimating continuously varying statistical
parameters of a variational assimilation. NOAA/NCEP Office
Note 429. 28pp.

A direct way of specifying flow-dependent background error correla-
tions for meteorological analysis systems. Tellus, 50A, 42-57.
Metric spaces and completely monotone functions. Ann. Math., 39,

811-841.

Anisotropic correlation functions for objective analysis. Mon. Wea.
Rev., 104, 994-1002.

Horizontal structure of hemispheric forecast error correlations for
geopotential and temperature. Mon. Wea. Rev., 114, 1048-1066.

Statistical Methods in the Atmospheric Sciences: an Introduction. Aca-
demic Press, 467pp.

29



(@) (b) (c)

Figure 1. Comparison of one-dimensional applications of recursive filters approximating a Gaussian (shown
solid). Dashed curves show filter approximations: (a) order n=1; (b) n =2 with (long dashes) and without
(short dashes) the off-diagonal b coefficient refinements; (c) n =4 with and without off-diagonal b coefficients.
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@

Figure 2. Sequential application of quasi-Gaussian recursive filters of order n in two dimensions. (a) n=1;
(b) n=2; (c) n=4; (d) four applications of filters with n =1 with scale parameter adjusted to make the result
comparable with the other single-pass filters. Contours are shown at multiples of odd integers.
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Figure 3.

Negative-Laplacian applied to quasi-Gaussian recursive filters with: (a) n=2; (b) n=4; (c) n=6.
(d) corresponding contours for the exact Gaussian. Contours as in Fig. 3 and with negative contours shown as

broken curves.
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Figure 4. (a) Cross-section profiles of the fat-tailed ‘hyper-Gaussian’ covariance models defined in Section 5
for a range of shape parameters . (b) the result of applying the negative-Laplacian, and renormalization of
amplitude, to these hyper-Gaussian functions.
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Figure 5. Power spectra in log-linear coordinates for the covariances depicted in Fig. 4. (a) the hyper-Gaussians;
(b) the negative-Laplacians of the hyper-Gaussians.
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