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1. INTRODUCTION

It is increasingly typical for a large proportion of the data assimilated into numerical fore-
casting models to derive from various remote sensing instruments, such as radar, satellite passive
and active sounders and, in the not too distant future, satellite or ground-based Doppler li-
dar. Although they are rich sources of data, a characteristic they share is the presence among
the reports transmitted of a signifant degree of information-redundancy, either by way having
linearly dependent weighting functions in the case of passive satellite sounders, or simply by
way of their spatial and temporal densities being far in excess of the required resolution of the
assimilating system, which is typical (to an extreme degree) of radar data.

Redundant data impose a burden on an operational assimilation system since each datum
is laboriously processed, usually involving repetitive interpolations from the analysis grid to
its location, and adjoint interpolations back again, performed each iteration of the large-scale
linear solver (typically a conjugate-gradient or quasi-Newton method). This effort is carried
out for each datum regardless of the information that can be attributed to it in the overall
assimilation. The time and storage expended on mutually redundant data could be better
spent on improving other aspects of an assimilation. Therefore, it is desirable, ahead of time if
possible, to effect whatever data compression the ensemble of fresh observations allow, subject
to the resulting degradation of the otherwise “optimal” (in some formal sense only) analysis
being negligible. The term for a surrogate datum which replaces several partially redundant
actual data is a “super observation” (sometimes abbreviated to “super-ob”).

A systematic construction of super observations obeying certain desirable criteria related to
the known statistical properties of the background error has been described by Lorenc (1981).
This method seeks to obtain surrogate data explicitly uncorrelated with the background (a
strong constraint), using a modification of the formalism of optimal interpolation to produce
the desired super observation’s value. This approach was demonstrated by Purser (1990) to
possess a simple generalization to multi-component super observations, with applications to the
assimilation of “retrieved” satellite soundings derived from passive multi-channel radiometer
measurements. However, this approach is oriented specifically to one particular assimilation
model’s background field characteristics, which is a disadvantage, not only because it means
the resulting super observations lack independence from the selected assimilation system, but
also because a prerequisite of such a method is a statistical description of part of one particular
forecast system which is not always conveniently available when and where the occasion for
data compression is appropriate. For radar data, it would be desirable to compress the data at
the measurement site, not at the numerical forecasting center. Likewise, for satellite lidar, the
communication bottle-neck between satellite and ground would be relieved if the construction
of the super observation could be organized on the satellite itself prior to transmission.

Here we propose some alternative general methods of constructing surrogate observations
which require no detailed information about the statistics of the background field with which
the data are destined to be combined. Also, we show how the concepts of information the-
ory, together with their adaptation suggested by Huang and Purser (1996) to allow the local
attribution of “information density” contained in meteorological observations of various kinds,
provide us with incisive tools to determine the extent to which putative methods of constructing
the super observations will degrade the information available. In this way we may be guided



in formulating practical and information-efficient prescriptions for the systematic generation of
the super observations that many new and future data sources require.

The following section describes two general conditions in which the construction of super
observations is appropriate. The linear algebra of the construction itself is given in section
3. The remaining sections deal with the assessment of the information content of the data in
unprocessed and super observation form.

2. CONDITIONS ENABLING DATA COMPRESSION IN A STATISTICAL ASSIMILATION

The optimal linear analysis of a meteorological variable x* whose prior “background” esti-
mate is x°, given independent measurements y®, is obtained from the well-known equations of
“optimum interpolation” (Gandin, 1963; Daley 1991). Using the notation of Ide et al. (1997)

and assuming linearity:
x? — x* =BHT(HBH' + R)d, (2.1)

with
d=y° - Hx" (2.2)

or, in equivalent implicit form,
x? —x*=BH'R!(y° — Hx%). (2.3)

Here, B is the covariance (887 ) of the background error 8 = x® — x*, where x* is the true state.
R is the effective covariance of measurement error, taken to comprise the following two terms:
the actual covariance E = (e€’) of measurement error € = y° — Hx?; and the “representative-
ness error” F (Lorenc 1986) introduced to account for the existence of detail in the measured
true state unresolved by the assimilating model. Thus R =E + F. H is the linearized obser-
vation operator. A derivation of these equations for the linear case is provided in Appendix
A.

There are various ways in which the set of measurements allow a significant compression
of information without a significant degradation in the quality of the resulting analysis. Triv-
ially, some observations may have such large uncertainties (poor quality) that their “precision”
weights R™! render them virtually ineffective; but we shall assume that at least these cases
have been weeded out prior to presentation of the data to the assimilation software. It is evi-
dent from (2.3) that, when the rows of H are effectively linearly dependent, a smaller vector ¥
of surrogate data can replace y°®, new weights R ! can replace R™! and a new measurement
operator H of correspondingly fewer rows substituted for H without significantly changing the
analysis, provided the following two conditions are satisfied:

H'R 'y = H'R ly°, (2.4)
H'R'H = H'R'H. (2.5)

We shall refer to this case of data compression as the creation of a “type-1” super observation.
The circumstances conducive to this opportunity for data compression are typical of satellite
passive sounding data, whose vertical weighting functions are in large measure mutually redun-
dant. In section 3(a) we present some efficient numerical methods for the construction of such
super observations.



Another case which is becoming ever more typical with the progressive advances in remote
sensing instrumentation occurs under the following conditions: an analysis and a background
error covariance (relative to the background value at one arbitrary fixed point, say z,) which
are both smooth functions devoid of detailed structure within a distance scale which is still
large enough to contain several independent measurements. We shall see that this case also
enables a reduction in the effective quantity of data without a signifcant loss of information. In
this case, which corresponds to the traditional justification for creating super observations, we
exploit a known quality (smoothness) of the analysis instead of the inherent internal redundancy
implied by the observation operator. Hence, we distinguish this case from that of type-1 super
observations, although we shall find that the formalism for construction of super observations in
this case, “type-2” super observations, is largely the same. We discuss their creation in section

3(b).

3. CONSTRUCTION OF SUPER OBSERVATIONS

An optimal analysis has the cumulative property that allows data to be incorporated se-
quentially (Parrish and Cohn 1985, Cohn and Parrish 1991). Thus, if the optimal analysis
using all except some cluster of data is denoted x*, we can incorporate this remaining cluster
optimally merely by applying the formula (2.1) but with x? replaced by x* and with the original
matrix B now replaced by the covariance of error of x*. In other words, we incur no loss of
generality by assuming here that y°® denotes only the data in the cluster of interest, with the
locations of the individual measuements at z,,.

For reasons to do with the numerical robustness of the process of creating super observa-
tions, it is desirable to rewrite the analysis equations rescaled in nondimensional form. Let us
suppose diagonal matrix D, has elements roughly comparable to the variance components of
the background error and that, similarly, diagonal D, has components roughly comparable to
the variances of the data. Then we may rescale the background, analysis and observations:

% = DY, (3.1)
% = DYk (3.2)
- _ —-1/2
§ = D%, (33)
(3.4)
form the nondimensional background covariance and measurement precision,
B = D,'/?BD,'/?, (3.5)
5-1 _ 11/2p-1n1/2
R™' = D/’R7'D)/?,
together with the nondimensional observation operator,
H=D,'/?HD}?, (3.7)
and express (2.3) in equivalent nondimensional terms:
% — %' =BHTR 1(y — Hx"). (3.8)



We shall assume that the nondimensionalization has been done, and drop the tildes for the rest
of this section. We describe separately the construction of type-1 and type-2 super observations
below.

(a) Type-1 super observations

We form from (nondimensionally rescaled) H a Gram-Schmidt decomposition, with pivoting,
based on a definition of inner-product that involves a weighting by the (rescaled) precision, that
is:

H=GU, (3.9)

where the columns of G are mutually orthogonal (but not normalized) in the sense:
G'R1G =X, (3.10)

for some positive diagonal X, and, following a permutation of its columns to “undo” the piv-
oting, the rows of U (which will be fewer than its columns in those cases in which a data
compression is successful) belong to the upper triangular part of the matrix with unit elements
on the main diagonal. The Gram-Schmidt decomposition is permitted to terminate as soon as
the norms of all the remaining “unprocessed” columns of the partially constructed G become
smaller than some small positive criterion; these negligible columns, and the corresponding rows
of U, are deleted. The prior rescaling of the variables facilitates the discrimination between
significant and negligible columns in the Gram-Schmidt process; then a size criterion for the
nondimensional column vectors of G of about .01 is usually adequate. When data compression
is achievable, the completed G has fewer columns than does the original rescaled observation
operator, H, from which it is processed. A schematic description of an algorithm to perform
such a Gram-Schmidt factorization is given in Appendix B. It is then possible to replace the
vector of observations y© by the shorter vector, ¥, H by Hand R 1! by R 1! according to:

y = X 'GTR'y°, (3.11)
H = U, (3.12)
R!' = X (3.13)

The prescription (3.11) —(3.13) describes the simplest of our examples of data compression
and would apply to a sounding of satellite radiance measurements in a single vertical column
of the atmosphere. However, if the space of vectors x® and x’ is the more inclusive domain
of both vertical and horizontal dimensions, then the practical procedure is not strictly as it is
written above. Instead we should factor the observation operator, H, into, first: a preliminary
restriction operator, N, which, on multiplying x%, selects from it only those components residing
at (or horizontally interpolated to) the vertical column of the sounding; second, a restriction,
(HT), of the observation operator to the range comprising a single vertical column only. Thus,
H is replaced by the equivalent, (H7)N, in the rescaled counterpart of (2.3), but the Gram-
Schmidt process is applied now to the matrix (H7) whose rows span only the vertical part, not
the whole, of the space of analysis variables. Replacing (3.9), we now have,

Hr =GU. (3.14)



Eq. (3.10) applies as before and the definitions (3.11) and (3.13) for § and R~ remain unal-
tered, but the new observation operator H inherits the factorization into a horizontal restriction
followed by a vertical-column operator:

H = UN. (3.15)

(b) Type-2 super observations

The justification for the construction of type-2 super observations relies on the assumption
of smoothness in the analysis variables and, on the face of it, would seem likely to lead to a
completely different formalism than the one we used for super observations of type-1. However,
we shall find that, in fact, the formalisms are practically identical, although the interpretation
of some of the terms becomes more general in the case of type-2 super observations.

When we speak of some meteorological field i as being “smooth” in the vicinity of a point
z =0 of a local coordinate system, we shall use the term to signify that the field in question
can be well approximated there by a finite Taylor series. Thus, let N now denote the linear
operator acting on a field in the space of analysis variables which returns the value and spatial
derivatives, up to some specified degree p, at z =0, about which are clustered all the discrete
observations that we wish to replace by a super observation. Note that the operator N of
the previous subsection was, in the horizontal sense, just the special case of the present N in
which p = 0 (signifying the selection of the value at z =0, but none of the proper derivatives).
Corresponding to this operator and, in a sense, a generalized inverse of it, we denote by 7(z) the
“moment operator”, each column of which is the field (in at least the local portion of analysis
space) comprising the powers of the components of the local coordinates z complementary to
those of N in the finite Taylor series. Some thought will convince one that, again, the special
case of this operator in the horizontal with degree p = 0 is consistent with the spatial restriction
operator 7 of the previous subsection. We shall continue to assume the dependent variables in
the analysis are rescaled, but we also assume that the choice of scaling in the local coordinates
z conforms approximately to the characteristic scale of spatial variability, in each direction,
inherent in the covariance B. Take as a simple example, the one dimensional case of degree
p=2. Then,

NT = (1, d/dz, d*/dz?)| ,—o, (3.16)
and the three columns of the complementary operator T are as given by the right-hand side of:
T(2) = (1, 2, 22/2)). (3.17)

Note that N and 7 are mutual pseudo-inverses at z =0 in the sense:
Nr=1 (3.18)
Now we formalize the attribute of “smoothness” of 9 to mean that
P(z) = 7(2)Ntp, (3.19)
which, for the one-dimensional example of degree p = 2, means:

- dip(0) 2% d*p(0)
P(z) = (0) + P i TR FOR

(3.20)
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in the vicinity of z = 0. More specifically, since we shall require this approximation to hold only
over the extent of the cluster of raw observations that we aim to replace, we shall regard the
field there as “smooth” if and only if the (error-free) measurements of its finite Taylor series
faithfully reproduce the corresponding measurements of the actual field:

Hy(z) ~ Hr(2)N1. (3.21)

The combination, (H7), is a matrix of the “moments” of the observation operator for the
cluster.

The one dimensional example above can be generalized to more dimensions by extending
the vector operator N and moment vector T consistently. Thus, up to second degree in two
dimensions, z = (21, z2), we would have for the operator, N,

2 2 2
NT = (1; i ia_ 87 8_>‘ (3.22)
z=0

(921’ 822’ Bz%’ 821822’ 8z§
and the corresponding moment operator, T, would be:
™= (1; 21, 20; 21 /2, 2122, %3 /2), (3.23)

but (3.18) still applies.

When the background error covariance B and the analysis x® are smooth in the technical
sense we have defined above, then the right-hand side of the analysis equation (3.8) for the
rescaled variables must satisfy the approximation,

BH' R !(y° - Hx*) ~ BNT+TH"R ™ (y° - HrNx%). (3.24)

As before, we decompose the combination (H7) exactly as in (3.14) using the Gram-Schmidt
procedure with orthogonality as in (3.10). Again, we find (3.11), (3.13) and (3.15) to define
the multi-component super observation y and its companion operators R~! and H. However,
this new super observation may now contain information, not only about the value of x, but
also about its gradient, and even trend components of higher degree.

Despite the apparent complexity of the formulae above, we note that, in the case of type-
2 super observations of zeroth-degree, the algebra implies that the weight R1is simply the
sum of the weights of the original observations and the super observation ¥ itself is just the
corresponding weighted sum of the original observations, y°, as one would intuitively expect.
The value of the complete formalism is that it systematically provides for the construction
of more general super observations in which gradient information is properly preserved and
weighted or, if required, even higher degrees of the Taylor-series characterization of the field
analyzed are treated. There is a sense in which the construction of the type-2 super observations
described above is equivalent to the method of weighted linear (“least-squares”) regression
(Menke, 1984) in trend-fitting; the Gram-Schmidt solution to the problem of rank-deficiency
we have adopted here applies equally to such problems of linear regression.

It is easily verified that the R defined above is indeed the covariance of error of the associated
super observation §. When the original data y© of the cluster are very numerous compared to
the few components of ¥, then we have achieved a significant and valuable compression of data



and a numerical simplification of the computational task of data assimilation. By construction,
R 1is nonsingular and the rows of H are measuring independent and informative attributes
of x, so, at least within the present cluster, there remains no further redundancy.

For both type-1 and type-2 super observations, we could alternatively employ a singular-
value decomposition (SVD) in place of the Gram-Schmidt process in order to handle the problem
of rank-deficiency. In this case, the form of the decomposition replacing (3.14) would be

R /?Hr = GAF”, (3.25)

with GTG =1, FTF =1, and positive diagonal A. However, while less elegant formally, the
Gram-Schmidt method accomplishes the task adequately and, in practice, is significantly less
costly to apply than SVD.

We have not discussed the choice of coordinate origin for the Taylor series used in the
above construction. For statistically independent (R ! diagonal) observations of homogeneous
type (for example, all temperatures or all winds) the natural choice is the precision-weighted
centroid, z defined by:

Za R_la,aza

(Cw R Tog) (3.26)

Z =

(¢) Discussion

Formally, the process of replacing the multitude of raw data by a smaller set of approximately
equivalent quantities must generally entail a finite loss of information. The justification and
motivation for carrying out such a procedure is that it reduces the computational load in the
subsequent analysis step to more manageable proportions. Indirectly, a judicious data reduction
can lead to definite improvements in the analysis. This occurs when the reduction in the data
burden so streamlines the execution of each iteration of the analysis scheme’s linear solver that
more iterations than otherwise can be accommodated in the time allotted, thereby improving the
final iteration’s correspondence with the theoretically optimal state. However, in the case where
the iterations are repeated to perfection, the analysis with super observations will generally be
of slightly inferior quality to the analysis using the data in their raw form. It is therefore
desirable to determine, under various strategies of assigning clusters of data to the same super
observation, and under different assumptions of the degree, p, of the Taylor approximation
assumed in each super observation’s construction, how much information is formally lost by this
process. It turns out that this expected information loss, for any particular analysis scenario
in which the measurement operators are purely linear and the underlying statistics Gaussian,
may be quantified precisely by the formal methods of information theory, which we discuss in
the following section.

4. QUANTIFICATION OF INFORMATION

If Ay denotes the error-covariance of the analysis derived by the application of (2.1) with
measurement errors assumed uncorrelated with background errors, then it is straight-forward
to verify that,

A =B -BH'(HBH! + R)"'HB. (4.1)



Similarly, we find that the error covariance of the sub-optimal analysis using the super obser-
vations is,

A =B-BH'(HBH” +R)"'HB. (4.2)

According to the quantitative theory of information developed by Shannon (1949) (see also
Khinchin 1957), when the acquisition of new knowledge about the location of a point in an
abstract space enables the “volume” of uncertainty of this location to be reduced in size by a
factor of 2% for every probability contour, then the gain in the amount of “information”, in
its technical sense, can be consistently reckoned to be precisely Z “bits” of information. In
this technical sense, the information from independent sources combines additively. While the
classical theory of information was originally developed with applications to communication in
mind, it is also applicable to estimation theory, of which variational meteorological data analysis
is a particular example. It is especially useful in the case of remotely sensed data, where the
effective impact of the numerous, but partially redundant, radiance measurements is usually
much harder to quantify by other methods than conventional discrete data. Information theory
has been previously applied to remotely sensed satellite observations of the atmosphere by
Peckham (1974) and by Eyre (1990) to obtain an estimate of the total information supplied by
the data [see also the study of Mateer (1957)]. In a recent paper, Huang and Purser (1996) show
that it is possible also to extend the concept of information to a spatial density in a manner
consistent with the criterion of total (integrated) information when the underlying statistics
are assumed to be Gaussian. In the present context, we may apply these ideas to quantify not
only the information, or information density, gained as a result of using the available data in
the optimal way, but also we may compare this ideal usage with the sub-optimal analysis that
results from the use of our super observations.

For Gaussian statistics, the state-space volumes of the background and analysis are propor-
tional to the square-roots of det B and det A respectively. Thus, the total information gained
to achieve an analysis with error covariance A is,

1
Z =~ log det(AB™1), (4.3)

which Huang and Purser (1996) show to be equivalent to:

7 = Trace(S), (4.4)
where

S = —%1og2(AB*1), (4.5)

= %logz(BA’l). (4.6)

In (4.4) we are extending the domain of the log function to include square matrices. When the
analysis is optimal and A is given by (4.1), we may construct S:

S= %¢ logy(I+ 2)3p~ (4.7



where ), 1™, are right and left eigenvectors, €2 the corresponding diagonal matrix of non-
vanishing eigenvalues, of the square matrix, BH'R~'H, as given by the conditions:

BH'R'H)y = ¢Q, (4.8)
¥ (BH'R 'H) = Qv (4.9)
P = L (4.10)

In practice, it is always easier to obtain the eigen-decomposition based on a symmetric
matrix. We can achieve this, together with a valuable reduction in the dimensionality, through
a generalized similarity transformation which reduces the eigen-decomposition first to:

(R™Y?HBH"R/?)V =VAQ. (4.11)
This then leads to the reconstruction of ¥ and ¥ ~:

¥ = BH'R Y2V, (4.12)
¥~ = V'RY?>(HBH") 'H, (4.13)

which one can readily verify to satisfy the conditions specified in (4.8)—(4.10). If only the total
information Z is needed, the manipulations to get S can be avoided and Z obtained directly
from,

1
Z = E’I‘race logy (I + €2). (4.14)

However, as discussed by Huang and Purser (1996), it is possible to extract from the diagonal
elements of S knowledge about the spatial distribution of the quantitative information resulting
from the assimilation of the measurements.

We see from (4.2) that the error covariance of the sub-optimal analysis obtained from the
assimilation of super observations is described by a formula of similar form to the one we have
treated for the optimal case. Therefore, the same sort of eigen-decompositions can be applied
to obtain the information distribution corresponding to the use of the super observations.

5. REMARKS

In this note we have described methods for generalizing the concept of a “super observation”
to include measures not only of the locally averaged observed value, but also of the gradient,
curvature, etc. We have also discussed the application of information theory as an objective
means of quantifying the information lost by the conversion of many raw data into few super
observations. We suggest that the methods proposed here be considered as a working framework
for the systematic reduction of the quantity of observational data when this becomes necessary
in 3-D or 4-D variational assimilation by virtue of the otherwise overwhelming quantity of
individual observations provided by the various remote sensing instruments. Constructing super
observations from dense raw data requires that decisions be made about the size of clusters of
the raw data that are combined and, with these new methods, about the degree of higher
spatial derivatives that one would choose to accommodate in each super observation. It should



be possible to rationalize such decision by using the methods of information theory described
in section 4.

A useful property of many observation systems is that the observation errors of individual
measurements are mutually independent. We note that this desirable property is automatically
preserved by the process we have proposed for the generation of super observations. In this
regard, we retain the simplicity of a diagonal covariance operator R for the aggregated data
by sweeping any complexities in the definition of these super observations into the effective
observation operator, H. This latter operator should, in any case, be permitted a greater
degree of generality in future remote sensing systems where measurements represent extended
spatial integrals of the quantity under observation.
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APPENDIX A

Derivation of standard forms of the equations of SDVAR

From the basic variational principle of linear 3DVAR, we seek state x = x® that minimizes
the cost function:

Lx) =5 ((x=x)"B™ (x - x') + (y° - Hx)"R™!(y° - Hx)) . (A.1)

N | =

Setting 0L/0x =0 at x = x® leads to,
B !(x? —x")=HTR !(y° — Hx?%), (A.2)
from which (2.3) immediately follows. However, by introducing a vector, f, of forcing terms

satisfying
Rf =y° — Hx", (A.3)

(2.3) may be expressed equivalently:
(x* — x*) = BH'T. (A.4)
Combining (A.3) and (A.4) and solving for f:
f=(R+HBH?) (y° — Hx®). (A.5)
Finally, substituting for f in (A.4) gives us,
(x* — x*) = BH”(R + HBH”)~!(y° — Hx’) (A.6)

which is essentially (2.1).
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APPENDIX B

Modified Gram-Schmidt algorithm

Suppose we wish to approximately factorize an m; X meo matrix H:
H=~ GUP, (B.1)

to within a certain tolerance, €, where the factors to right obey the following properties. Matrix
G has m3 < mo mutually orthogonal columns, g;. U is a unit upper triangular matrix of my
columns u; of mj3 individual elements Uy;. P is the permutation matrix operating on the my
columns of the matrix to its left, and which we may express as a factorization into simple
transpositions, encoded by the “pivot-index” list {r;},

P= ng e T2T1, (BQ)

where each transposition T} exchanges columns k and 7 of the matrix to its left, where the
total permutation P is chosen to make,

Xj=gj-9; > Xk (B.3)

when j < k. This factorization is what we refer to as a modified pivoted Gram-Schmidt process.
The task is accomplished by the algorithm given schematically below.

G+ H
Xj<gj-9j, Vje€[l, my]
do ] = 1, mo
find 7TjEl: Vij, XlZXk
if(I # j)then
g1 < gy
Uy < Uj
X (—)Xj
endif
if (X; < €?)then
ms3 :j -1
return
endif
X < gj - g; [insure against roundoff!]
Ujk +—0,Vk<g
Ujj +—1
dok=j7+1,mo
Ujk < (95 * 98)/ X;j
9k < 9k — 9Ujk
Xy +— Xi — X]'Uij
enddo
enddo
ms3 <— mo
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