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Fig. 3. Maps of the change in water reuse index (2DIA/Q) predicted by the CGCM1/WBM model
configuration under Sc1 (climate change alone), Sc2 ( population and economic development only),
and Sc3 (both effects). Changes in the ratio of scenario-specific ZDIA/Q (ZDIA/Qq.,,...io) relative
to contemporary (2DIA/Q,,..) conditions are shown. A threshold of =20% is used to highlight

areas of substantial change.

Global Water Resources: Vorosmarty et al: 2000 Science Vol 289



Let us see first what do we know about global warming:

Which signals are robust which ones les certain

Surface melt extent



Collapse of Larsen B ice shelf in March 2002




The ice desintegrated very fast
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Atmospheric CO, at Mauna Loa Observatory
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Atmospheric CO, at Mauna Loa Observatory Courtesy Isaac Held, Princeton,

| Ice cores + direct measurements
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Control

Lifting the emission level
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http://www.esrl.noaa.gov/gmd/aggi/
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Was the 20th century warming
1) primarily forced by increasing greenhouse gases?
or,
2) primarily forced by something else?
or,

3) primarily an internal fluctuation of the climate?

Claim: Our climate theories STRONGLY support 1)

A central problem for the IPCC has been to evaluate this claim
and communicate our level of confidence appropriately

Courtesy Isaac Held, Princeton,



Lean, a research physicist in the Space Science
Division of the Naval Research Laboratory in
Washington, D.C., is an expert on solar radiation.

The general conclusion of their study is that the sun may have played a dominant
role in pre-industrial climate change (from 1600 to 1800, for example) but it has not
played a significant part in long-term climate change during the past few decades. It
is furthermore unlikely that the sun accounted for more than half, at most, of climate
change from 1900 to 1970. "A larger role for the sun in explaining the observed
climate warming over the 20th century is inconsistent with direct measurements of
solar output and with proxy evidence of solar variability during the pre-industrial
era," said Lean in an abstract prepared for seminar attendees.
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Almost all parts of the Earth’s
surface have warmed over the
past 100 years

IPCC 4th Assessment Report.
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The components of an earth system

model

Schematic for Global
Atmospheric Model
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Theories/models required to discuss future changes in climate

Orlanski, I., and C. Kerr, 2007: Project TERRA: A glimpse into the future of weather and

climate modeling. In, High resolution numerical modelling of the atmosphere and ocean, K.
Hamilton & W. Ohfuchi, Editors. New York NY: Springer; 45-50.


http://www.gfdl.noaa.gov/reference/bibliography/authors/orlanski.html
http://www.gfdl.noaa.gov/reference/bibliography/authors/orlanski.html

Ocean Surface Speed in NOAA/GFDL Southern Ocean Simulations

-3 -2-18-16-14-12 -1 -09-08-0.7-06-05-04-03-02-0.1 0 0.2
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Ocean model under development

Ocean model Currenﬂy inuse -- Hallberg and Gnanadesikan, JPO 2004

Simulation of Surface Currents




Climate sensitivity =
temperature change per unit change in radiative forcing

Nature has conspired to make the problem of
constraining climate sensitivity very difficult:

« The uncertainty in aerosol forcing over the 20th century limits
our ability to use 20th century warming to determine sensitivity
empirically

2) The difficulty in simulating clouds prevents us from developing a
satisfying quantitative theory of climate sensitivity



Aerosol particles larger than about 1
micrometer in size are produced by
windblown dust and sea salt from sea
spray and bursting bubbles. Aerosols
smaller than 1 micrometer are mostly
formed by condensation processes
such as conversion of sulfur dioxide
(S02) gas (released from volcanic
eruptions) to sulfate particles and by
formation of soot and smoke during
burning processes. After formation,
the aerosols are mixed and
transported by atmospheric motions
and are primarily removed by cloud
and precipitation processes.
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cloud's liquid water over more, smaller, droplets.



Effects of Aerosol on Clouds

Clouds with low aerosol concentration and a few
large droplets do not scatter light well, and allow
much of the Sun's light to pass through and reach
the surface.

The high aerosol concentrations in these clouds
provide the nucleation points necessary for the
formation of many small liquid water droplets. Up to
90% of visible radiation (light) is reflected back to
space by such clouds without reaching Earth's
surface.




GFDL’s CM2.1 with well-mixed greenhouse gases only
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temperature  ga \ Observations
change (GISS)
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“It is likely that increases in greenhouse gas concentrations alone
would have caused more warming than observed because

volcanic and anthropogenic aerosols have offset some warming
that would otherwise have taken place.” (AR4 WGI1 SPM).

Courtesy Isaac Held, Princeton,



Global Mean Surface Temperature: CM2.1 vs. Observed

version: scenarios minus long-term trends; combined sst/t_ref; masked; 1881-1920 ref
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(GFDL CM2.1 -- Includes estimates of volcanic and anthropogenic aerosols,
as well as estimates of variations in solar irradiance)

Models can produce very good fits by including aerosol effects,
but models with
stronger aerosol forcing and higher climate sensitivity
are also viable (and vice-versa)

Courtesy Isaac Held, Princeton,



Global mean temperatures from
observations (black lines), and
simulations of the HadCMS3 (red), PCM
(green), and GFDL R30 (blue) models.

HadCM3: Hadley Center, Reading, UK.

PCM: Consortium of centers, Los Alamos, USA.
GFDL R30: Geophysical Fluid Dynamic
Laboratory/NOAA, Princeton, USA.

Temperature change K Temperature change K

Temperature change K

followed by anthropogenic

forcings to 2100 according to the SRES A2 scenario.

Observational Constraints on Past Attributable Warming
and Predictions of Future Global Warming Stott 2006, J.
Clim.



The issue of clouds



&

Model simulated clouds (actually infrared radiation escaping to space)

Courtesy Isaac Held, Princeton,



Clouds (especially in the tropics)
are influenced by small scales in the
atmospheric circulation

simulation of
a 100km x 100km
area of the tropics

Courtesy Isaac Held, Princeton,



Change in Low Cloud Amount (%/K) GFDL and NCAR/CAM models
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Change in Low Cloud Amount (E/K)

Courtesy of
Brian Soden

Chonge in Low Cloud Amount (%/K)
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Various estimates of climate sensitivity
(global mean warming for doubling carbon dioxide)
(from IPCC AR4 WG1)

Courtesy Isaac Held, Princeton,
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Observations,

with

El Nino S

removed

Global mean cooling due to Pinatubo volcanic eruption

MSU LT Temperature Anomaly (K)
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Ensemble Mean from Pimotube Simulations, ENSO removed
Oobservations, ENSO removed (Sonter et cl., 2001)

Courtesy of G Stenchikov
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Relaxation time after abrupt cooling contains information on climate sensitivity



Temperature Anomaly (“C)
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3 aspects of the global response of the
hydrological cycle to warming

“the dry get drier and the wet get wetter”
the semi-arid subtropics expand polewards

the tropical rain belts move towards
the hemisphere that warms the fastest



Total Column Water Vapor Anomalies (1987-2004)
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We have high confidence in the model
projections of increased water vapor.

Held and Soden J.Clim. 2006



Precipitation and evaporation
“Aqua_planet” climate model
(no seasons, no land surface)
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Precipitation and evaporation
“Aqua_planet” climate model
(no seasons, no land surface)
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Precipitation moves
north and south with the seasons



ProuecTen PatTERNS oF PReEciPiTATION CHANGES
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ProuecTen PatTERNS oF PReEciPiTATION CHANGES
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Regional impact of Precipitation: Present and Future.

Impact over Australia
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2006 Drought Headlines

News
Australia's drought may stay for keeps

By Benjamin Lester
Cosmos Online

Experts cited climate change as a factor contributing to
the increasing uncertainty in Australian weather.

"It's a combination of short El Nino drought and
longer-term  decreasing rainfall,” said Michael
Coughlan, of the Australian Bureau of Meteorology.



Precipitation over Africa



African drought

The Sahel drought of the 1970’s and 1980’s
was NOT primarily due to “desertification”

It was, rather, the response
to changing ocean temperatures!

Sahel rainfall in GFDL/AMZ.1 with observed S8Ts compared against observed raintall
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e Response of GFDL/CM2.1 to

noaaresearch
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129 different models:
(courtesy of Matthew Collins, Hadley Center)

histogram of % Sahel rainfall response to 2xCO2
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overall performance in simulating global climatological fields (1979-1999)

4 seasons individually (black sticks) and mean over seasons (bars)

based on normalized RMS error between model and observations

31 observational variables (ERA40 if no observations available)
renormalized: index of 1 corresponds to average over all participating IPCC
models '

GLOBAL, NRMS, ANNUAL

1.04 1.06 106 108
nag 099 1.00 1.00

0.0

0.85 0.85 0.86
0.78 0.73. 080

ERA40 NNRO  NNR EM MPI GFDL21 UKMOG GFDL2C MIC_H UKMOC MRI  NCARC CNRM CCCTEZ CSIRC CCCT47 BCCR AVG MICM  GISSA INMCM  IPSL  GISSR NCARP GISSH 1P BCC

reference: Kim, J., and T. Reichler
(2005): A Performance Index for the
Evaluation of Coupled Climate
Models, AGU fall meeting, Global
Environmental Change session,
December 2005.

ERA40: ERA40 reanalysis compared against observations

NNRO: NCEP/NCAR reanalysis compared against observations

NNR: NCEP/NCAR reanalysis compared against observations or ERA40
(if no observations available)

EM: Ensemble mean over all models




Some issues with the precipitation over South America



‘ HydroSHEDS

Amazon Basin

River network derived
from SRTM elevation data
at 500 m resolution
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Only
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riversand 7
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visualized

River line width
proportional to
upstream basin area
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Main features of La Plata Basin

Description: Economic Relevance:

ApproximafteExfension:

Highly populated:
¢ ~3200.000 km2 G pop:

= ~100.000.000 people
5 counfries

= Argentina Produces the 70% of the global
Bolivia production of the 5 countries.
» Brasil

CETED TE LY More than 40 hydroelectric
* Uruguay centrals that satisfy the 60% of

Main Rivers: the power demand of the region.

» Parana, Paraguay,
Uruguay, lguaza,
Pilcomayo y Bermejo.

Is partially navigable by barges
and ships.

An Hydroway is under
implementation now.
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Dominant periods of variability are found: 36-40 day (MJO) and a 22-28 day mode, The
figures show OLR and 200 HPa streamfunction anomalies.
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Preliminary Conclusions:

There is a see-saw pattern of precipitation between the Amazon and south of it.

There is an interplay between a “high” south east of Brazil and “lows” entering from
the south of Argentina. The “high” flux moisture to west of the LPB region, and the
frontal system when enters from the south pushes the “high” further east and flux
moisture to the northern regions of the subtropics displacing the precipitation
further equatorward. These is the basic of the See-Saw pattern.

Is possible that if the storm tracks move poleward due to climate warming
influence, the see-saw pattern of precipitation would change.



Annual Precipitaton anomaly (mm/day) SRESA 1B — 20C climate
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Annual Temperature anomaly (C) SRESA 1B — 20C climate
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Final Remarks:
the dry get drier and the wet get wetter”
the semi-arid subtropics expand polewards

the tropical rain belts move towards
the hemisphere that warms the fastest

Relative Change in Demand per Discharge

ZDIA/Qscenario - (<)0881 2

Climate Change Only g b, 2
e A IDIA/ Qs [ >12
~

i

b1

¥ -
Fig from: Global Water Resources: Vorosmarty et al: 2000 Science Vol 289

Is it possible that with the new results of the IPCC 4t scientific assessment
the stress shown on this figure underestimate the climate change scenario
for the subtropical regions.?



