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Recent events clearly illustrate a continued vulnerability of large populations to infectious diseases, which 

is related to our changing human-constructed and natural environments. A single person with multidrug-

resistant tuberculosis in 2007 provided a wake-up call to the United States and global public health 

infrastructure, as the health professionals and the public realized that today’s ease of airline travel can 

potentially expose hundreds of persons to an untreatable disease associated with an infectious agent. 

Ease of travel, population increase, population displacement, pollution, agricultural activity, changing 

socioeconomic structures, and international conflicts worldwide have each contributed to infectious 

disease events. Today, however, nothing is larger in scale, has more potential for long-term effects, and 

is more uncertain than the effects of climate change on infectious disease outbreaks, epidemics, and 

pandemics. We discuss advances in our ability to predict these events and, in particular, the critical role 

that satellite imaging could play in mounting an effective response. 

Atmospheric chemists and climate modelers have little doubt that the earth’s climate is 

changing. Concomitant with rising carbon dioxide levels and temperatures, severe weather 
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events are increasing, which can lead to substantial rises in sea level, flooding, increased 

droughts, and forest fires (1). In recent decades, infectious diseases have resurged, and 

previously unrecognized agents of disease have been characterized (2). Evidence is accruing that 

these phenomena may in part be linked to environmental change (3). Several questions have 

emerged from events that have occurred over the past 20 years: was cryptosporidiosis inevitable 

in Milwaukee, Wisconsin, USA, in 1993, and was Escherichia coli O157 infection inevitable in 

Walkerton, Ontario, Canada, in 2000? Both events were preceded by heavy rains; had highly 

concentrated sources of pathogens in the form of untreated sewage and animal waste, 

respectively; and had vulnerable infrastructure. Although the situations were perhaps more 

complex, could we have predicted epidemic cholera in South America in 1991 after a 100-year 

absence and the emergence of a new strain of potentially pandemic cholera in India in 1992? 

A considerable body of knowledge has accumulated over the past decade or so about the 

relationships between environment and disease, yet far more information and resources are 

needed if we are to develop effective early warning systems through environmental surveillance 

and modeling as well as appropriate emergency response. In the United States, we face a crisis in 

funding that not only affects basic and applied research in this field but also undermines our 

ability to deploy remote sensing technologies that provide the most promising means for 

monitoring our environment. Using examples of waterborne and vector-borne disease, we will 

discuss how remote sensing technology can be used for disease prediction. We will then examine 

the lessons learned from these examples and provide recommendations for future modeling. 

Waterborne Disease 

Water and climate go hand in hand, with precipitation and extreme events known to be 

associated with waterborne outbreaks (4). Flooding is the most frequent natural weather disaster 

(30%–46% of natural disasters in 2004–2005), affecting >70 million persons worldwide each 

year (data for 2005 [5]). 

The most common illnesses associated with floods described in the literature are diarrhea, 

cholera, typhoid, hepatitis (jaundice), and leptospirosis. Unusual illnesses such as tetanus have 

also been reported. The etiologic agents identified include Cryptosporidium spp., hepatitis A 

virus, hepatitis E virus, Leptospira spp., Salmonella spp., and Vibrio spp. Severe outbreaks of 
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cholera, in particular, have been directly associated with flooding in Africa and in West Bengal, 

India (6,7). 

A rise in sea level, combined with increasingly severe weather events, is likely to make 

flooding events commonplace worldwide. The Climate Change 2001 Synthesis Report from the 

Intergovernmental Panel on Climate Change (8) suggests that the average annual numbers of 

persons affected by coastal storm surges will increase from <50 million at present sea levels to 

≈250 million by the 2080s, assuming a 40-cm rise in sea level. Even with enhanced protection 

through engineering interventions, this number is anticipated to reach ≈100 million persons. The 

initial proportion of deaths from these events is huge, but without extreme vigilance and better 

monitoring and response, major epidemic waterborne diseases will continue to occur. Factors 

that promote waterborne disease—overcrowding, lack of sanitation, lack of clean water, certain 

domestic animal practices, waste disposal—are exacerbated by flooding. 

Using Satellite Technology to Model Prediction of Cholera Outbreaks 

Effective prediction depends on many factors, not just the prediction of an event. Cholera 

may be the most studied and best understood of the waterborne diseases and, perhaps in 

hindsight, we could have predicted the occurrence of cholera in South America in 1991 (9). 

Models for cholera prediction, although country specific, are constantly improving. For example, 

considerable work has gone into predicting outbreaks of cholera in Bangladesh. Remote imaging 

technologies developed by the US National Aeronautics and Space Administration have been 

used to relate sea surface temperature, sea surface height, and chlorophyll A levels to cholera 

outbreaks (Figure 1) (R.R. Colwell and J. Calkins, unpub. data). This process used a composite 

environmental model that demonstrated a remarkable similarity between predicted rates based on 

these 3 parameters and actual cholera incidence. These data are far from perfect and considerable 

uncertainty still remains. For example, rates of cholera were much higher than predicted in 

January 1998 and January 1999, yet many of the predicted peaks closely aligned with actual 

incidence. Because the model is constantly being improved and the satellite data are becoming 

increasingly accurate through ground truthing (real-time collection of information on location), 

we believe that satellite imaging provides tremendous promise for prediction of cholera, weeks 

and even months in advance of an epidemic. 
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Knowing when an outbreak is likely to occur can inform public health workers to stress 

basic hygiene and sanitation and to implement simple mitigation efforts such as filtration of 

water with sari cloth, which in some areas is credited with reducing deaths from cholera by 

>50% (10). Although remote sensing technology is currently still a research tool, the example of 

cholera prediction through its use provides a compelling argument to maintain and adequately 

fund our satellite programs; unless this is done, this extraordinary effort at disease prediction will 

fail. 

Some of the critical needs that must be met to predict the effect of environmental change 

on waterborne disease include the following: 1) better knowledge of disease incidence and 

pathogen excretion; 2) better characterization of the pathogens in sources (e.g., combined sewer 

overflows, septic tanks) and these sources’ vulnerabilities to climate change; 3) better monitoring 

of sewage indicators to gather source, transport, and exposure information (event monitoring); 4) 

improved understanding of sediments and other pathogen reservoirs; 5) more quantitative data 

for risk assessment; and 6) better health surveillance data. In turn, this information can be used to 

better use ground truthing in combination with remote sensing technologies as predictors of 

waterborne disease outbreaks. 

Vector-borne Disease 

Other emerging and reemerging infectious diseases also are environmentally driven. 

Many are zoonotic, vector-borne, or both, and have complex life histories that make predicting 

disease emergence or reemergence particularly difficult. An insect or rodent vector can make it 

almost inevitable that a pathogen will be globally transported by plane or boat. With 

environmental change, disease range, prevalence, and seasonality may change in direct 

relationship to the vector or animal host. Therefore, to understand the life cycle of a pathogen 

and the risks of disease emergence, all stages of that life cycle and the life cycles of its 

intermediate hosts must be considered. 

To date, predicting vector-borne diseases has proved to be complex. Although climate 

change and other environmental stressors are major components, separation from human factors 

is difficult. Climate change undoubtedly affects the distribution of disease, but changes in human 

behavior that increase exposure risk are also critical factors. Šumilo et al. (11) reported that 
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climatic variables explain only 55% of spatial variation in tick-borne encephalitis in the Baltic 

States, which have seen an increase in disease incidence over the past 3 decades. These authors 

report that changes in predation pressure on intermediate hosts and shifting socioeconomic 

conditions that increase or decrease peoples’ visits to forests (for recreation, work, or berry and 

mushroom harvesting) are important factors in disease distribution (12). 

Effective modeling of future risk for vector-borne disease outbreaks needs to take into 

account human behavior that increases exposure, as well as other factors that effect the ecology 

of the vectors, such as predation pressure and habitat change. Coupled with remote sensing 

technologies that monitor environmental and climatic changes, human observations of 

population movement and distribution will be necessary. 

Malaria also presents a challenge. This disease continues to devastate sub-Saharan Africa 

and other parts of the developing world. Substantial resources over the past several decades have 

gone toward eradication, vaccination, treatment, and, more recently, prediction of malaria 

outbreaks. Satellite imaging has been used to predict the distribution of 5 of the 6 Anopheles 

gambiae complex species that are responsible for much of the malaria transmission in Africa 

(13). However, human factors again make accurate prediction of disease events complex. 

Prediction of a disease event is complicated by host immunity effects, which can result in cycles 

of infection that would appear to bear no relationship to environmental variables. To predict 

malaria outbreaks, remote sensing technologies need to be coupled with a better understanding of 

how specific populations are effected by host immunity, which could allow population 

susceptibility at any given time to be estimated. 

Using Satellite Technology to Model Hantavirus Pulmonary Syndrome  

Although considerable uncertainty exists in disease prediction through remote sensing 

technology, particularly for vector-borne disease as discussed above, satellite technology has 

been applied with some success to predictive modeling for cases of hantavirus pulmonary 

syndrome (HPS). The 1993 outbreak of HPS in the southwestern United States was believed to 

be linked to environmental conditions and, in particular, to abnormally high rainfall that resulted 

in increased vegetation with a subsequent explosion in the rodent populations. Several research 

groups have subsequently modeled conditions that led to an HPS outbreak, with mixed success. 
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Engelthaler et al. (14) looked at 10 years of data on monthly precipitation and daily ambient 

temperature in the Southwest region (1986–1995) in relation to HPS cases (1993–1995). They 

found that cases tended to cluster seasonally and temporally by biome type and elevation and 

that only indirectly demonstrated a possible association between the 1992/1993 El Niño 

precipitation events and HPS. Glass et al. (15,16) were also unable to make a definitive link with 

precipitation events in their analyses of HPS in the southwestern United States. They did, 

however, find a relationship between Landsat Thermatic Mapper (LTM) images recorded by 

satellite in 1992 and HPS risk the following year. LTM generates numbers that represent 

reflected light in 6 bands, 2 of which were associated with decreased risk and 1, in the mid-

infrared range, with increased risk. The authors admit that considerable ground truthing is 

necessary to relate satellite imagery to the environmental variables being measured (i.e., 

vegetation, soil type, soil moisture) and their relation to rodent population dynamics. 

However, this work does demonstrate the utility of remote satellite imaging and the 

increasingly important role it can and should play in disease prediction. In 2006, Glass et al. (17) 

reported strong predictive strength from logistic regression modeling of LTM imagery from 1 

year, when estimating risk of HPS the following year, for the years 1992–2005. Their risk 

analysis for 2006, based on Landsat imagery for 2005, when precipitation levels increased 

dramatically over prior drought years, suggested an increased risk for HPS, particularly in 

northern New Mexico and southern Colorado. This prediction was unfortunately borne out in the 

early part of 2006 when 9 cases of HPS occurred within the first 3 months, 6 of those cases in 

New Mexico and Arizona. However, the anticipated threat to Colorado did not occur, with a 

fairly typical number of 6 cases, compared with a total of 11 cases for the state in 2005 (18). 

However, these results are not necessarily a failure of prediction. In fact, they may 

illustrate that an early warning system serves to reduce exposure of persons to the deer mice 

habitat. For example, USA Today highlighted HPS risks with a June 8, 2006, article titled 

“Officials warn of increased threat of hantavirus” (www.usatoday.com/news/health/2006-06-08-

hantavirus-x.htm). The role of the popular press is hard to quantify but undoubtedly does have an 

effect on human behavior patterns. Many health departments in the western states produce health 

advisories warning the public about the risks of exposure to the virus through inhalation of dust 

contaminated with rodent urine, feces, or saliva. The popular press may serve an important role 
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in increasing awareness of a heightened health risk, which, in turn, promotes greater compliance 

with health advisories. 

Lessons Learned and Recommendations for Future Modeling 

The scientific community has a relative consensus that epidemic and pandemic disease 

risks will be exacerbated by environmental changes that destabilize weather patterns, change 

distribution of vectors, and increase transport and transmission risk. Predictive modeling may 

lead to improved understanding and potentially prevent future epidemic and pandemic disease. 

Many respiratory infections are well known as highly climate dependent or seasonal. Although 

we are not yet able to predict their incidence with great precision, we may well be able to do this 

in the future. Meningococcal meningitis (caused by Neisseria meningitidis) in Africa is probably 

the best known example. In the disease-endemic so-called meningitis belt (an area running across 

sub-Saharan Africa from Senegal to Ethiopia), this is classically a dry season disease, which 

ceases with the beginning of the rainy season, likely as a result of changes in host susceptibility 

(19). Many other infectious diseases show strong seasonality or association with climatic 

conditions (20). Perhaps one of the most interesting is influenza, which is thought of as a 

wintertime disease in temperate climates but shows both winter and summer peaks in subtropical 

and tropical regions (21). Although the reasons for seasonality are often poorly understood, the 

close dependence of such diseases on climatic conditions suggests that these, too, are likely to be 

amenable to prediction by modeling and remote sensing (22). 

When we consider influenza, it is hard not to think about the future risks from pandemic 

influenza. Public health agencies in the United States and around the world are focusing on 

influenza preparedness, notably concerning influenza virus A subtype H5N1, which has captured 

attention because it causes severe disease and death in humans but as yet has demonstrated only 

very limited and inefficient human-to-human transmission. The severity of the disease raises 

images of the 1918 influenza epidemic on an unimaginably vast scale if the virus were to adapt 

to more efficient human-to-human transmission. Can predictive modeling using satellite or other 

imaging of environmental variables help in predicting of future influenza pandemics? Xiangming 

Xiao at the University of New Hampshire was funded in 2006 by the National Institutes for 

Health to lead a multidisciplinary and multi-institutional team to use remote satellite imaging to 
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track avian flu. Xiao et al. have used satellite image–derived vegetation indices to map paddy 

rice agriculture in southern Asia (23). They believe that a similar approach can be used in 

conjunction with the more traditional approach of analyzing bird migration patterns and poultry 

production (24,25) to map potential hot spots of virus transmission (26). 

An interesting question is why did we not see disease epidemics in Indonesia, following 

the devastating tsunami disaster of December 2004? Could rapid public health intervention be 

credited with minimizing spread of disease? In the case of Aceh Province, many communities 

reported diarrhea as the main cause of illness (in 85% of children <5 years of age), but no 

increases in deaths were reported, and no outbreaks of cholera or other potentially epidemic 

diseases occurred (27). Given the massive scale of the disaster, was this likely? In some towns, 

more than two thirds of the population died at the time of impact, almost 100% of homes were 

destroyed, and 100% of the population lacked access to clean water and sanitation (27). To a 

large extent, the Australian army and other groups are to be credited with rapidly deploying 

environmental health teams to swiftly implement public health measures, including provision of 

safe drinking water, proper sanitary facilities, and mosquito control measures (28). Widespread 

fecal pollution of the surface waters was shown, yet the saltiness of the potable water supply 

after the disaster made much of the water unpalatable. Wells were vulnerable, perhaps to other 

etiologic agents of fecal origin including viruses and Shigella spp., with greater probability of 

infection than Vibrio spp., thus leading to the widespread diarrhea. 

The most important lesson from the Asian tsunami is that disease epidemics can be 

prevented by public health intervention. Unfortunately, most flooding events, and other 

conditions that promote infectious disease epidemics, do not receive the same global media 

attention. A tsunami captures the imagination of the world in a way that weeks of rainfall in the 

Sudan or a rise in sea surface temperature cannot. However, if climatologic data can be used to 

predict future disease outbreaks, public health interventions can be mobilized in a more timely 

and proactive manner. 

A continuing concern is the conditions that result in newly emergent virulent strains of 

pathogens. Faruque et al. have provided molecular evidence that V. cholerae O139 strains are 

derived from O1 strains through genetic modification (29). In addition, Chakraborty et al. in 

Kolkata have seen the presence and expression of virulence genes in several environmental 
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strains of V. cholerae cultured from surface waters (30). Recently, E. coli O157 has been isolated 

from the Ganges River in India for the first time (31). Indications are that it is metabolically 

different from E. coli O157 isolated from other parts of the world, but the conditions that have 

led to these differences are as yet unclear. From the above studies, risk for transmission of 

virulence genes is likely to be high, but studies of conditions promoting transmission and 

approaches to modeling resultant disease risks are in their infancy. New epidemic strains could 

potentially occur through mutation of existing epidemic strains or through gene transfer. 

Environmental stressors such as chemical contaminants are thought to accelerate both mutation 

rates and gene transfer (32). Thus, the degree of chemical pollution may need to be a component 

of disease models (in addition to other stressors). 

The scientific community is a long way from incorporating environment-gene 

interactions into predictive models and clarifying the risks posed to human society from 

emerging diseases. However, investigation of these parts of the pathogen’s ecology should 

remain on the national research agenda as we move forward with developing predictive models 

of disease outbreaks. 

Current modeling of infectious diseases is by necessity retrospective. Environmental 

parameters measured by remote satellite imaging show the greatest promise for providing global 

coverage of changing environmental conditions. With current imaging technologies, we can 

measure sea surface temperature, sea surface height, chlorophyll A levels, and a variety of 

vegetation and soil indices, in addition to many other physical, biologic, and chemical 

parameters of the earth’s surface and atmosphere. A variety of these parameters can be 

incorporated in complex mathematical models, together with biotic and ecologic variables of the 

pathogen and host life cycles, to correlate environment with outbreaks of disease (Figure 2). 

However, we are still far from being able to accurately predict future disease events on the basis 

of existing environmental conditions. 

Successful predictive modeling of disease and the establishment of early warning systems 

have reached a critical junction in development. As we improve our understanding of the biology 

and ecology of the pathogen, vectors, and hosts, our ability to accurately link environmental 

variables, particularly those related to climate change, will improve. What has become clear over 
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the past few years is that satellite imaging can play a critical role in disease prediction and, 

therefore, inform our response to future outbreaks. 

We conclude that infectious disease events may be closely linked to environmental and 

global change. Satellite imaging may be critical for effective disease prediction and thus future 

mitigation of epidemic and pandemic diseases. We cannot stress too strongly our belief that a 

strong global satellite program is essential for future disease prediction. 
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Figure 1. Modeling cholera outbreaks in Bangladesh. Adapted from R.R. Colwell and J. Calkins, unpub. 

data.  

 

Figure 2. Components of a predictive model of infectious disease based on satellite imaging to assess 

environmental change. SST, sea surface temperature; SSH, sea surface height. 
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