RECLAMATION Managing Water in the West

Lower Colorado Dam's Quagga Mussel
Assessment and Potential
Control/Preventive Program

U.S. Department of the Interior Bureau of Reclamation

Agenda

- BACKGROUND
- BUREAU OF RECLAMATION LOWER COLORADO DAMS (LCD) CONTRACTED WITH QUAGGA MUSSEL CONSULTANT RENATA CLAUDI (RNT CONSULTING)
- LESSONS-LEARNED FROM ONTARIO POWER PLANTS
- COMPREHENSIVE FACILITY REVIEW OF THE DAMS
- FINDINGS & POTENTIAL CONTROL/PREVENTIVE MEASURES

Site Visit Experience Ontario Hydro Power Facilities (reactive approach)

Sir Adam Beck #2

DeCew #2

Sir Adam Beck #1

Pump Generating Station

Nanticoke Coal Fired Facility Ontario (proactive approach)

Over time if left untreated

 Transformer cooling water piping plugged at Ontario Hydro Power

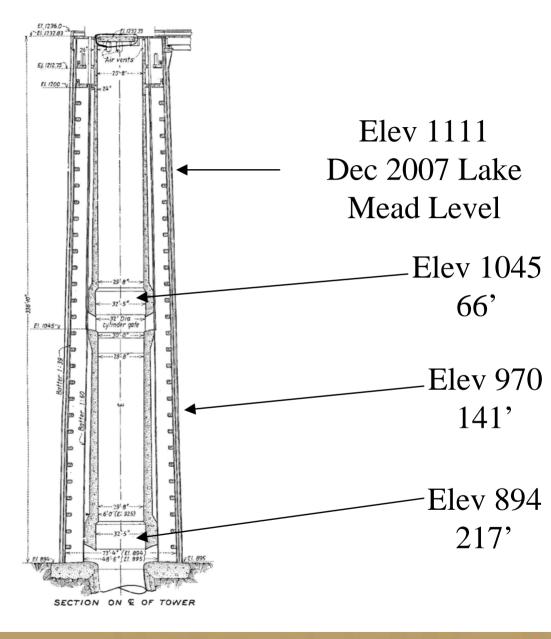
Water Cooled Transformer Piping

Ontario Hydro Plant Unit Coolers

Dead Mussels Found in Unit Coolers

Quagga Mussel Infestation at Dams; What have we learned and what do we recommend

RNT Consulting Inc.


Observations from inspection of external surfaces

Mussels are present in the lower penstock (Living 220' below Lake evaluation)

Elevation 1045, (66' below water)

Sampling Plates at Parker Dam November 11/07 – 6 Weeks of Settlement

Stainless Steel Pipe 11/07

Davis Dam Penstock Gate Oct.07

Proactive vs. Reactive Control Measures

• Proactive

Does <u>not</u> allow growth of mussels in the system or on the surface protected

Reactive

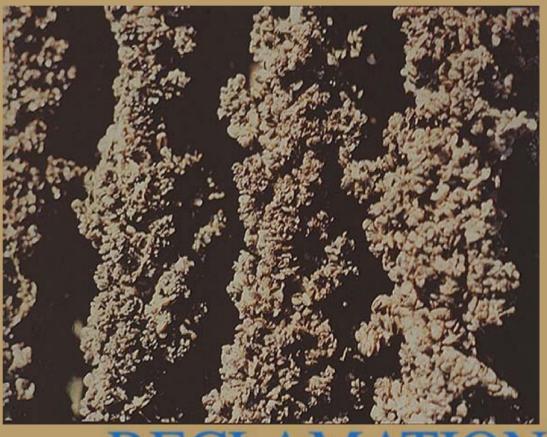
Does allow mussels to grow in the system or on the surface. Established populations have to be eliminated periodically

Findings & Potential Control Measures

- All three dams use the same settlement substrate on the sampling plates
- Same dimensions
- At the same depth (10ft, 20....down to maximum depth)
- Examine the plates at the same time interval and in the same manner
- Multiple strings of sampling plates lakeside and in the tailbay

Install Side stream sampler for plant monitoring

Bio-box


Bio-Box Spiked with Live Mussels

Options for External Structures*

*Structures That Are in Direct Contact With the External Environment; No Isolation Is Possible

Reactive Options for External Structures

Mechanical Cleaning

- de-water and use powerwash
- underwater, scrape and vacuum or powerwash

Proactive Options for External Structures

- Antifouling Coatings for both steel and concrete
- Toxic, copper based coatings
- Non-toxic, silicone based is (<u>Foul Release Coating</u>)
- Life-span 5-7 years before topcoat needs to be refreshed

Substrate Preference

(Decreasing from Top to Bottom)

- Copper
- Galvanized Iron
- Aluminum
- Acrylic
- PVC
- Teflon
- Vinyl
- Pressure Treated Wood
- Black Steel
- Polypropylene
- Asbestos
- Stainless Steel

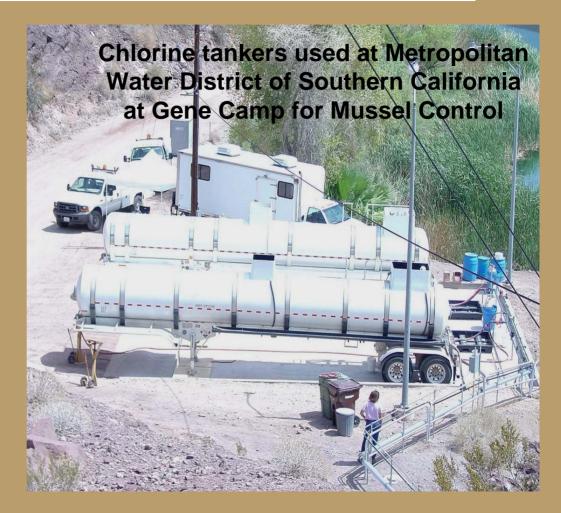
Kerr Lock and Dam (COE), Tulsa OK

Source - Kilgour and Mackie, 1993

Initial Suggestions for Control

- Rapid Response Option (if settlement and shell transport increases dramatically and suddenly):
 - Install portable chlorine
 skids to protect critical areas

- Use thermal treatment where possible
 - 32°C for 48 hours (90°F)
 - 40°C for 1 hour (104°F)

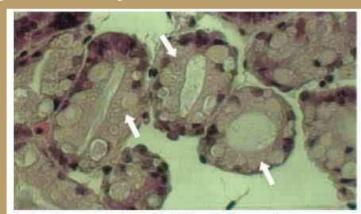

Use weak acids to dissolve shells and corrosion products

Mechanical cleaning as system performance deteriorates

RECLAMATION

Oxidizing Chemical Treatment

- Chlorine
- Bromine
- Chlorine dioxide
- Chloramines
- Ozone


Potassium permanganate

Emerging Options

 Bacterial product (Marrone Organic Innovations), zebra mussel specific chemical....being tested on Quagga now

How does it work?

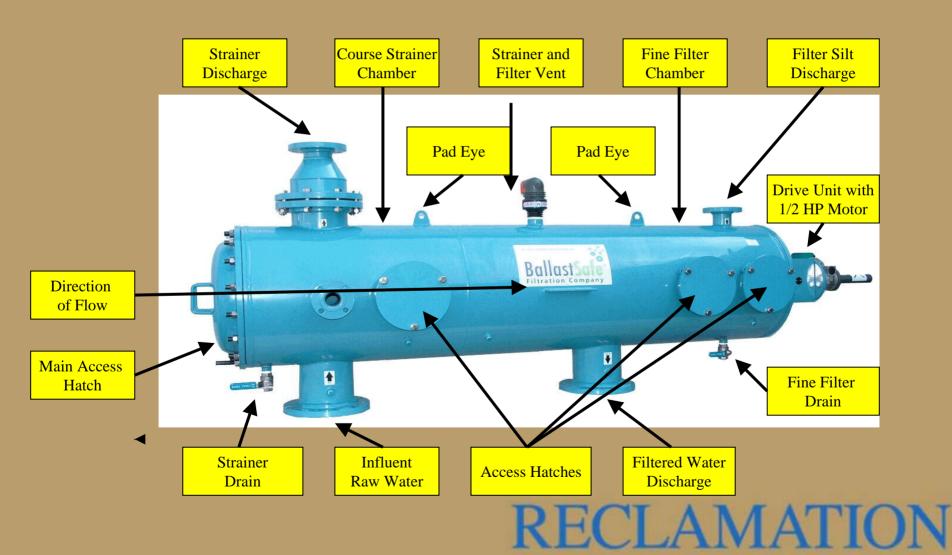
The bacteria produce natural compounds that kill the mussels when ingested. It destroys the mussels' digestive system.

In healthy mussels, epithelial cells (arrows) appear as a thick layer lining the tubules of the digestive gland.

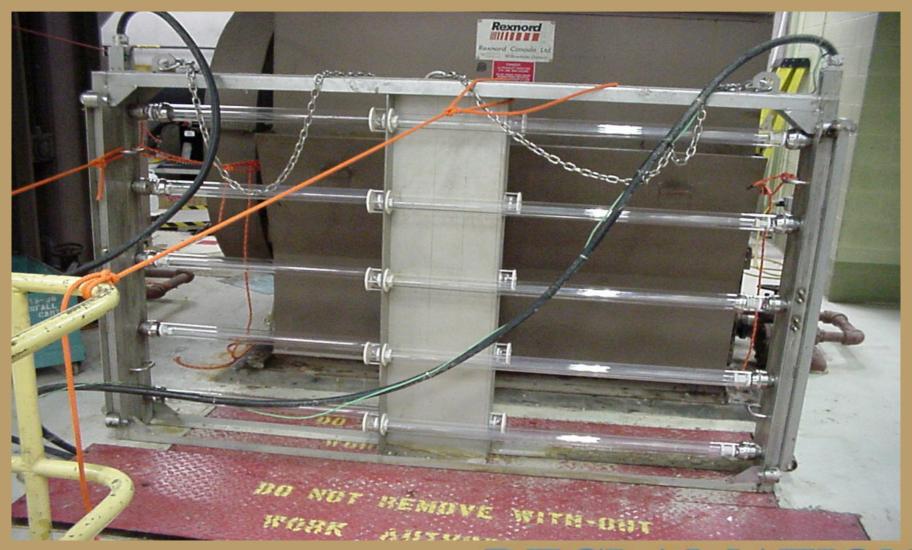

Following bacterial treatment, epithelial cells are destroyed. Blood cells are abundant as the digestive gland hemorrhages.

Proactive Options for Internal Piping Systems

- <u>Sand/media filtration</u> has to remove all particles greater than 40 micron
- Mechanical filtration has to remove all particles greater than 40 micron


Example of Self Cleaning Filter


25 to 50 MICRON SELF CLEANING FILTER


Additional Proactive Options for Internal Piping Systems

- UV systems
- Closed Loop Cooling
- Oxidizing chemicals
- Non-Oxidizing chemicals

In Line Pipeline UV Installation

UV Light Bank for Open Channel

What Water Storage and Delivery Facilities are Vulnerable to a *Dreissena* Mussel Infestation?

Variable	Colonization Potential (Infestation Probability)			
	High	Moderate	Low	Very Low
Salinity, ppm	0-1,000	1,000-4,000	4,000-10,000	10,000-35,000
Calcium, ppm	25,000-125,000	20,000-25,000	12,000-20,000	<12,000
рН	7.4-8.5	7.0-7.4	6.5-7.0	<6.5
		8.5-9.0		>9.0
Water temperature °C (°F)	17-25 (63-77)	25-27 (77-81)	15-17 (59-63)	<12 (<50)
Turbidity, cm (Secchi disk)	40-200	20-30	10-20	<10
			200-250	>250
Dissolved Oxygen, ppm	8-10	6-8	4-6	<4
Water velocity, (ft./sec.)	1.6-2.3	2.3-3.3	3.3-6.6	>6.6

Cost for Mussel Control

Ontario Hydro Experience

Average cost per MW = \$1020/MW (Capital Costs)

Average Annual Operating Cost = \$50/MW

Consultant and LCD Quagga Mussel Point of Contact

- Contracted with RNT Consulting Inc.
 Ms. Renata Claudi, Chief Scientist
 823 County Road 35 Picton, Ontario, Canada K0K 2T0
 Phone/Fax (613) 476-7994 E-mail: rnt@idirect.com
- Bureau of Reclamation Hoover Dam Engineering Mr. Leonard Willett, Water Treatment Manager Boulder City, NV 89006 – Phone (702) 494-2216 E-mail: lwillett@lc.usbr.gov

AMATION Managing Water in the West

QUESTIONS

U.S. Department of the Interior **Bureau of Reclamation**