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ABSTRACT

This paper presents a four-stream extension of the 6-Eddington approximation by considering the higher-order
spherical harmonic expansion in radiative intensity. By using the orthogonality relation of the spherical harmonic
functions, the derivation of the solution is fairly straightforward. Calculations show that the é-four-stream spher-
ical harmonic expansion approximation can reduce the errors in reflection, transmission, and absorption sub-
stantially in comparison with the 6-Eddington approximation. For the conservative scattering case, the error of
the new model is generally less than 1% for optical thicknesses greater than unity except for grazing incident
solar beam. For nonconservative scattering cases (single scattering albedo w = 0.9), the error is less than 5%
for optical thicknesses greater than unity, in contrast to errors of up to 20% or more under the 6-Eddington
approximation. This model can also predict the azimuthally averaged intensity to a good degree of accuracy.
The computational time for this model is not as intensive as for the rigorous numerical methods, owing to the

analytical form of the derived solution.

1. Intreduction

The fundamentals of atmospheric radiation are based
on solving the radiative transfer equation and parame-
terizing the radiative properties of gases, water vapor,
aerosol, and cloud drops. The physical process of ra-
diative transfer is described by a differential -integral
equation. The exact solution of the radiative transfer
equation in a scattering and absorbing media is difficult
to obtain in a computationally efficient manner even
for a plane-parallel case; thus approximate methods are
necessary. In the last three decades considerable atten-
tion has been paid to finding simple and effective meth-
ods for solving the radiative transfer equation. The sim-
plest method to determine the radiative flux is the two-
stream approximation, which is widely used in climate
models. The ‘‘two stream’” method has a general mean-
ing, according to the discussions by Meador and Wea-
ver (1980), Zdunkowski et al. (1980), and King and
Harshvardhan (1986) in that the Eddington approxi-
mation, quadrature discrete ordinate method, and hem-
ispheric constant method can all be incorporated into a
standard solution form with appropriate choice of pa-
rameters.
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The two-stream approximations provide a simple
and rapid answer to radiative transfer in a plane-parallel
medium. The accuracies of the two-stream methods
have been compared by King and Harshvardhan
(1986). It is found that the relative error in the radiative
quantities can be up to 20% or higher for any of the
two-stream methods, over a range of optical thick-
nesses and solar zenith angles. It follows that improve-
ments to the two-stream approximations are needed if
a higher accuracy in the calculations is desired. Gen-
erally, the technique for improvement is to extend the
two-stream approximations to four-stream approxima-
tions or, in general, multistream approximations.

Except for the hemispheric constant method (Coak-
ley and Chylek 1975), only the first two moments in
the expansion of the phase function are kept in the two-
stream approximations. The phase function is very
poorly represented if only the first two moments are
preserved, especially for large and nonspherical ice
crystal particles. Generally, the higher-order terms in
the expansion of the phase function can be incorporated

‘in the solution only if the corresponding higher-order

stream approximation is considered.

In modeling of atmospheric radiative entropy, pho-
tochemical interactions and remote sensing, not only
the radiative flux but also the radiative intensity is of
interest. The radiative flux is a measure of the vertical
energy flow in the atmosphere, while the intensity con-
tains the angular information about the radiation field.
The evaluation of the radiative intensity in the context



15 AprIL 1996

of an approximate method is an important issue for
atmospheric radiation studies.

Though a high accuracy in calculations of both ra-
diative flux and intensity for a plane-parallel medium
has been achieved by rigorous numerical radiative
transfer models (for example, Stamnes et al. 1988;
Ramaswamy and Freidenreich 1991), such models are
cumbersome and very time consuming and cannot be
applied directly to present climate models. Here, we
are interested in an analytical extension of the two-
stream approximations, in which the accuracy is im-
proved but an adequate computational efficiency is re-
tained. In the case of the discrete ordinate method, the
extension of the analytical solution for the four-stream
approximation has already been considered (Liou
1974, Liou et al. 1988). However, little attention has
been paid so far to four-stream extensions of other ap-
proximations such as the Eddington approximation and
the hemispherical constant method. To perform a gen-
eral, consistent study of the four-stream extension of
these methods is the purpose of this research. Specifi-
cally, in this paper, the four-stream extension of the
Eddington approximation is investigated.

Zdunkowski and Korb (1974) have considered the
four-stream extension of the Eddington approximation.
However, the orthogonal relation of the spherical func-
tion, the solution of eigen equation, and the boundary
condition were not treated appropriately, which re-
sulted in a very complicated solution and generally
poor accuracy of the results. There is no similarity be-
tween this work and that of Zdunkowski and Korb
(1974).

Karp et al. (1980) considered the numerical solution
of radiative transfer with the spherical harmonic ex-
pansion approximation. In their method, the solution
consists of the evaluation of an equation with exponen-
tial matrix forms; such exponential matrix equations
are diagonalized or transformed to a Jordan form. This
process, generally, is very cumbersome even for the
four-stream case (see Zdunkowski and Korb 1974). In
contrast to the Karp et al. approach, our solution is
based on directly solving the linear, constant coeffi-
cient, differential equations using a standard method
(Ross 1974). The solution here is much simpler in
comparison with the method of Karp et al. (1980), in-
volving fewer steps of mathematical derivation. Also,
in the Karp et al. study, in order to avoid the singularity
problem (conservative scattering case with single scat-
tering albedo w — 1), a number of transformations are
introduced. The physics for such transformations is not
readily clear. In contrast, there is no such singularity
problem in our solution and the exact solution corre-
sponding to the conservative scattering case is ob-
tained. The solution of Karp et al. (1980) appears to
be quite complicated and the complexity is not reduced
in the context of a lower-order approximate calculation.
Our method here is general in the sense that it can be
applied to higher-order numerical calculations. How-
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ever, for the purpose of this paper, we are only inter-
ested in the lower-order solutions of the spherical har-
monic expansion approximation, because probably
only the two- and four-stream cases are worthy of an-
alytical solutions (the analytical solution would be-
come far too complicated for a higher-order case). It
may be noted that such an analytical solution for a four-
stream spherical harmonic expansion has not been sys-
tematically discussed before.

In the second section, the background of the radiative
transfer process is provided in a general way. The four-
stream extension of the Eddington approximation or,
equivalently, the four-stream spherical harmonic ex-
pansion method and its solution are discussed in section
3. Finally, the results of the calculations and the com-
parison with the results from a more rigorous model
are shown in section 4.

2. Basic theory of solar radiative transfer equation
The solar radiative transfer equation is

dl
—=I—J—Jo,

Crn (1)

where I(7, u, ) is the diffuse intensity, 7 is the optical
thickness, p = cos#, § is the local zenith angle, and ¢
is the local azimuth angle. The internal source term due
to multiple scattering is

w +1 T
J= 4—f f P(p, o; 1’ @I(T, p', @")dp'dy’,
TJd_1 Jo
(2)

where w is the single scattering albedo. P(u, @; ', @)
is the phase function, which can be expanded as

P(p, o5 1", 9")

P

~

Wy
21+ 1

Y7 (p, @Y 7*(', "), (3)
where Y (i, @) and Y "*(u, ) are the spherical hat-
monic function and its complex conjugate, respec-
tively.

l— 1 1/2 )
Yi(u,0)= [(21+ 1)%“(*—:;—!] Pr(me™, (4)

with P7"(u) being the associated Legendre function.
The moments &, can be obtained by expanding the
phase function in terms of the scattering angle cos®

=pp’ + (1 — w1 = p)"cos(p — "),
P(cos®) = Y @, Py (cos®),

=0

(5)

which is due to the addition theorem for spherical func-
tions, where
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!
Pi(cos®) = Y,

m=—1

1
- Ym mx ‘l ' R
20+ 1 I, @)Y ¥ (', ")
(6)
Therefore, the moment &; is determined by the
orthogonality relation of the Legendre function
2041 !
o = 5 P{cos®)P,(cos®)d cosD.
A -1 :
It can be shown that &y = 1 and &,/3 = g, the asym-
metry factor. The external source term due to the single
scattering of the direct solar beam is

(D

w

Jo =
" 4x

P(p, 05 ~ o, po)TFee™ "™, (8)
where ug = cosfy, 0, is solar zenith angle, ¢, is solar

azimuth angle, and 7F, is the solar flux.

3. Four-stream extension of the Eddington
approximation and solution

The purpose of the spherical harmonic expansion of
the intensity is to separate out the angle-dependent fac-
tor

™M~

=3 2L+ D2EY P, ), (9)
=0 m=-1

substituting Eq. (9) into Eqgs. (2) and (8), and using
the orthogonality property of the spherical harmonic
function, we have the source terms

I=wY S

@

—— I (DY T (L, 1
oo~ (21+ 1)1/2 I(Z) l(l‘l' ‘P) ( O)
and
1 ~
w Wy
Jo==
°7 4 EO,E, 20 + 1

X YT (ps @)Y I'*(— o, po)Foe ™. (11)

Substituting Egs. (9), (10), and (11) into Eq. (1),
we obtain

[-m+1){I+m+ 1)]”2%1511

+ [+ m)d-m)]"” diTI?"_l

= Q21+ DI? — w Il — wY 7*(~ po, Po)
X Foe ™"[4(21 + 1)V2. (12)

We consider a solution with a truncation of order L,,
which means that the spherical harmonic function
Y7 (u, p) is restricted toorder / = 0, 1, 2, ---, L,.
Truncated at L, = 1 for the lowest order case, if only
calculations of flux and the azimuthally averaged in-
tensity are desired, we have (for m = 0)
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;% 19 = agl§ — ble~""4o
P , (13)
ZIS =a,1% — ble "m0
where a;, = [(2] + 1) — w®,] and b7 = w,Y '*
X (= po, o) Fol4(21 + 1)'2.

Equation (13) is the well-known two-stream
result and is the same as that obtained in the
Eddington approximation (Shettle and Weinman
1970).

L, = 2 corresponds to a degenerate case and
will be discussed later. Consider L, = 3, when
four terms in the expansion of Eq. (9) are incor-
porated. Therefore, this corresponds to the four-
stream case. Also, for the purpose of obtaining the
flux and the azimuthally averaged intensity, only the
case of m = 0 needs to be considered. Equation (12)
yields

d 3
—Il = (1010 e boe'”“"

dr
d d
ZEIZ + Z’;Io = alll - ble_T"‘"

b (14)
3L 2L =gl — b
de dTI—azz 2€

d
3 _12 = a313 - b3e—7/‘“’
T

d )

Since the paper considers only the azimuthally inde-
pendent case, the superscript ‘0’ in I9 and b? (i = 0,
1, 2, 3) is neglected. '

First, consider the homogeneous solution of Eq.
(14). Assuming I; = G;e ™ (i = 0, 1, 2, 3) and sub-
stituting them in the homogeneous part of Eq. (14)
(Ross 1974), we obtain a eigen-determinant with the
eigenvalues of \ determined by the nontrivial solution
requirement for G,

dop A 0 0
by ay 2N 0 _
0 2\ a, 3\ 0, (15)
0 0 3N as
which leads to
FO) =N =B\ +y =0, (16)

where 8 = apa; + $a0as + $a,a; and y = }apa,a,a;.

Eigenvalues obtained from Eq. (16) are Ay = — A3
=[B + (B2 —4y)"*]"2 2, M= =Ny = [B — (B2
— 4v)"2]1'?/\2. The coefficients of G; are not in-
dependent, but are related through the homogeneous
part of the equations. By taking the homogeneous
parts of the first three equations in Eq. (14), we
obtain
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G] = “’ao/)\GO

1
G2=E(a0a1/)\2— 1)G() (17)

Gy = — %(aoall)\ — N)/asG,

Thus, the other three coefficients can be determined in
terms of Gy.

For the particular solution, we assume the solu-
tion form n;e ~"'# (i = 0, 1, 2, 3) for the components
of I, (i =0, 1, 2, 3) (Ross 1974). Substituting the
particular solution in Eq. (14), we can obtain the
coefficients of 7; by solving a group of linear alge-
braic equations. The solutions are of a general form
m o= NJA (i =0,1,2,3), where A = 9f(1/10),
and

boe /gy O O

An = b1 a, 2/‘1,0 0
0 bz 2//.&0 a, 3//1;0
by 0 3lu  a

= (a1bo — b1/ po)(axa3 — 9/#(2))
+ 2(ash, — 2asbo — 3bs/ o)/ .  (18)

Similarly, A, can be obtained by replacing b; in the
second column of the eigenvalue determinant, and so
on. We have

Ay = (aohy — bol o) (axas — 9/ )
— 2a¢(asb, — 3b3/ o)/ o,
A, = (asb, — 3bs/ o) (aoay — 1/u3)
— 2a3(aghy — bol po)! pho,
As = (axbs — 3by/ o) (aoay — 1/ud)
+ (6agh, — 4aghs — 6bol po)/ . (21)

The final results are the linear combinations of the
homogeneous solutions corresponding to each of the
eigenvalues and the particular solution

(19)

(20)

Iy = Cie ™ + DM + Ce™™
+ Dye™ + e TH

I, = Pi(Cie™™7 — DieM7)

+ Py(Coe ™" — Dye™") + mue ™ L
L = Q1(Cie™" + DieM") ,

+ 0:(Coe™ + Dye™") + mpe Tk
I, = Ri(Cie™" — Dye™")

+ Ry(Coe ™™ — Dpe™") + n3e‘”“°‘

(22)
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where C,, D, C;, and D, are constants to be deter-
mined by the boundary conditions, and the constants
Py = —ap/ N2, Q12 = %(aoal/)\%,z — 1), and R,
= —3(aoa;/ M2 — M2)/as ate obtained by Eq. (17).

We use the so-called Marshak boundary condition
(Evans 1993). For a considered layer, at the upper
boundary (optical depth 7 = 7,)

-1 (2
f f [I(Tu7 ﬂ:, 90)
0 0

— T (s s @)Y 5 (s 0)dpdip = 0

(I=1,",Lym==xl,---, *xl), (23a)

where T~ (7, u, @) is the downward diffuse intensity
at the upper boundary; at the lower boundary (optical
depth 7 = 7;)

j: f:ﬂ (e, w, @)

= TH (7, o )Y 7 (1, 0)dudp = 0

=1, -, Lym==1,---, %), (23b)

where I"* (1), u, @) is the upward diffuse intensity at
the lower boundary. The spherical harmonic functions
Y *(pu, @) are restricted to be an odd function of x (I
+ m = odd). In our opinion, the boundary condition of
Eq. (23) is well defined. Actually, the real boundary con-
dition for upper boundary should be I(7,, u, ) —I' (7,
., ) = 0 for all local angles of u (u < 0) and ¢, which
generates an infinite number of continuity conditions. In
the discrete-ordinate method the continuity is superposed
on a finite number of angular points (two specified angles
in the four-stream case). Also, the continuity condition is
true for the hemispheric integral of intensity, weighted by
any angular function as shown in Eq. (23a). The restriction
to odd functions of y makes the upper hemisphere and the
lower hemisphere separate for the weight function. There-
fore, the continuity of intensity is not imposed on the sur-
face at . = 0, which has no physical meaning. In Eq. (23),
the lowest-order case (I = 1; m = 0) is just the continuity
of the vertical energy flow at the boundary.

For a single-layer medium, at the top (7 = 0), there
is no downward diffuse intensity,

-1 27
fo fo 100, . @)Y $*dpdip ~ 2 1o(0)

~ 1,(0) + 212(0) =0 (24)
and

—1 27
J‘O L 10, p, )Y S*dudyp ~ — %10(0)

+ 212(0) — L(0)=0; (25)
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at the bottom of the layer (7 = 7¢) there is no upward
diffuse intensity (surface albedo is assumed to be
Zero),

1 27
1
J;J; I(To, p, @)Y V*dpdep ~ 5 Io(7o)

+1(70) + 3 L(ro) =0 (26)
and l

1 27
J; J; I(To, p, 9)Y $*dudp ~ — %10(7'0)

+25(r0) + B(r9) = 0. (27)

These four linear equations of Egs. (24)—(27) de-
termine the constants C;, D,, C,, and D,. The boundary
condition with nonzero surface albedo is shown in
Eq. (Al).

For the conservative case (single scattering al-
bedo w = 1), we have aq = 0. Under this circum-
stance, A, = — A\, = 0. Assume the ansatz for I, cor-
responding to the double zero roots is C, + D,r, and
similar ansatz for other components (Ross 1974).
Substituting these ansatzes in the homogeneous part
of Eq. (14), two groups of linear equations are gen-
erated. The relations between the coefficients in an-
satzes can be simply determined by solving the lin-
ear equations. We therefore have, for the conser-
vative case,

Iy = Cie ™ + D eN™ + C, + D7 + noe_”“‘)
I} = D2/a1 + 7718_7-/“0
12 = Ql(Cle_)‘”' + DleMT) + nze_ﬁ‘“"

I3 = R\(Cie ™ — D7) + mze” 7/
(28)

The coefficients \;, Q,, R;, and 7; are the same as
those above, provided a, = 0. The constants C,, D,
C,, and D, are obtained through the same boundary
condition as that of the nonconservative case. Because
w = 1 is a singular point for the nonconservative so-
lution, using a value of w very close to 1 for performing
the conservative scattering calculations can easily
cause a numerical instability (e.g., Karp et al. 1980).

The upward flux F* and downward flux F~ are ob-
tained as

F*= 7r<10 + 2] + %12) . (29)

In the 6-Eddington approximation, the corresponding
fluxes are

== 71'(10 + 211). (30)

JOURNAL OF THE ATMOSPHERIC SCIENCES

Vou. 53, No. 8

Thus, one more term is added in the new four-stream
model. Note that the 7, in Eq. (30) is one-third of that
in Shettle and Weinman (1970), owing to the normal-
ization coefficients in Eq. (9).

4. Computational resuits and discussions

In the. four-stream extension of the Eddington approxi-
mation, because the phase function is truncated for a mo-
ment corresponding to L, = 3, the §-M scaling technique
(Wiscombe 1977a) can be applied. The é-M scaling ad-
justment is based on the physical consideration of separat-
ing out the forward peak in the phase function. Under the
6-M adjustment, the optical parameters are scaled by

' =7(1 - fw), (31)
w =w(l — I - fw), (32)
Wi =[@— QL+ D)1 =f). (33)

For the four-stream approximation case, f = @4/9
(Wiscombe 1977a). In the following, the §-M scaling
technique is used for all the calculations. Consequently,
the two- and four-stream spherical harmonic expansion
approximations are termed 6-Eddington approximation
and d-four-stream spherical harmonic expansion ap-
proximation-(é-four-stream SHEA ), respectively.

a. Flux

We analyze the accuracy of the reflection (7o, 1),
transmission #( T, o), and fractional absorption a(7,,
o) predicted by this model. The formal definitions of
reflection, transmission, and absorption are

r(To, to) = F7(0)/ pomFy, (34)
t(To, pho) = F~(To) pomFo + e~ ™%, (35)
a(to, o) = 1 — 1r(7o, o) — 1(70, po). (36)

The absolute error is defined as the value obtained
from the approximation method minus the value ob-
tained using a rigorous method; the relative error is the
absolute error divided by the value from the rigorous
method. The rigorous standard model used in the fol-
lowing is the discrete-ordinate numerical model of
Stamnes et al. (1988). Forty-eight streams are used in
the discrete ordinate calculations.

To demonstrate the accuracy of the method, tests for
a wide range of optical thicknesses and incoming solar
zenith angles are undertaken. As in King and Harsh-
vardhan (1986), the optical thickness varies from 0.1
to 100 (in steps of 0.02 on a logarithmic scale), and
the cosine of solar zenith angle varies from 0 (0.02) to
1 (in steps of 0.02). The Henyey—Greenstein phase
function is used. This function is easy to handle in the
calculation, since a higher order moment in phase func-
tion is just a power of the asymmetry factor. To contrast
accuracies, the results using the §-Eddington approxi-
mation and §-four-stream discrete ordinate method will
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also be shown. Our results using the §-Eddington ap-
proximation are slightly different from that of King and
Harshvardhan (1986), because the phase function they
employed is from the exact Mie theory; further, their
cloud optical parameters correspond to a specific drop-
let size distribution.

First, we consider the case of a nonabsorbing me-
dium with a single scattering albedo w = 1. The relative
errors for reflection and transmission are plotted in Fig.
1. The top panels represent the error in the 6-Eddington
approximation and the lower panels represent the error
in the corresponding §-four-stream SHEA results. The
asymmetry factor g = 0.8.

The contours of the error in Fig. 1 for the $-Edding-
ton approximation are quite similar to the results shown
in King and Harshvardhan (1986) even though, as
noted earlier, the phase functions are somewhat differ-
ent in these two calculations. For reflection, the results
are relatively more accurate in the region of thicker
optical depths and smaller solar zenith angles. For
transmission, too, the accuracy is greater in the region
of smaller solar zenith angles, but is not as sensitive to
the optical thickness.

The middle panels show that the §-four-stream
SHEA yields substantially more accurate results. For
instance, the error in reflection using the the §-Edding-
ton approximation is as high as 10% for 7, > 2. How-
ever, this region has an error of less than 2% in the case
of the é-four-stream SHEA. For transmission, the error
using the 6-Eddington approximation is bounded by
10% in the region of p, > 0.2, while the error is sup-
pressed to less than 1% in the four-stream case over
the same domain.

The corresponding results of é-four-stream discrete
ordinate method are shown in the bottom panels. For
optical thickness less than one, all methods produce
large errors; this a region that our method can not be
applied. The thin optical thickness case will be further
discussed in a subsequent work.

Here w = 0.9 is used as example of an absorbing
case, as in King and Harshvardhan (1986). The asym-
metry factor g = 0.8. The error comparisons for the 6-
Eddington approximation and §-four-stream SHEA and
6-four-stream discrete ordinate approximation are il-
lustrated in Fig. 2. The upper panels are results from
the 6-Eddington approximation, and the middle panels
are the results from the §-four-stream SHEA.

First, we focus on the §-Eddington results. It is found
in Fig. 2 that the absorbing media leads to a larger error
in reflection and transmission compared to the nonab-
sorbing case. In particular, the transmission shows very
poor results for large optical thicknesses, the errors be-
ing up to 20% or higher. This is also true for other two
stream schemes (King and Harshvardhan 1986) and is
partly due to the very small value of transmission oc-
curring in these cases, with the absolute error in this
region being small (see King and Harshvardhan 1986).
The 6-Eddington approximation predicts good results
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for absorption and also for the large optical thickness
cases (79 > 10). For a small value of the optical thick-
ness, a large portion of the figure for absorption is dom-
inated by errors greater than 10%.

In the case of the é-four-stream SHEA (middle
panel), it is found that the relative errors are very much
suppressed compared to the §-Eddington approxima-
tion. The relative error in reflection is mostly (for pg

> 0.1) bounded by 5% for optical thickness 7o > 1;

in contrast, it is up to 15% in the §-Eddington case.
Significant improvements occur in the region of small
solar zenith angle (u, > 0.7); for 74 > 1, the error is
bounded by 1%, whereas the error is close to 10% in
the two-stream case. A dramatic improvement occurs
for transmission. Most of the region has errors less than
1%, even in the thin optical thickness region; this is to
be contrasted with the fact that a large region is dom-
inated by errors of up to 10% in the §-Eddington case.
For absorption, the contours of é-Eddington approxi-
mation and the 6-four-stream SHEA are roughly simi-
lar. Though there is a marked improvement, the §-four-
stream approximation cannot completely eliminate the
region where the errors exceed 10%; however, this do-
main is much smaller compared to the §-Eddington
case. For 74 > 2, most of the regions are bounded by
errors in absorption of less than 2%, except for the graz-
ing incident case of yy < 0.1. In contrast, the error is
up to 10% in the 6-Eddington case for the same region.
The corresponding results for the é-four-stream dis-
crete ordinate method are shown in the bottom panels
and can be compared with the accuracies presented in
the other two panels.

We consider a strongly absorbing case in Fig. 3 with
single scattering albedo w = 0.5; again we choose g
= 0.8. It is found that the relative errors in reflection
and transmission increase as w decreases, while the
error in absorption decreases as w decreases. Again,
the é6-four-stream SHEA provides more accurate re-
sults in comparison to that from the 6-Eddington ap-
proximation.

b. Azimuthally averaged intensity

The spherical harmonic expansion method is based
on a specific assumption of the spatial variation of in-
tensity. Thus, the intensity can be obtained even in the
two-stream solution. In the case of m = 0, only the
evaluation of azimuthally averaged intensity is avail-
able. In the two-stream case or Eddington approxima-
tion, this azimuthally averaged intensity is given by [/
= Iy + 3pl,. This linear variation of intensity with the
cosine of local zenith angle shows a large error in com-
parison with the exact results (Davies 1980). We ex-
amine here the accuracy in the context of the four-
stream solution. The azimuthally averaged intensity is
given by

I=LY3+V3LY? +5LY + 1LY}, (37)
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with the asymmetry factor g = 0.8. The cloud layer is nonabsorbing (w = 1).
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FIG. 2. Same as in Fig. 1 except for absorbing media with w = 0.9. The relative errors for absorption, Aa(Te, pela(to, po), are also shown.

We find through numerical calculations that the results
of Eq. (37) are still poor compared to the rigorous re-
sults in some regions of the parameter space. Therefore,
adjustments have to be made to improve the accuracy.
Comparing Eq. (37) with Eq. (29), we note that the
last term of I3 does not appear in the equation for flux.
Therefore, an adjustment can be made to the last term

of Eq. (37) without influencing the results of the flux.
Here Y3(u) varies quite steeply with 4 for u close to
I, which leads to a poor result in this region. To mod-
ulate it, some other spherical function may be added.
We simply replace the last term in Eq. (37) by
VIL(YS + 1.6Y$ + 3(1 — w)*). A factor of 3(1 — w)*
is added to adjust the result in the region of small y;
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FiG. 3. Same as in Fig. 2 except for w = 0.5.

otherwise, the values are usually smaller in this region
in comparison with the exact results.

By doing this simple adjustment, the computational
results become much closer to the rigorous results. The
azimuthally averaged intensities for different optical
thicknesses are shown in Fig. 4. The cosine of incoming
solar zenith angle u, = 0.5, the asymmetry factor of
the considered layer g = 0.8, and the cloud layer is a

nonabsorbing medium. The discrete ordinate model
(Stamnes et al. 1988) is used as the standard model for
comparison, and forty-eight streams are considered in
the rigorous calculations. The Henyey—Greenstein
phase function is used again. In Fig. 4, it is found that
the intensity obtained by this model is quite close to
the rigorous results. The accuracy is higher for the
thicker cloud cases, as was the situation for the flux
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Normalized Radiance

Fic. 4. Azimuthally averaged radiative intensity as a function of
viewing angle u for various optical thickness 7¢: Fo = 1, w =1, g
= 0.8, and y, = 0.5. The solid lines are the results of the rigorous
model and the dashed lines are the results of the four-stream SHEA
model.

results. In Fig. 5, the incoming solar zenith angle y,
= 1, while the other parameters are the same as those
in Fig. 4. When the solar zenith angle becomes small,
we find from Fig. 5 that the accuracy in intensity is
improved for the thin cloud cases.

We have found that the accuracy of the intensity pre-
dicted by this model is not sensitive to the optical prop-
erties of the cloud. The calculations of intensity for
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F1G. 5. Same as in Fig. 3 except for incoming solar
zenith angle yo = 1.
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Fic. 6. Azimuthally averaged radiative intensity as a function of
viewing angle y for various values of the asymmetry factor g: Fy
=1, 79 =10, w = 1, and gy = 0.5. The solid lines are the results of
the rigorous model and the dashed lines are the results of the four-
stream SHEA model.

different asymmetry factors are shown in Fig. 6. The
considered layer is of optical thickness 7o = 10, the
cosine of incoming solar zenith angle u, = 0.5, and
single scattering albedo w = 1. It is seen that the ab-
solute error increases slightly as the asymmetry factor
decreases.

e

Normalized Radiance
[\~

2.05

02.80 .60

2.40 0.20 2.08
cos(8)

FiG. 7. Azimuthally averaged radiative intensity as a function of
viewing angle u for various values of single scattering albedo w: Fy
= 1,7, =10, g = 0.8, and p, = 0.5. The solid lines are the results
of the rigorous model and the dashed lines are the results of the four-
stream SHEA model.
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The sensitivity to single scattering albedo is shown
in Fig. 7. The asymmetry factor is g = 0.8, while the
other parameters are the same as in Fig. 6. The relative
error is larger for the smaller single scattering albedo
cases, which is similar to the situation discussed in the
last section for the reflected flux.

For azimuthally dependent intensity, the solutions of
equations corresponding to m # O are required. This is
beyond the scope of this paper. The azimuthally aver-
aged intensity provides the local zenith angle—depen-
dent radiation information. If the four-stream spherical
harmonic expansion method is applied to climate mod-
els, more accurate values of intensity will result in more
accurate radiative entropy evaluations (Li et al. 1994).
The evaluation of the radiative intensity in a low-order
approximate radiative transfer context has been consid-
ered by Davies (1980) and Xiang et al. (1994).

5. Conclusions

The physical essence of the Eddington approxima-
tion is that it is the lowest-order (L, = 1) case in the
spherical harmonic expansion of the intensity. The
mode considered in this paper corresponds to the sec-
ond lowest-order expansion (L, = 3). There does exist
a solution for the case of L, = 2, which can be easily
shown to be a degenerate one. Only two of the three
components in the intensity expansion are independent.
The results of the flux calculations in the case of L,
= 2 are even poorer than the corresponding results of
the Eddington approximation.

It is well known that, in the calculations of flux and
heating rate, the Eddington approximation is poor for
the cases of small optical thickness and large solar ze-
nith angle. Calculations show that the accuracy of the
reflection, transmission, and absorption are all signifi-
cantly improved by using the new four-stream exten-
sion method. Although we have only considered a sin-
gle-layer case, the model can be easily extended to
multiple-layer cases, just as in the instance of the &-
Eddington approximation (see appendix).

The four-stream spherical harmonic expansion can
be extended to three-dimensional radiative transfer
problems, which ought to lead to more accurate results
in studies of finite clouds (Davies 1978) and internally
inhomogeneous clouds (Li et al. 1995).

The solution of the four-stream SHEA has an elegant
form. Since we only consider the azimuth-independent
case here, the spherical harmonic function reduces to
Legendre function and no complex quantities appear.
The four-stream extension presented in this work is an
analytical method that makes for computational effi-
ciency. All calculations show that the CPU time for this
four-stream extension method represents a modest in-
crease over that for the §-Eddington approximation.
Therefore, this method should be applicable in climate
models, where a fast but accurate result is required. In
particular, the derivation here is an appropriate higher-
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order substitute for the -Eddington approximation that
is currently used in several general circulation models
of weather and climate.
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APPENDIX
Boundary Connection for Multiple Layers

We consider a vertically inhomogeneous column of
n layers, with each layer being internally homogeneous
(Fig. 8). There are generally two methods to formulate
the radiative transfer process involving the single ho-
mogeneous layers. One could be termed as the ‘‘direct
connection.”” We denote the intensity in ith layer by
19 = 37021 + 11{°(7)Y?. Assuming no downward
scattered radiation on the top of the system and a Lam-
bertian surface albedo « for the bottom of the system,
we directly have the following relations from Eq. (23).

1 ) :
516°(0) = 11°(0) + 2 127(0) =0

1
- 10 +25°(0) - 1£7(0) = 0

1 5
S 167 (r) + 1V (r) + 17 ()

1 5
=517 () + IP(r) + S 17 (7))

1 5
=g 1" (r) + 210 (r) + V()

1 .2

5
= = 107 (r) + 17 (m) + 157(7)

T=0

1 T
2 1,

Tp-2
n-1

Tp-1
n

Tn

FiG. 8. Schematic of n homogenous layers for radiative transfer
in a vertically inhomogeneous atmosphere.
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1, n—1) 5 (n-1)
S167 () = IV () + 5 127 ()

1 n n n
= L) = TP(ra) + 217 (70)

| S (n— n—
= 5107 () + 21T = I ()

—_ ___I(n)( n 1) + I(n)( n—1) (")(7_" 1)

S + I () + 210
=% { (")( n)— I(n)(Tn)
T %Iéﬂ)(’rn) + #oFoe-T"/m}

— 10 + 210 + K77

= - %a{ 1§°(r,) = 21{°(r)

+2 1‘"’(7")+quoe-fn’ﬂo}. (A1)

There are 4n linear algebra equations that determine
the 4n constants in the radiative intensities (flux) for
the » layers. Note that 2z linear algebra equations are
needed (Wiscombe 1977b) for the two-stream 6-
Eddington case. In the process of solving the linear
algebra equation of Eq. (A1), an ill-conditioning may
occur. The exponential factor e*™ (i = 1, 2) could
reach values beyond the range of available computer
capacity for a large value of 7. This can generally be
avoided by using scaling transformations developed by
Stamnes et al. (1984), which has been used in the nu-
merical DISORT model (Stamnes et al. 1988).

Another method is a version of the so-called ‘‘add-
ing”’ method, in which the fluxes across the layer in-
terfaces are added in an appropriate fashion. The op-
tical thickness of ith single layer is ¥ =7 — 11 (see
Fig. 8). For each layer, the direct and diffuse reflections
and transmissions are distinguished. The direct reflec-
tion and transmission can be obtained in the same way
as shown in this paper with the boundary condition of
Egs. (24)—(27), provided 7, is replaced by 7 for the
ith layer. For the diffuse reflection and transmission,
we have the same solutions as Eqgs. (22) and (28),
prov1ded the particular solutionn, = 0(i =0, 1,2, 3),
since there is no direct solar beam contribution. As-
sume the diffuse beam to have an isotropic distribution
(Coakley etal. 1983) and let the downward diffuse flux
to the ith layer be Fy' o ; thus, the downward diffuse
intensity is Fs’/m. Therefore, the boundary condi-
tions for the diffuse radiation are
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(l)(O) - I l)(o) + I(l)(o) (l)

t i t ]- t
815)(0> +2T90) - IP(0) = - g Fo’
LI + T + 291 = 0
2 8

SIS+ 1“’(7, Y+ I(rF) =0, (A2)

where an overbar is used to distinguish the diffuse ra-
diation. The diffuse upward (downward) flux is

Fo= —7r< 19 =20 +2 1“)). (A3)

Finally, we have the diffuse reflection and transmis-
sion for the ith layer

Fi= FO(0)/Fy,
4 =F9O (r})IFy.

(A4)
(A5)

In the two-stream §-Eddington approximation case,
this process leads to analytical results for the diffuse
reflection and transmission as shown in Coakley et al.
(1983).

For two layers designated as 1 and 2, the reflection
and transmission for the combined system (radiation
incident on layer 2) are (Coakley et al. 1983)

ri2( o) = r1( o)

- % ok
+ f{t(po) — e T)F + e T Hr () )

— . (A6)
1 — rrp
= o—7iluo
ta(po) = e 12 o)
L Bln () — e _Jr_e—ff""Orz(uo)fl} )
1 - rirs
1
Fo=Fi o+ o A (A8)
- rir2
_ 1t
th = 1__1_17 s (A9)
—ryr

where r,,( o) and t, (o) are the direct reflection and
transmission, respectively, for layer 1 or 2.

To combine the layers over the entire column, two
passes are made through the layers: one starting from
the top and proceeding downward and other starting
from surface and proceeding upward. The upward and
downward fluxes are therefore obtained at each inter-
face of the column (Coakley et al. 1983; Briegleb
1992). Alternatively, a matrix form of the up and down
fluxes across the layer interfaces can be set up and
solved (Ramaswamy and Bowen 1994).



1186

REFERENCES

Briegleb, B. P., 1992: Delta—Eddington approximation for solar ra-
diation in the NCAR community climate model. J. Geophys.
Res., 97, 7603-7612.

Coakley, J. A., and P. Chylek, 1975: The two-stream approximation.
in radiative transfer: Including the angle of the incident radia-
tion. J. Atmos. Sci., 32, 409-418.

——, R. D. Cess, and F. B. Yurevich, 1983: The effect of tropo-
spheric aerosols on the Earth’s radiation budget: A parameter-
ization for climate models. J. Atmos. Sci., 40, 116—138.

Davies, R., 1978: The effect of finite geometry on the three-dimen-
sional transfer of solar irradiance in clouds. J. Atmos. Sci., 35,
1712-1725.

~——, 1980: Fast azimuthally dependent model of the reflection of
solar radiation by plane-parallel clouds. Appl. Opt., 19, 250~
255. .

Evans, K. F., 1993: Two-dimensional radiative transfer in cloudy
atmosphere: The spherical harmonic spatial grid method. J. At-
mos. Sci., 50, 3111-3124.

Karp, A. H,, J. J. Greenstadt, and J. A. Filmore, 1980: Radiative

" transfer through an arbitrarily thick, scattering atmosphere. J.
Quant. Spectrosc. Radiat. Transfer, 24, 391-406.

King, M. D., and Harshvardhan, 1986: Comparative accuracy of se-
lected multiple scattering approximations. J. Ammos. Sci., 43,
784-801.

Li, J., P. Chylek, and G. B. Lesins, 1994: Entropy in climate models.
Part I: Vertical structure of atmospheric entropy production. J.
Atmos. Sci., 51, 1691-1701.

——, D. J. W. Geldart, and P. Chylek, 1995: Second order pertur-
bation solution for radiative transfer in clouds with a horizon-
tally arbitrary periodic inhomogeneity. J. Quant. Spectrosc. Ra-
diat. Transfer, 53, 445-456.

Liou, K. N., 1974: Analytic two-stream and four-stream solutions for
radiative transfer. J. Atmos. Sci., 31, 1473-1475.

——, Q. Fu, and T. P. Ackerman, 1988: A simple formulation of the
delta-four-stream approximation for radiative transfer parame-
terization. J. Atmos. Sci., 45, 1940—1947.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 53, No. 8

Meador, W. E., and W. R. Weaver, 1980: Two-siream approxima-
tions to radiative transfer in planetary atmospheres: A unified
description of existing methods and a new improvement. J. At-
mos. Sci., 37, 630-643,

Ramaswamy, V., and S. M. Freidenreich, 1991: Solar radiative line-

by-line determination of water vapor absorption and water cloud

extinction in inhomogeneous atmospheres. J. Geophys. Res., 96,

9133-9157.

, and M. M. Bowen, 1994: Effect of changes in radiatively active

species upon the lower stratospheric temperatures. J. Geophys.

Res., 99, 18 909-18 921.

Ross, S. L., 1974: Differential Equation. Xerox College, 712 pp.

Shettle, E. P,, and J. A. Weinman, 1970: The transfer of solar irra-
diance through inhomogeneous turbid atmospheres evaluated by
Eddington’s approximation. J. Atmos. Sci., 27, 1048-1054.

Stamnes, K., S. C. Tsay, and P. Conklin, 1984: A new multi-layer
discrete ordinate approach to radiative transfer in vertical in-
homogeneous atmosphere. J. Quant. Spectrosc. Radiat. Trans-
Ser, 31,273-282,

—_— , W. Wiscombe, and K. Jayaweera, 1988: A numerically
stable algorithm for discrete-ordinate-method radiative transfer
in multiple scattering and emitting layered media. Appl. Opr.,
27, 2502-2509.

Wiscombe, W., 1977a: The delta-M method: Rapid yet accurate ra-
diative flux calculations. J. Atmos. Sci., 34, 1408—1422.

——, 1977b: The delta~Eddington approximation for a vertically
inhomogeneous atmosphere. NCAR Tech. Note NCAR/TN-
121+STR, 66 pp. [NTIS PB-270 618/2GL.]

Xiang, X., E. A. Smith, and C. G. Justus, 1994: A rapid radiative
transfer model for reflection of solar radiation. J. Atmos. Sci.,
51, 1978-1988.

Zdunkowski, W. G., and G. Korb, 1974: An approximative method
for the determination of short-wave radiative fluxes in scattering
and absorbing media. Contrib. Atmos. Phys., 47, 129-144.

——, R. M. Welch, and G. Korb, 1980: An investigation of the struc-
ture of typical two-stream-methods for the calculation of solar
fluxes and heating rate in clouds. Contrib. Ammos. Phys., 53,
147-166.




