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ABSTRACT

A finite-volume dynamical core with a terrain-following Lagrangian control-volume discretization is described.
The vertically Lagrangian discretization reduces the dimensionality of the physical problem from three to two
with the resulting dynamical system closely resembling that of the shallow water system. The 2D horizontal-
to-Lagrangian-surface transport and dynamical processes are then discretized using the genuinely conservative
flux-form semi-Lagrangian algorithm. Time marching is split-explicit, with large time steps for scalar transport,
and small fractional steps for the Lagrangian dynamics, which permits the accurate propagation of fast waves.
A mass, momentum, and total energy conserving algorithm is developed for remapping the state variables
periodically from the floating Lagrangian control-volume to an Eulerian terrain-following coordinate for dealing
with ‘‘physical parameterizations’’ and to prevent severe distortion of the Lagrangian surfaces. Deterministic
baroclinic wave-growth tests and long-term integrations using the Held–Suarez forcing are presented. Impact
of the monotonicity constraint is discussed.

1. Introduction

This paper describes the finite-volume dynamical core
for global models that was initially developed at the
National Aeronautics and Space Administration
(NASA) Goddard Space Flight Center. The applications
of the finite-volume algorithms for global modeling at
NASA Goddard Space Flight Center (GSFC) started in
the late 1980s and early 1990s with focus on the trans-
port process of chemical constituents (e.g., Rood 1987;
Allen et al. 1996) and water vapor (Lin et al. 1994).
These algorithms were derived and evolved from the
modern 1D finite-volume algorithms pioneered by Van
Leer (1977) and Colella and Woodward (1984), which
were originally designed for resolving sharp gradients
and discontinuities in astrophysics and aerospace en-
gineering applications.

In addition to the effort at NASA GSFC, finite-vol-
ume schemes have also been developed or applied else-
where for modeling geophysical flows (e.g., Carpenter
et al. 1990, Machenhauer and Olk 1995; Thuburn 1996).
The challenge to us was to develop computationally
competitive and physically based algorithms suitable for
global modeling of both weather and climate systems.
There exists a rich body of literature on high-perfor-
mance finite-volume schemes designed for other dis-
ciplines (e.g., Roe 1981; Colella and Woodward 1984;
Woodward and Colella 1984; Shu and Osher 1988; Har-
ten 1989; Huynh 1996; Leveque 2002). However, the
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large-scale atmospheric flow is highly stratified in the
direction of gravitation, and as an excellent approxi-
mation, is hydrostatic. As such, the standard ‘‘Riemann
solver’’ developed for other disciplines would not be
efficient nor directly applicable. Furthermore, the di-
rectional splitting needed for applying the previously
mentioned 1D algorithms would produce unacceptably
large errors near the poles where the splitting errors are
greatly amplified by the convergence of the meridians
(Lin and Rood 1996).

A milestone toward the goal of developing a finite-
volume dynamical core was achieved in early 19941 with
the development of the multidimensional Flux-Form
Semi-Lagrangian Transport scheme (FFSL; Lin and Rood
1996, referred to as LR96 hereafter). Building on the
existing 1D finite-volume schemes, the FFSL algorithm
extended those schemes to multidimensions and thereby
eliminated the need for directional splitting. Equally im-
portant, the so-called Pole-Courant number problem is
solved, via the physical consideration of the contribution
to fluxes from upstream volumes as far away as the Cour-
ant number indicated. The resulting multidimensional
scheme is oscillation free (with the optional monotonicity
constraint), mass conserving, and stable for Courant num-
ber greater than one in the longitudinal direction, which
made the scheme competitive for the intended application
on the sphere. The FFSL algorithm has since been adopt-
ed in several atmospheric chemistry transport models
(e.g., Chin et al. 2000; Rotman et al. 2001).

Another milestone toward the goal of building the

1 The multidimensional Flux-Form Transport Algorithm was first
presented in 1994 at the Fourth Workshop on the Solutions of Partial
Differential Equations on the Sphere and later published in 1996.
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finite-volume dynamical core was reached with the ad-
aptation of the FFSL algorithm to the shallow water
dynamical framework (Lin and Rood 1997, referred to
as LR97 hereafter). To achieve the goal of consistent
transport of the mass, the absolute vorticity, and hence,
the potential vorticity, a two-grid two-step ‘‘reversed
engineering approach’’ was developed. It has the ad-
vantage of the Z grid (Randall 1994) without its com-
putational expense of solving an elliptic equation. The
time discretization for treating the gravity waves on both
grids is the explicit ‘‘forward–backward’’ scheme,
which is conditionally stable with the forward-in-time
nature of the FFSL transport algorithm. The allowable
size of the time step, for example, for a T42-like res-
olution (about 2.88) is 600 s, which is about half of what
can be used by the semi-implicit Eulerian spectral mod-
el. This not-so-small time step made the fully explicit
shallow water algorithm computationally competitive
with the spectral and finite-difference methods (e.g.,
Bourke 1974; Arakawa and Lamb 1981; Ringler et al.
2000).

The final piece needed for the completion of the finite-
volume dynamical core was developed after the dis-
covery of a simple finite-volume integration method for
computing the pressure gradient in general terrain-fol-
lowing coordinates (Lin 1997, 1998; referred to as L97
and L98 hereafter). It is well known that the standard
mathematical transformation of the pressure gradient
term in terrain-following coordinates results in two
large-in-magnitude terms with opposite sign. A straight-
forward application of numerical techniques (e.g., cen-
ter differencing) to these two terms would typically pro-
duce large errors. The finite-volume integration scheme
of L97 avoids the mathematical transformation by in-
tegrating around the arbitrarily shaped finite volume to
accurately determine the pressure gradient forcing so as
to maintain the physical consistency for the finite vol-
ume under consideration.

The finite-volume dynamical core developed in L97
utilized a sigma vertical coordinate, which requires a
3D transport algorithm. Applying the methodology of
LR96, a fully 3D FFSL algorithm would require six
permutations of 1D operators, instead of two as in 2D.
To reduce the computational cost, a simplification was
made in L97, with some loss in accuracy, to reduce the
operator permutations from six to three, and even down
to two (i.e., no cross terms associated with vertical trans-
port, as was done in LR96). This computationally mo-
tivated simplification is no longer needed after the in-
troduction of the Lagrangian control-volume vertical
discretization (Lin and Rood 1998, 1999) as the di-
mensionality of the physical problem is essentially re-
duced from three to two, as viewed from the Lagrangian
control-volume perspective.

For reference purpose, the full governing equations
for the atmosphere under the hydrostatic approximation
are provided in appendix A using a general vertical
coordinate. Upon the introduction of the Lagrangian

control-volume vertical discretization, all prognostic
equations are reduced to 2D, in the sense that they are
vertically decoupled. The discretization of the 2D hor-
izontal transport process is described in section 2. The
complete dynamical system with the Lagrangian con-
trol-volume vertical discretization is described in sec-
tion 3. A mass, momentum, and total energy conserving
remapping algorithm is described in section 4. We pre-
sent in section 5, the deterministic baroclinic wave
growth tests and long-term integrations using the Held–
Suarez forcing (Held and Suarez 1994). Concluding re-
marks are given in section 6.

2. Discretization of the horizontal transport
process

We shall follow the equations and notations in ap-
pendix A. Since the vertical transport terms vanish with
the Lagrangian control-volume vertical discretization,
we present here only the 2D forms of the FFSL algo-
rithm for the transport of density and mixing ratio–like
quantities. the conservation law for the pseudodensity
[Eq. (A3)] reduces to

] 1 ] ]
p 1 (up) 1 (yp cosu) 5 0. (1)[ ]]t A cosu ]l ]u

Integrating Eq. (1) analytically in time (for one time
step Dt) and around the finite volume, the previous con-
servation law becomes

t1Dt1
n11 np̃ 5 p̃ 2 E2A DuDl cosu t

3 p(t ; l, u)V · n dl dt, (2)R[ ]
where V(t; l, u) 5 (U, V), dl is the infinitesimal element
along the volume edges, n is the corresponding outward
normal vector, is the finite-volume representation ofp̃
p, and the contour integral is taken along the edges of
the finite volume centered at (l, u).

l1Dl/2 u1Du/21
p̃(t) [ E E2A DuDl cosu

l2Dl/2 u2Du/2

23 p(t; l, u)A cosu du dl. (3)

Equation (2) is still exact. To carry out the contour
integral, certain approximations must be made. LR96
effectively decomposed the flux integral using two or-
thogonal 1D flux-form transport operators. Introducing
the difference and average operators:

Dx Dx
d q 5 q x 1 2 q x 2 ,x 1 2 1 22 2

1 Dx Dx
xq 5 q x 1 1 q x 2 ,1 2 1 2[ ]2 2 2
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and assuming (u*, y*) is the time-averaged (from time
t to time t 1 Dt) V on the C grid (e.g., Fig. 1 in LR96),
the 1-D flux-form transport operator F in the l direction
is

t1Dt1
F(u*, Dt, p̃) 5 2 d pU dtl E1 2ADl cosu t

Dt
5 2 d [x(u*, Dt; p)] (4)lADl cosu

t1Dt1
x(u*, Dt; p) 5 pU dtEDt t

[ u*p*(u*, Dt, p̃) (5)
t1Dt1

p*(u*, Dt; p̃) ø p dt , (6)EDt t

where x is the time-accumulated (from t to t 1 Dt) mass
flux across the cell wall, and p* can be interpreted as
a time-mean (from time t to time t 1 Dt) pseudodensity
value of all material that passed through the cell edge.
To be exact, the time integration in Eq. (6) should be
carried out along the backward-in-time trajectory of the
cell-edge position from t 5 t 1 Dt back to time t. The
essence of the 1D finite-volume algorithm is to con-
struct, based on the given initial cell-mean values of

, an approximated subgrid distribution of the true pp̃
field, to enable an analytic integration of Eq. (6). As-
suming there is no error in obtaining the time-mean wind
(u*), the only error produced by the 1D transport scheme
would be solely due to the approximation to the true
distribution of p using the assumed subgrid distribution.
From this perspective, it can be said that the 1D finite-
volume transport algorithm combined the space–time
discretization in the approximation of the time-mean
cell-edge value p*. The physically correct way of ap-
proximating the integral in Eq. (6) must be ‘‘upwind,’’
in the sense that it is integrated along the backward
trajectory of the cell edges. A center difference ap-
proximation to Eq. (6) would be physically incorrect,
and consequently numerically unstable without addi-
tional numerical damping.

Central to the accuracy and computational efficiency
of the finite-volume algorithms is the degrees of freedom
that describe the subgrid distribution. The first-order
upwind scheme has 0 degree of freedom within the vol-
ume as it is assumed that the subgrid distribution is
piecewise constant having the same value everywhere
within the cell as the given volume mean. The second-
order finite-volume scheme assumes a piecewise linear
subgrid distribution, which allows 1 degree of freedom
for the specification of the ‘‘slope’’ (or equivalently, the
‘‘mismatch’’ as defined by Lin et al. 1994). The piece-
wise parabolic method (PPM) has 2 degrees of freedom
in the construction of the second-order polynomial with-
in the volume, and as a result, the accuracy is signifi-
cantly enhanced. The PPM strikes a good balance be-

tween computational efficiency and accuracy. To further
improve its accuracy, a modified PPM is presented in
appendix B.

While the PPM possesses all the desirable attributes
(mass conserving, monotonicity preserving, and high-
order accuracy) in 1D, a solution must be found to avoid
the directional splitting for modeling the multidimen-
sional dynamics and the transport processes. For 2D
problems, the first step toward reducing the splitting
error is to apply the two orthogonal 1D flux-form op-
erators in a symmetric way. After the directional sym-
metry is achieved (by averaging), the ‘‘inner operators’’
are then replaced with corresponding advective-form
operators. A consistent advective-form operator ( f ) in
the l direction can be derived from its flux-form coun-
terpart (F) as follows:

f (u*, Dt, p̃) 5 F(u*, Dt, p̃) 2 p̃F(u*, Dt, p̃ [ 1)
l5 F(u*, Dt, p̃) 1 p̃C , (7)def

Dtd u*llC 5 , (8)def ADl cosu

where is a dimensionless number indicating thelCdef

degree of the flow deformation in the l direction. The
preceding derivation of f is different from LR96’s ap-
proach, which adopted the traditional 1D advective-
form semi-Lagrangian scheme. The advantage of using
Eq. (7) is that computations of winds at cell centers are
avoided.

Analogously, 1D flux-form transport operator G in
the latitudinal (u) direction is derived as follows:

t1Dt1
G(y*, Dt, p̃) 5 2 d pV cosu dtu E[ ]ADu cosu t

Dt
5 2 d [y*, cosup*] (9)uADu cosu

and likewise the advective-form operator is
ug(y*, Dt, p̃) 5 G(y*, Dt, p̃) 1 p̃C ,def (10)

where

Dtd (y* cosu)uuC 5 . (11)def ADu cosu

Introducing the following shorthand notations:

1
u n n( ) 5 ( ) 1 g[y*, Dt, ( ) ], (12)

2

1
l n n( ) 5 ( ) 1 f [u*, Dt, ( ) ], (13)

2

the 2D transport algorithm on the sphere can then be
written as

n11 n u lp̃ 5 p̃ 1 F(u*, Dt, p̃ ) 1 G(y*, Dt, p̃ ). (14)

Using explicitly the mass fluxes (x, Y), Eq. (14) is re-
written as
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Dt 1
n11 n up̃ 5 p̃ 2 d [x(u*, Dt; p̃ )]l5A cosu Dl

1
l1 d [cosuY(y*, Dt; p̃ )] ,u 6Du

(15)

where Y, the mass flux in the meridional direction, is
defined in a similar fashion as x. It can be verified that
in the special case of constant density flow, 5 con-p̃
stant, the preceding equation degenerates to the discrete
representation of the incompressibility condition of the
wind field (u*, y *)

1 1
d u* 1 d (y* cosu) 5 0 (16)l uDl Du

The fulfillment of the earlier incompressibility con-
dition for constant-density flows is crucial to the ac-
curacy of the 2D flux-form formulation. For transport
of mixing ratio–like quantities (q̃) the mass fluxes (x,
Y) as defined previously should be used as follows:

1
n11 n n u lq̃ 5 [p̃ q̃ 1 F(x, Dt, q̃ ) 1 G(Y, Dt, q̃ )]. (17)

n11p̃

The preceding form of the tracer transport equation
consistently degenerates to Eq. (15) if q̃ 5 constant,
which is another important condition for a flux-form
transport algorithm to be able to avoid generation of
artificial gradients and to maintain mass conservation.

3. The vertically Lagrangian control-volume
discretization

The very idea of using Lagrangian vertical coordinate
for formulating governing equations for the atmosphere
is not new. Starr (1945) is the first to formulate the
governing equations using the Lagrangian coordinate
approach. Starr did not make use of the Lagrangian
control-volume concept for discretization nor did he pre-
sent a solution to the problem of computing the pressure
gradient terms. In the finite-volume discretization, the
Lagrangian surfaces are treated as the bounding material
surfaces of the Lagrangian control volumes within
which the finite-volume algorithms developed in LR96,
LR97, and L97 will be directly applied.

To use a vertical Lagrangian coordinate system, one
should first address the issue of whether it is an inertial
coordinate or not; for hydrostatic flows, it is. This is
because both sides of the vertical momentum equation
vanish under the hydrostatic assumption. Realizing that
the earth’s surface, for modeling purpose, is a material
surface, one can then construct a terrain-following La-
grangian control-volume coordinate using the usual ter-
rain-following Eulerian coordinate as the starting point.
The basic idea is to start the time integration from the
chosen terrain-following Eulerian coordinate (e.g., pure
s or hybrid s-p), treating all initial coordinate surfaces

as material surfaces, the finite volumes bounded by two
coordinate surfaces, that is, the Lagrangian control vol-
umes, are free vertically, to float, compress, or expand
with the flow as dictated by the hydrostatic dynamics.

By choosing an imaginary conservative tracer z that
is a monotonic function of height and constant on the
initial coordinate surfaces, the 3D equations written for
the general vertical coordinate in appendix A can be
reduced to 2D forms. After factoring out the constant
dz, Eq. (A3) in appendix A, the conservation law for
the pseudodensity (p 5 dp/dz ), becomes

] 1 ] ]
dp 1 (udp) 1 (ydp cosu) 5 0, (18)[ ]]t A cosu ]l ]u

where the operator d represents the vertical difference
between the two neighboring Lagrangian surfaces that
bound the finite control-volume. From the hydrostatic
balance, Eq. (A1), the pressure thickness dp of that con-
trol volume is proportional to the total mass, that is, dp
5 2rgdz. Therefore, it can be said that the Lagrangian
control-volume vertical discretization has the hydro-
static balance built in.

Similarly, Eq. (A4), the mass conservation law for
all tracer species, is

] 1 ] ]
(qdp) 1 (uqdp) 1 (yqdp cosu) 5 0,[ ]]t A cosu ]l ]u

(19)

the thermodynamic equation, Eq. (A5), becomes

] 1 ] ]
(Qdp) 1 (uQdp) 1 (yQdp cosu) 5 0,[ ]]t A cosu ]l ]u

(20)

and (A6) and (A7), the momentum equations, are re-
duced to

] 1 ] 1 ]
u 5 Vy 2 (k 1 f 2 nD) 1 p ,[ ]]t A cosu ]l r ]l

(21)

] 1 ] 1 ]
y 5 2Vu 2 (k 1 f 2 nD) 1 p . (22)[ ]]t A ]u r ]u

Given the prescribed pressure at the model top P`,
the position of each Lagrangian surface Pl (horizontal
subscripts omitted) is determined in terms of the hy-
drostatic pressure as follows:

l

P 5 P 1 dP , (for l 5 1, 2, 3, . . . . , N ),Ol ` k
k51

(23)

where the subscript l is the vertical index ranging from
1 at the lower bounding Lagrangian surface of the first
(the highest) layer to N at the earth’s surface. There are
N 1 1 Lagrangian surfaces to define N Lagrangian lay-
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ers (here, we use layer interchangeably with control
volume). The surface pressure, which is the pressure at
the lowest Lagrangian surface, is computed as PN by
Eq. (23).

With the exception of the pressure-gradient terms and
the addition of a thermodynamic equation, the earlier
2D Lagrangian dynamical system is the same as the
shallow water system described in LR97. The conser-
vation law for the depth of fluid h in the shallow water
system of LR97 is replaced by Eq. (18) for the pressure
thickness dp. The ideal gas law, the mass conservation
law for air mass, the conservation law for the potential
temperature, together with the modified momentum
equations Eqs. (21) and (22) close the 2D Lagrangian
dynamical system, which are vertically coupled only by
the discretized hydrostatic relation.

The time marching procedure for the 2D Lagrangian
dynamics follows closely that of the shallow water dy-
namics described in LR97. For computational efficien-
cy, we take advantage of the stability of the FFSL trans-
port algorithm by using a much larger time step (Dt)
for the transport of all tracer species (including water
vapor). The Lagrangian dynamics uses a relatively small
time step, Dt 5 Dt/m, where m is the number of the
subcycling needed to stabilize the fastest wave. We de-
scribe here a time-split procedure for the prognostic
variables [dp, u, u, y ; q] on the D grid. Discretization
on the C grid for obtaining the diagnostic variables (u*,
y *), is analogous to that of the D grid (see LR97).

Introducing the following shorthand notations:

1
u n1(i21)/m n1(i21)/m( ) 5 ( ) 1 g[y*, Dt , ( ) ],i i2

1
l n1(i21)/m n1(i21)/m( ) 5 ( ) 1 f [u*, Dt, ( ) ]i i2

and applying Eq. (15), the update of ‘‘pressure thick-
ness’’ dp, using the fractional time step Dt 5 Dt/m, can
be written for fractional step i 5 1, . . . , m

Dt
n1(i /m) n1(i21)/mdp 5 dp 2

A cosu

1
u3 d [x*(u*, Dt ; dp )]l i i i5Dl

1
l1 d [cosuy*(y*, Dt , dp )] , (24)u i i i 6Du

where ( , ) are the airmass fluxes, which are thenx* y*i i

used as input to Eq. (17) for transport of the potential
temperature Q.

1
n1(i /m) n1(i21)/m n1(i21)/m uQ 5 [dp Q 1 F(x*, Dt ; Q )i in1(i /m)dp

l1 G(y*, Dt , Q )]. (25)i i

With the exception of the pressure-gradient terms, the

discretization of the momentum equations are the same
as those in the shallow water system (LR97).

1
n1(i /m) n1(i21)/m lu 5 u 1 Dt y*(y*, Dt ; V ) 2 di i l[ AD cosu

̂3 (k* 2 nD*) 1 P , (26)l]
n1(i /m) n1(i21)/m uy 5 y 2 Dt x*(u*, Dt ; V )i i[

1 ̂1 d (k* 2 nD*) 2 P ,u u]ADu

(27)

where k* and D*, both defined at the corners of the cell
(grid), are discretized as

1 u
n1(i21)/mk* 5 [x*(u* , Dt ; u )i i2

l
n1(i21)/m1 y*(y* , Dt ; y )],i i

1 1 1
n1(i21)/m n1(i21)/mD* 5 d u 1 d (y cosu) .l u[ ]A cosu Dl Du

The finite-volume mean pressure-gradient terms in Eqs.
(26) and (27) are computed as

f dP f dPR R
Psl Psû ̂P 5 , P 5 ,l u

A cosu P dl A P duR R
Psl Psu

(28)

where P 5 pk (k 5 R/Cp), and the symbols ‘‘P s l’’
and ‘‘P s u’’ indicate that the contour integrations are
to be carried out, using the finite-volume integration
method described in L97, in the (P, l) and (P, u) space,
respectively.

Mass fluxes (x*, y*) and the winds (u*, y*) on the C
grid are accumulated for the large time step transport
of tracer species (including water vapor) q.

1
n11 n n u lq 5 [q dp 1 F(X*, Dt, q ) 1 G(Y*, Dt, q )],

n11dp
(29)

where the time-accumulated mass fluxes (X*, Y*) are
computed as

m m

u lX* 5 x*(u*, Dt , dp ), Y* 5 y*(y*, Dt , dp ).O Oi i i i i i
i51 i51

(30)

The time-averaged winds (U*, V*), to be used as input for
the computations of ql and qu, are defined as follows:
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FIG. 1. (Top) Zonal mean wind and (bottom) the derived balanced
temperature.

m m1 1
U* 5 u*, V* 5 y*. (31)O Oi im mi51 i51

To complete one full time step, Eqs. (24)–(27), together
with their counterparts on the C grid are cycled m times
using the fractional time step Dt, which are followed
by the tracer transport using Eq. (29) with the large time
step Dt. The use of the time-accumulated mass fluxes
and the time-averaged winds for the large time step
tracer transport ensures the conservation of the tracer
mass and maintains the highest degree of consistency
possible under the time split integration procedure.

There is formally no Courant number–related time
step restriction associated with the transport processes.
There is, however, a stability condition imposed by the
gravity wave processes. For application on the whole
sphere, it is computationally advantageous to apply a
high-latitude zonal filter to allow a dramatic increase of
the size of the small time step Dt. The effect of the
zonal filter is to stabilize the short-in-wavelength (and
high-in-frequency) gravity waves that are being unnec-
essarily and undirectionally resolved at very high lati-
tudes in the zonal direction. To minimize the impact to
meteorologically significant larger-scale waves, the zon-
al filter is highly scale selective and is applied only to
the diagnostic variables on the auxiliary C grid and the
tendency terms in the D grid momentum equations. No
zonal filter is applied directly to any of the prognostic
variables. Due to the two-grid approach and the stability
of the FFSL transport scheme, the maximum size of the
small time step is about 2 to 3 times larger than a model
based on Arakawa and Lamb’s scheme on the C grid.
It is possible to avoid the use of the zonal filter if, for
example, the ‘‘Cubed Sphere grid’’ (Sadourny 1972;
Ronchi et al. 1996) is chosen. However, this would re-
quire a significant rewrite of the model codes including
physics parameterizations, the land model, and most of
the postprocessing packages.

The size of the small time step for the Lagrangian
dynamics is only a function of the horizontal resolution.
Applying the zonal filter, for the 28 horizontal resolution,
a small time step size of 450 s can be used for the
Lagrangian dynamics. From the large time step transport
perspective, the small time step integration of the 2D
Lagrangian dynamics can be regarded as a very accurate
iterative solver, with m iterations, for computing the
time-mean winds and the mass fluxes, analogous in
functionality to a semi-implicit algorithm’s elliptic solv-
er (e.g., Ringler et al. 2000). Besides accuracy, the merit
of an explicit versus semi-implicit algorithm ultimately
depends on the computational efficiency of each ap-
proach. In light of the advantage of the explicit algo-
rithm in parallelization, we do not regard the explicit
algorithm for the Lagrangian dynamics as an impedance
to computational efficiency.

4. A mass, momentum, and total energy
conserving remapping algorithm

The Lagrangian surfaces that vertically bound the fi-
nite volumes will eventually deform, particularly in the
presence of persistent diabatic heating/cooling, in the
time scale of a few hours to a day depending on the
strength of the heating and cooling, to a degree that it
will negatively impact the accuracy of the horizontal-
to-Lagrangian-surface transport and the computation of
the pressure-gradient terms. Therefore, a key to the suc-
cess of the Lagrangian control-volume discretization is
an accurate and conservative algorithm for remapping
the deformed Lagrangian coordinate back to a fixed Eu-
lerian coordinate.

There are some degrees of freedom in the design of
the remapping algorithm. To ensure conservation, the
remapping algorithm is based on the reconstruction of
the zonal and meridional ‘‘winds,’’ ‘‘tracer mixing ra-
tios,’’ and ‘‘total energy’’ (volume-integrated sum of the
internal, potential, and kinetic energy), using the mono-
tonic piecewise parabolic subgrid distributions with the
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FIG. 2. The surface pressure perturbation and the temperature at the lowest model layer at day 10 for (top to
bottom) three different horizontal resolutions.

hydrostatic pressure as defined by Eq. (23) as the re-
mapping coordinate. We outline the remapping proce-
dure as follows:

Step 1: Define a suitable Eulerian reference coordi-
nate. The surface pressure typically plays an ‘‘an-

choring’’ role in defining the terrain-following Eu-
lerian vertical coordinate. The mass in each layer
(dp) is then computed according to the chosen Eu-
lerian coordinate.

Step 2: Construct vertical subgrid profiles of tracer
mixing ratios (q), zonal and meridional winds (u,
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FIG. 3. The 1000-day average of (upper-left) zonal mean wind, (upper-right) meridional wind, (lower-left) temperature
and (lower-right) vertical pressure velocity simulated with the Held–Suarez forcing at the 28 3 2.58 resolution
(B32).

y), and total energy (G) in the Lagrangian control-
volume coordinate based on the piecewise para-
bolic method. The total energy G is computed as
the sum of the finite-volume integrated geopoten-
tial f, internal energy (CyT), and the kinetic energy
(K):

1 1
2 2G 5 C T 1 f 1 (u 1 y ) dp. (32)E y[ ]dp 2

Applying integration by parts and the ideal gas law,
the earlier integral can be carried out as

1
G 5 C T 1 d(pf) 1 K, (33)p dp

where is the layer mean temperature, K is theT
kinetic energy, p is the pressure at layer edges, and
Cy and Cp are the specific heat of the air at constant
volume and at constant pressure, respectively. Lay-
er mean values of [q, (u, y), and G] in the Eulerian
coordinate system are obtained by integrating an-
alytically the subgrid distributions, in the vertical
direction, from model top to the surface, layer by
layer. Since the hydrostatic pressure is chosen as
the remapping coordinate, air and tracer mass, mo-
mentum, and total energy are conserved.

To convert the potential temperature Q to the layer
mean temperature the conversion factor is obtained
by equating the following two equivalent forms of
the hydrostatic relation:

df 5 2C QdP, (34)p

df 5 2RTd ln p, (35)

where P 5 pk. The conversion formula between
layer mean temperature and layer mean potential
temperature is

d ln p
Q 5 k T. (36)

dP

Step 3: Compute kinetic energy in the Eulerian co-
ordinate system for each layer. Substituting kinetic
energy and the hydrostatic relationship Eq. (35)
into (33), the layer mean temperature for layer k
in the Eulerian coordinate is then retrieved from
the reconstructed total energy (done in step 2) by
a fully explicit integration procedure starting from
the surface up to the model top as follows:

G 2 K 2 fk k k1(1/2)T 5 (37)k

ln p 2 ln pk1(1/2) k2(1/2)C 1 2 kpp k2(1/2)[ ]p 2 pk1(1/2) k2(1/2)
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FIG. 4. As in Fig. 3 but for the 18 3 1.258 resolution (C32).

The physical implication of retrieving the layer mean
temperature from the total energy is that the dissipated
kinetic energy, if any, is locally converted into internal
energy via the vertically subgrid mixing (dissipation)
processes. Due to the monotonicity-preserving nature
of the subgrid reconstruction the column-integrated ki-
netic energy inevitably decreases (dissipates), which
leads to local frictional heating. The frictional heating
is a physical process that maintains the conservation of
the total energy in a closed system.

As viewed by an observer riding on the Lagrangian
surfaces, the remapping procedure essentially performs
the physical function of the relative-to-the-Eulerian-co-
ordinate vertical transport, by vertically redistributing
mass, momentum, and total energy from the Lagrangian
control volume back to the Eulerian framework. The
remapping time step can be much larger than that used
for the large time step tracer transport. In tests using
the Held–Suarez forcing, a 3-h remapping time interval
is found to be adequate. In the full model integration,
one may choose the same time step used for the physical
parameterizations so as to ensure the input to physical
parameterizations are in the usual ‘‘Eulerian’’ vertical
coordinate.

5. Idealized tests
We present results from two types of idealized tests.

The first is a deterministic initial-value-problem test

case illustrating the growth and propagation of baro-
clinic instability initiated by a localized perturbation.
The second is the ‘‘climate’’ simulation using the Held–
Suarez forcing. For both tests we used a 32-level hybrid
s–p vertical coordinate as the Eulerian coordinate for
the remapping procedure. Below 500 mb, this 32-level
setup is the same as the National Center for Atmospheric
Research (NCAR) Community Climate Model
(CCM3)’s 18-level setup for climate simulations (Kiehl
et al. 1996). To better resolve the stratosphere, the ver-
tical resolution is substantially increased (as compared
to CCM3) near and above the tropopause level. The
model top is located at 0.4 mb.

The initial condition for the baroclinic instability test
case is specified analytically as

2 4U(u, p) 5 U ze(z /4) sin (2u),o (38)

where z 5 log(p0/p), Po 5 1000 (mb), Uo 5 35 m s21.
The mean flow, which is symmetric with respect to the
equator, is in hydrostatic equilibrium with the meridi-
onal wind being identically 0. The balanced zonal mean
temperature is then computed numerically. The base
state thus constructed is a steady-state solution to the
3D governing equations. To break the symmetry and to
trigger the growth of the baroclinic instability, a local-
ized initial temperature perturbation centered at 458N
and 908E is superimposed to the mean field. Previous
theoretical studies (e.g., Lin and Pierrehumbert 1993)
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indicated that the localized disturbance will propagate
eastward while growing exponentially. Due to nonlin-
earity and periodicity of the spherical geometry, the
instability will saturate and the perturbation will cycle
zonally to become a global mode.

Figure 1 depicts the prescribed zonal mean wind and
the derived balanced temperature. The wind is a fairly
realistic representation of the annual-mean condition
with the derived temperature showing a cold tropical
tropopause centered near 100 mb and with realistic lapse
rates throughout the globe. Experiments were carried
out using three progressively higher horizontal resolu-
tions: one at 28 3 2.58 (denoted as B32), the second at
18 3 1.258 (denoted as C32), and the third at 0.58 3
0.6258 (denoted as D32), with small time steps of 450,
225, and 112.5 s, respectively. The remapping time step
is fixed to be 1 h for all presented tests.

Figure 2 compares, at day 10, the surface pressure
perturbations and the temperature at the model’s lowest
layer. It is seen that the phases of the propagation of
the disturbances agree remarkably well among all three
resolutions. However, the amplitudes in the lower-res-
olution runs are somewhat weaker. These are expected
characteristics of the monotonicity-preserving finite-
volume algorithms. The initial-value problem tests pro-
vided no proof that the simulations are ‘‘correct’’ or
have converged. In fact, the results show that even at
approximately 55-km resolution the detailed features of
the cyclones may still be underresolved. Nevertheless,
a reasonable degree of convergence, particularly the
large-scale features, has been achieved, and there is no
pathological amplification of the numerical noise in any
resolutions we tested. While a monotonicity-preserving
algorithm is beneficial to scalar transport, its advantage
is unclear in climate simulations in which the preser-
vation of variances is regarded as more important. This
issue is examined using the Held–Suarez forcing.

We applied the same initial condition used in the ear-
lier tests to initialize the Held–Suarez test. The inte-
grations were carried out for more than 4 yr. Statistics
were computed only for the last 1000 days. Figure 3
and Fig. 4 show, respectively, for the B32 and C32
resolutions, the zonal mean u-wind, y-wind, tempera-
ture, and the vertical pressure velocity.

Within the Lagrangian framework, the vertical pres-
sure velocity is diagnosed as follows:

t1Dt tdp p 2 pk k k5 ,
dt Dt

where the subscript k indicates the kth Lagrangian sur-
face; is the pressure of the kth Lagrangian surfacet1Dtpk

at time t 1 Dt before remapping (Lagrangian coordi-
nate), is the value at time t immediately after thetpk

previous remapping (Eulerian coordinate), and Dt is the
remapping time step.

The simulated zonal mean fields are in good agree-
ment with Held and Suarez’s results. In particular, there

is a distinct ‘‘tropical tropopause’’ of about 190 K, and
there is also a cold surface layer. The simulated zonal
mean flows are not exactly symmetric with respect to
the equator due to the asymmetric initial perturbation
and the limited averaging period. There are subtle dif-
ferences between the two resolutions. Most notably the
tropical tropopause in the higher C32 resolution is a bit
colder than that from the B32 case whereas the polar
‘‘tropopause’’ (not clearly defined, but roughly at the
250-mb level) in the C32 is slightly warmer. The warm-
ing of the polar tropopause with increasing horizontal
resolution is consistent with full physics simulations
using the CCM3 parameterizations (to be presented else-
where).

Figure 5 (for B32 case) and Fig. 6 (for C32 case)
show the eddy momentum transport, eddy heat trans-
port, zonal wind variance, and the temperature variance.
Except for the zonal wind variance, a good degree of
convergence has been achieved between the two reso-
lutions. However, the differences with Held–Suarez’s
results were more pronounced in the second-moment
statistics. For example, the temperature variances in our
simulations show only a single maxima in the upper
troposphere of the midlatitudes whereas in the Held and
Suzrez’s results there is a secondary maxima, which
could be of numerical origin.

To examine the impacts of monotonicity constraint,
which damps strongly the two-grid-scale structures, to
the simulated climate, we carried out another experiment
with the B32 resolution but without applying the mono-
tonicity constraint to all horizontal transport processes.
Figures 7 and 8 show, respectively, the mean states and
the eddy statistics. It is seen that without the monoto-
nicity constraint the simulation is, not surprisingly, clos-
er to the higher-resolution (C32) case.

Figure 9 shows the differences in zonal mean tem-
perature due to the monotonicity constraint. It indicates
that, without the monotonicity constraint, poleward heat
transport is more rigorous, resulting in warmer poles
and cooler Tropics. The monotonicity constraint’s seem-
ingly negative impact to ‘‘climate simulations’’ needs
to be reexamined in full model simulations, which is
beyond the scope of this paper. It should be noted that
the monotonicity constraint is highly desirable for the
transport of water vapor, cloud water, and chemical trac-
ers to prevent the generation of negative values. In short-
term deterministic initial-value problems (e.g., weather
predictions), it can be argued that elimination of grid-
scale numerical noise is more important than the main-
tenance of variances. On the other hand, it may be more
important to preserve the variances in long-term climate
simulations.

6. Concluding remarks

The finite-volume dynamical core described here has
been successfully implemented into two general circu-
lation modeling systems, the NASA–NCAR general cir-
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FIG. 5. The 1000-day average of eddy statistics: (upper-left) eddy momentum transport, (upper-right) heat transport,
(lower-left) zonal wind variance, and (lower-right) temperature variance simulated with the Held–Suarez forcing at the
28 3 2.58 resolution (B32).

culation model (fvGCM, to be described elsewhere) and
the Community Atmosphere Model (CAM). It is also
in the process of being implemented into Geophysical
Fluid Dynamics Laboratory’s Flexible Modeling System
(FMS) for climate applications. At the NASA Data As-
similation Office (DAO), we have already successfully
integrated the fvGCM into a new generation of the data
assimilation system: the finite-volume Data Assimila-
tion System (fvDAS). Numerical weather prediction ex-
periments using the fvGCM with initial conditions pro-
duced by fvDAS indicated there is significant improve-
ment in the forecast skill over DAO’s previous opera-
tional system [Goddard Earth Observing System
(GEOS-3) DAS].

There are still some aspects of the numerical for-
mulation in this dynamical core that can be further im-
proved. For example, the choice of the horizontal grid,
the computational efficiency of the split-explicit time
marching scheme, the application of the various mono-
tonicity constraints, and how the conservation of the
total energy is achieved. The vertical Lagrangian dis-
cretization with the associated remapping conserves the
total energy exactly. The only remaining issue regarding
the conservation of the total energy is the use of the
apparently ‘‘diffusive’’ monotonicity-preserving trans-
port scheme for the horizontal discretization.

The full impact of the nonlinear diffusion associated
with the monotonicity constraint is difficult to access.
All discrete schemes must address the problem of sub-
grid-scale mixing. The nonlinear diffusion in the finite-
volume scheme creates strong local mixing when mono-
tonicity principles are violated. However, this local mix-
ing diminishes quickly as the resolution matches better
to the spatial structure of the flow. In other numerical
schemes, however, an explicit (and tunable) linear dif-
fusion is often added to the equations to provide the
subgrid-scale mixing as well as to smooth and/or sta-
bilize the time marching.

To compensate for the loss of total energy due to
horizontal discretization, one could apply a global fixer
to add the loss in kinetic energy due to ‘‘diffusion’’
back to the thermodynamic equation so that the total
energy is conserved. However, our experience shows
that even without the ‘‘energy fixer’’ the loss in total
energy (in flux unit) in a full GCM simulation is less
than 2 (W m22) with the 28 resolution, and much smaller
with higher resolutions. Alternatively, one could con-
sider using the total energy as a prognostic variable so
that the total energy could be automatically conserved.

Extension of the algorithms described in this paper
to unstructured grids is possible but not straightforward.
We are currently developing a high-order monotonicity-
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FIG. 6. As in Fig. 5 but for the 18 3 1.258 resolution (C32).

FIG. 7. As in Fig. 3 (B32 resolution) but without the application of the monotonicity constraint.
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FIG. 8. As in Fig. 5 (B32 resolution) but without the application of the monotonicity constraint.

FIG. 9. Temperature differences (K) due to the application of the
monotonicity constraint.

preserving finite-volume transport scheme for the geo-
desic grid, which is to be used in the future development
of the finite-volume dynamical core, without the hy-
drostatic limitation.
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APPENDIX A

The Governing Equations for the Hydrostatic
Atmosphere

For reference, we present the governing equations for
the hydrostatic atmosphere on the sphere with a general
vertical coordinate z (e.g., Kasahara 1974). Using stan-
dard notations, the hydrostatic balance equation is

1 ]p
1 g 5 0, (A1)

r ]z

where r is the density of the air, p the pressure, and g
is the gravitational constant. Introducing the pseudo-
density p 5 ]p/]z, vertical pressure gradient in the gen-
eral coordinate, from the hydrostatic balance equation,
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the pseudodensity and the true density are related as
follows:

]f
p 5 2 r, (A2)

]z

where f 5 gz is the geopotential. Note that p reduces
to the true density if z 5 2gz, and the surface pressure
Ps if z 5 s(s 5 p/Ps). The conservation of total air
mass using p as the prognostic variable can be written as

]
p 1 = · (Vp) 5 0, (A3)

]t

where V 5 (u, y, dz/dt). Similarly, the mass conservation
law for tracers (or water vapor) can be written as

]
(pq) 1 = · (Vpq) 5 0, (A4)

]t

where q is the mass mixing ratio (or specific humidity)
of the tracers (or water vapor). Choosing the potential
temperature Q as the thermodynamic variable, the first
law of thermodynamics can be formulated as

]
(p Q) 1 = · (Vp Q) 5 0. (A5)

]t

Let (l, u) denote the (longitude, latitude) coordinate,
the momentum equations are written in the ‘‘vector-
invariant form’’ (e.g., Arakawa and Lamb 1981)

] 1 ] 1 ]
u 5 Vy 2 (k 1 f 2 nD) 1 p)[ ]]t A cosu ]t r ]l

dz ]u
2 , (A6)

dt ]z

] 1 ] 1 ] dz ]y
y 5 2Vu 2 (k 1 f 2 nD) 1 p 2 ,[ ]]t A ]u r ]u dt ]z

(A7)

where A is the radius of the earth, n is the coefficient
for the optional divergence damping, D is the horizontal
divergence, V is the vertical component of the absolute
vorticity, k is the kinetic energy, f is the geopotential,
and v is the angular velocity of the earth:

1 ] ] 1
2 2D 5 (u) 1 (y cosu) , k 5 (u 1 y ),[ ]A cosu ]l ]u 2

1 ] ]
V 5 2v sinu 1 y 2 (u cosu) .[ ]A cosu ]l ]u

Note that the last term in Eqs. (A6) and (A7) vanishes
if z is a conservative quantity [e.g., entropy under adi-
abatic condition (e.g., Hsu and Arakawa 1990) or an
imaginary conservative tracer (see section 3)], and the
3D divergence operator becomes 2D along constant z
surfaces.

APPENDIX B

Relaxed Monotonicity Constraints for PPM

The original PPM as described by Colella and Wood-
ward (1984) has been modified to improve its compu-
tational performance and to reduce the numerical dif-
fusion. The PPM is built on the second-order Van Leer
scheme. Given the cell-mean value qi and assuming uni-
form grid spacing, the ‘‘mismatch’’ (Lin et al. 1994) of
the piecewise linear distribution is determined as

monoDq i (B1)
min min max5 sign[min (|Dq | , Dq , Dq ), Dq ],i i i i

where

1
Dq 5 (q 2 q )i i11 i214

maxDq 5 max (q , qi, q ) 2 q ,i i21 i11 i

minDq 5 q 2 min (q , q , q ).i i i21 i i11

In the preceding equations and the rest of the appen-
dix the functions sign, min, and max are as defined in
the Fortran language. To uniquely determine a parabolic
polynomial within the finite volume, in addition to the
volume mean value, the values at both edges of the
parabola must be determined. The first guess value at
the left edge of the piecewise parabolic distribution is
computed as

1 1
2 mnoo monoq 5 (q 1 q ) 1 (Dq 2 Dq ). (B2)i i21 i i21 i2 3

By continuity, the right-edge value of cell (i) is simply
the left-edge value of cell (i 1 1). That is, 5 .1 2q qi i11

The application of a monotonicity constraint breaks the
continuity of the subgrid distribution between the cells.
In the current implementation, different constraints are
used in the horizontal and vertical directions. For the
horizontal direction, the first guess edge values as com-
puted by Eq. (B2) are adjusted as follows:

2 mono 2 monoq ← q 2 sign[min (|2Dq | , |q 2 q | ), 2Dq ],i i i i i i

(B3)
1 mono 1 monoq ← q 1 sign[min (|2Dq | , |q 2 q | ), 2Dq ].i i i i i i

(B4)

The previous constraint produces less diffusive results
and is much simpler than the original PPM. To further
reduce the implicit damping, an even less diffusive but
more complicated quasi-monotonic constraint is used
for the vertical remapping of the moisture and all tracers.
The following constraint is based on the improved
wave-resolution scheme of Huynh (Huynh 1996).

Left (top) edge:
2 2 min maxq ← min[max(q , q ), q ],i i i i (B5)

where
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min mp lc max mp cq 5 min (q , q , q ), q 5 max (q , q , q ),i i i i i i i i

mp monoq 5 q 2 2Dq ,i i i

3
lc mono mon monoq 5 q 1 (Dq 2 Dq ) 2 Dq .i i i12 i i2

Right (bottom) edge:
1 1 min maxq ← min[max(q , q ), q ],i i i i (B6)

where
min mp lc max mp cq 5 min (q , q , q ), q 5 max (q , q , q ),i i i i i i i i

mp monoq 5 q 1 2Dq ,i i i

3
lc mono mon monoq 5 q 1 (Dq 2 Dq ) 1 Dq .i i i i22 i2

After the application of one of the constraints, the
‘‘curvature’’ of the parabola is computed using the mean
and the two edge values as

1
2 1q 0 5 6 q 2 (q 1 q ) . (B7)i i i i[ ]2
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