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Abstract

We estimate that a novel architecture massively parallel computer, the QCDOC, can
integrate molecular dynamics equations for 10° particles interacting via long range forces
(including Coulomb) for one to ten microseconds of simulated time using several weeks
of computing time using 8,000 or 10,000 processors. This number of atoms is typical for
biological molecules. The two main conclusions we reach are:

1. This is an increase of more than one order of magnitude in simulated time over
current simulations.

2. The novel architecture, with 24 parallel channels of low latency communication per
processor, allows improved long range communication and an unusual degree of fine
scale parallelism, as compared to conventional switch-based architectures.

The technical heart of the paper is a detailed analysis of the computing time used in the
Ewald method as a function of the required accuracy, the size of the molecular dynamics
cell, and the hardware design parameters.
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Science Foundation DMS-0102480 and the Army Research Office grant DAAG-01-0642.
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1. Introduction

We explore here the use of a machine with novel architecture designed for quantum
chromodynamics (QCD) by a team of computer scientists and elementary particle
physicists [1] mainly at Columbia University, The Riken BNL Research Center and IBM.
We examine the possible use of this machine for a class of problems of general
importance. This machine consists of approximately 10,000 IBM PowerPC processors
with extremely fast nearest neighbor communication and 4 megabytes of memory located
on the each chip. For this reason it has been named QCDOC for quantum
chromodynamics on a chip. It is expected to achieve on the order of 10 teraflops peak (5
teraflops sustained) at a cost of $1 per sustained Mflop.

The closest performance analogue to this machine in common use in recent times is the
Thinking Machine Corporation’s CMS5, because in the timing estimates for several basic
algorithms, message latency can be neglected and the memory behaves as if it were
shared. A programming model for the QCDOC is close to that used for standard
distributed memory machines, with the caveat that message management (as well as
memory management) is required of the programmer. A related machine, Blue Gene/L, is
under development at IBM [2].

Our main conclusion is that the QCDOC high performance network (high bandwidth due
to multiple channels per processor and the low latency) allows a very high level of
parallelism (small problem size per processor), and very fast solutions, for a number of
basic algorithms of wide interest. Because of the high level of parallelism, small problem
sizes per processor are feasible, with the result that the entire problem fits in the on chip
(L2 cache) memory. We expect, as a result, that the performance as a fraction of peak
speed will be comparable to that of a vector machine. The machine is scalable by design,
and is recognized to be very cost effective per teraflop of sustained performance. The
machine should excel especially for problems for which large numbers of time steps are
the figure of merit.

The primary perceived limitation of the QCDOC concerns its wider usability for non-
QCD applications. We focus on Molecular Dynamics (MD) algorithms with long-ranged
(Coulomb) potentials to address this issue. We validate our basic claim that QCDOC is
an efficient platform for MD by the construction of a performance model for MD
algorithms for this architecture and by its partial validation. Performance models address
limits of finite computational and communication speed, and memory size. When
machine design parameters are inserted into these performance models, we obtain a
prediction of machine performance. Our conclusion is a surprising prediction of
unusually long simulated times for MD problems with an interesting number of atoms. In
view of the attractive cost, power, and cooling requirements, our conclusion raises the
possibility that the QCDOC architecture is a viable model for computers for a range of
problems of general interest. Validation includes not only the speed and memory of the
algorithm, but also the accuracy of the calculation as a result of the various
approximations (numerical cutoffs) it employs. Thus scientific validation is a component
of the performance model.



MD simulations [3, 4] are ideal for massively parallel computing because the time spent
on communication can be a small fraction of the time spent on computation. However,
most MD simulations have been performed on machines where this potential has not
been realized because of slow communication and/or a small number of processors.

For a class of MD simulations characterized by short range forces we find that
calculations on 10° atoms with simulated times up to 10 seconds are feasible with 5
weeks of computing time. Including long range (Coulomb) interactions, we project

simulation of 10° particles for 10 seconds within 11 days.

2. QCDOC and its Performance Characterization
2.1. Hardware Characterization

The QCDOC machine consists of 32 bit IBM PowerPC 440 processors running at 500
MHz. These processors achieve 1 Gflops peak (two double precision operations per
clock cycle), using an integral 64 bit floating point unit. The crucial design feature is a
set of 24 serial communication channels to neighboring nodes in a 6D torus
communication network, which are capable of sending or receiving data at the rate of 500
Mb/s per channel with a latency of 95 nanosec (send) and 320 nanosec (receive),
resulting in an aggregate bandwidth of 12Gb/s for each node. Each processor has 4
megabytes of embedded (on chip) memory (EDRAM) with a memory to processor
bandwidth of 8 Gb/s [1].

Observe that separate units on the chip control communication and floating point
arithmetic. (See Fig. 1.) For this reason, the communication time is largely shielded from
the computations, and we make the simplifing assumption that the two can be run totally
concurrently. This assumption is specific to the QCDOC architecture and is not
necessarily valid for other machines.

We will place all data in the embedded memory, and with its high bandwidth, we expect
to achieve a high fraction of peak performance. However, in order to project conservative
estimates, we use performance efficiency based on main memory. We tested our Ewald
MD code on a Sparc Solaris, achieving a fraction e, =0.3 of peak power for long

efficiency

range (Ewald) MD calculations with10°, 20°, 30°, and 48’ particles on a single processor.
Accordingly, we will use these values in our performance estimates for the proposed

QCDOC.

2.2. Performance Characterization

Now, we consider the QCDOC performance characterization. The computational time
t is given by

computation



=N

ops / processor / (eefﬁciency X f )

(2.1) t

computation

where N

ops / processor

is the number of operations per processor, e,

eificiency 18 the single
processor efficiency, expressed as a ratio of sustained to peak single processor
performance, and f'is the single processor peak performance. Here and below, op
designates a floating point operation, as distinguished from the conventional abbreviation
flops for floating point operations per second. The raw data for this paper has been
determined by hand counts of operations (as the code is fairly simple), using the
following rules: The actual total counts of basic operations such as sin(), cos(), exp(),
division, multiplication, addition, and subtraction are determined. For achieving single-
procession accuracy, 8 operations (ops) are required for sin(), cos(), exp(), and 15 for
erfc() while 4 operations are needed for division. Multiplication, addition, and subtraction
are each defined as requiring one operation.

Our hardware communication model is likewise very simple. We adopt the model
2.1) t =b"'x+I

message
for the time for a single message sent over a single channel, where b =0.5x10’ is the

bandwidth (bits/sec) per mono-directional channel, / =320x10~ =3.2x10” seconds is
the latency and x is the message size in bits.
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Figure 1 The main components with connectivity of the QCDOC ASIC node.



Let us apply this formula to develop a model for spatially nearest neighbor
communication. We need one message hop per coordinate direction to communicate to
coordinate-wise nearest neighbors. Thus to reach the off-diagonal coordinate-wise nearest
neighbors, we need 3 hops in three spatial dimensions. If x is the per processor

processor
message size, then the bandwidth applies to the total of these three messages. There are
27 —1=26 such units of data to be sent and received at each processor, distributed over
the 3 messages. Thus the time 7 for nearest neighbor communication is give by

2
(2.3) t :26><—b><x +3/

processor
w

where w =12 is the number of one way wires communicating to coordinate-wise
neighbors in the 3D spatial lattice.

Memory management is also an issue. For short range forces, the algorithmic aspects of
message memory management are easily handled. The N, particles in the central cell and
in each of itsl 26 nearest neighbor cells will be stored, with a total storage use of
24x27x N, =64.8KB based on the storage of three double precision coordinates per

particle. Here we have assumed N, =100 No special message buffers are needed, as

the messages can address these storage locations directly. The first message, to spatial
nearest neighbor cells in one spatial direction, has no redundancy, and no potential
writing conflicts. By this we mean that the multiple messages received at each node are
all unique. For the second message, each piece of data to be received can potentially
come from two cells, in the sense that the data originating at processor A can arrive in
two hops at processor B via two distinct paths. Thus there is a potential to receive the
same data twice, i.e. nonuniquely. We order the coordinate directions in a systolic order.
The second message will send data which differs in one of the three coordinates from the
sending cell. It will send it to neighbors in the directions of the first (in cyclic order) of
the two consecutive coordinates that agree with the sending cell. Thus the second
message only sends half of the data potentially available for transmission through each
spatially related channel to avoid a writing conflict on receipt. The third message
transmits data which differs in two of its coordinates from the location where it is
received, and when received, the data differs in all three coordinates. In view of the
small size of the messages, we choose a suboptimal strategy and send the third message
on the first coordinate direction only. This message consists of data agreeing with the
sending processor in this direction only. This avoids write conflicts on arrival as each
piece of data arrives uniquely. Similar but more complex memory management issues
arise with the larger all to all messages of the long range MD algorithm.

The all to all communication requires further analysis. For an all to all communication,
we adopt the same formula, with effective, all to all values for b and/,

(2.4) faroan = Dt war¥ Lt o -

The all to all bandwidth is independent of the number of message hops. In fact

bywan =wWb/2 where w=24 is the number of wires per processor (w/2 is the number

of wires per direction per processor) and b~ is the single channel one directional



bandwidth. Here x is the total message size at a given processor. Thus for P processors,
x=(P-1x

processor *

The all to all latency is /

altoal = Mhops! » Where [ is the single channel latency introduced

above and n,, . is the number of hops for an all to all message. For a network in the form

of a torus in dimension D with each factor periodic (a circle) of sizer,, [7, /2] hops are
required to traverse a single factor of the torus and

D
(25) nhops = Z[’? /2]
i=1

hops, or D[r /2] hops for a homogeneous network (all 7 =r), to traverse the full
network. Here [a] denotes the integer part of the real numbera .

The finite memory and thus message buffer size on each processor provides an additional
contribution to latency. Messages may have a very large size. As a result they will be
broken up into a series of messages of the size determined by the message buffers, giving
rise to an additional latency contribution. This correction can be absorbed in a
renormalization of the bandwidth . We enforce a maximum message size, which then
modifies the bandwidth. The point is to choose this maximum large enough so that the
bandwidth is effectively not changed. We now see that such a maximum message size
can be chosen to be rather small. Even in the extreme case of a message of size as small
as10* bits (160 double precision words), the message transmission time is
(10*/b)+1=2x10"+1=2x10"+3.2x107 =2x107° sec
and the maximum message size latency makes a negligible contribution to the total
transmission time.

Thus the time for an all to all communication is

2x

tall toall — Wb + nhops

(2.6) !

The success of the QCDOC architecture can be seen from this formula, as the number
nhops = 3%
of hops is small, for P processors arranged in a 6D torus. The total latency /[ is small.

The communication time is scalable and is dominated by the bandwidth. Here the
parallelism of the w =24 fast communication channels per processor becomes important.
3. Molecular Dynamics

In classical MD the positions of a set of interacting particles are advanced according to
Newton's second law



d’r
3.1 —
( ) i dtz

where 7. is the position of the ith particle, M, its mass and F, the force acting on it due to

_F

the other particles. Often the 2nd order difference equation

(3.2) F(t+At) =27 (1) —F(t—At) + F | M A

is used, where At is the time step, usually of the order of 10™° seconds. Simulations are
typically run for 10* - 10° time steps producing 10™"'-107'? seconds of simulated time.

This is less than a nanosecond, and it is a major limitation since many processes of
interest occur on time scales of 10°-107 seconds or longer.

Another issue concerns the size of the sample. While a great deal has been learned about
the thermal properties of materials from simulation cells containing several thousand
atoms, current interest extends to 10° or more [6]. Typical biological molecules contain
10° atoms [7]. A metal or oxide particle 10 nanometers in diameter contains
approximately 50,000 atoms. Simulations with many nano particles and up to 10° atoms
have been performed [8].

In order to evaluate Eq. (3.1) or (3.2), we need to calculate the force on each particle. The
force computation is the most time consuming portion of the entire computation. The
force is usually obtained from a density dependent or embedded atom force law [8].
These force laws are semi empirical, which means that they must be calibrated against
experimental data or parameters calculated for example from density functional theory.
Local force laws are usually cut off smoothly so that they are zero beyond 1 or 2 particle
neighbor distances. However, Coulomb forces are global, and couple all the atoms in the
simulation.

The basic strategy for parallelizing the MD code is to break the sample into subdomains
with a subset of particles assigned to each processor. To evaluate the forces it is
necessary to communicate the positions of the particles in other cells with which a given
particle interacts. Similar parallelization schemes have been applied previously [10, 11,
12], but not on machines with the capability of QCDOC.

The highly optimized parallel code NAMD [13] loses parallel scaling at about 200
particles per processor, whereas we analyze a case with 14 particles per processor and
have not yet reached the parallel scaling limit. The fine scale parallelism is important not
only to allow effective use of more processors. With fine scale parallelism, all data is
located within L2 chache, so that high levels of single processor efficiency can be
achieved.

4. A Performance Model for MD with Short Range Forces

We next develop a performance model for an MD algorithm involving short-ranged
forces. Combining this with the hardware performance model of Sec. 2 gives us an
application performance model, allowing the prediction of simulation times achievable
running MD codes on the QCDOC. We consider two cases. The first, considered in this



section, has short range forces only. Typical nanoscience materials problems are of this
nature, and for this case, the choice of N =10° atoms defines a typical to large sized
problem. The second case, with long range forces, is targeted at typical biological
problem sizes (with 10° atoms). In both cases, we aim to maximize the length of time
simulated.

Maximizing the simulated time requires that the minimum number N, of particles be
allocated to each processor. We choose N, ~100. Fewer than this number may require

communication beyond nearest neighbor processors. We consider an MD cell containing
N =10° particles distributed over P =10,000 processors. We define N as the

ops / particle
number of operations per particle required to evaluate the force for a short range

potential. N ., ... 18 @ function of the particle density (which determines the number of

particles within the range of the short range forces) and the allowed error (which
determines the distance at which a rapidly decaying force of infinite extent can be cutof¥).

As a simple illustration, we summarize this dependency in Table 1, showing N, Vs.

ops / particle
E, the relative RMS solution error in the force per particle. Here we use a simple
Lennard-Jones (LJ) 6-12 potential. We set both coefficients for the LJ potential to be
unity. To fix the density units, we consider particles in a random perturbation from a
regular lattice which has unit spacing between the particles. The error in the force
calculation results from truncating the energy at a distance R___. Because we consider

particles at locations perturbed from a unit lattice, the distance R, is expressend in
units of mean interparticle spacings,, and is thus a count of the number of neighbors
included per coordinate direction within the cutoff. (The same density convention and
choice of units for Ry,.x will be used in Sec. 5.) With this convention, the minimum of
the LJ potential occurs at distance 1, and the standard LJ parameter o =1. The error is
expressed dimensionlessly as a ratio of RMS error per particle, divided by the true force.
The LJ error results from truncation of the 7 term. For this reason the errors have a
common sign and there is no cancellation of errors. The error equals the sum of the
omitted terms. Results for a test based on 1000 particles are summarized in Table 1.
Obviously, more complex potentials, such as the molecular biology potentials of
CHARMM, would have a different operation count. Since the LJ potential has the
longest range of commonly used short range potentials and since it is unusual in having a
fixed sign of error, we expect the other contributions to the CHARMM short range
potentials to have smaller operation counts.

Rmax N ops / particle RMS
Relative
Error
3 509 .001727
4 1200 .000227
5 2350 .000031
6 4071 .000005




Table 1 Operation count statistics for short-ranged LJ 6-12 potential.

Based on a arbitrary but probably reasonable choice of accuracy (RMS relative error), we
refer to Table 1 to determine the number of ops/particle. On this basis we

3 . . e _ 5
assume N, ... ~10” operations / particle, giving N, a0 X NV, =107 ops / processor.

Assuming processor efficiency e, =0.3 and single processor peak speed f =10’

efficiency
flops, the update time is
4.1 ¢ =N,

computation ops / particle x Np /(eefﬁciency X f) = 105 /(03 X 109) = 333 X 104 sec / Step .
We next estimate communication times. We assume it would be necessary to
communicate (send and receive) the positions of all the atoms in the cell to its neighbors,
for a local force law. Based on the proposed problem size and number of processors, we
expect 4 to 5 particles per linear dimension per processor. Thus from Table 1, we see that
(depending on the assumed level of accuracy required), communication of all data from
all nearest neighbor processors will be required to give sufficient data to a given
processor. Only some of this data will be used for any specific atom, but basically all will
be used for the collection of all atoms on the processor. For local communications, we
use only the 3D spatial sub-lattice of the full D = 6 dimensional communication lattice.
Thus we setw=12. QCDOC can simultaneously send and receive data to/from each of
its 6 spatial neighbors in three spatial dimensions at a rate b =0.5x10’ bits/sec. To reach
the 27 —1=26neighbors in the three spatial coordinate directions requires three separate
messages. The first message has a size

X XN,=3x64xN, =192x N bits

processor = Xsin gle particle
=3x64 =192 bits used

to describe each particle. The time for a local communication step to the 26 spatial
neighbor cells is thus
t, =26x(1/6b)x +3!

procesor

42) = 26x(1/6b)x192x N, +31
=832x(N,/b)+31=1.66x107+9.6x107 =1.67x10"sec / step .

in view of the three double precision numbers of size x,

single particle

The communication and the computation times are comparable. The total time for
computation and communication for a short range time step is

(4.3) t = max{t 1=3.33x10"* sec / step

because computation and communication can run concurrently. (See the discussion in
Sec. 21.)

short range computation > tnn

Assuming time integration steps of 10™" seconds (time for the simulated system), 10~
seconds of simulated time requires 10" steps, or approximately

(4.4) 10" stepsx3.33x107* sec / step><(8.6><104 sec / day)_1 days = 39 days .



Because the latency is negligible in this analysis, 10~ seconds of physical time would be
achieved on a hypothetical machine with 10° processors.

5. A Performance Model for MD with Coulomb Potentials

Simulations involving long-ranged interactions, usually characterized by the Coulomb
potential, have been regarded as a serious challenge to QCDOC due to the inherent
nearest neighbor connectivity of its network topology. We demonstrate here this
machine’s usability to MD involving long-ranged interactions by deriving a performance
model for the conventional Ewald algorithm and particle-mesh Ewald algorithms.

5.1 The Ewald Algorithm

We develop a performance model for the Ewald algorithm, which we use to handle long
range forces. The algorithm scales as O(N’'*) rather than the less favorable

scalingO(N?) of the direct solution method. The multipole algorithm has a still more
favorable scaling, O(N In N), but studies [14] have shown no advantage in the use of this
more complex algorithm for problem sizes typical of biological systems, and certainly
not for the problem sizes we consider. A refinement [15] to the Ewald formula has been
proposed to exclude all of the short range forces from the k-space sum, as the short range
forces are rapidly varying in time. When they are excluded from the k-space sum, this
more expensive operation can be performed with a larger time step, chosen here to be a
multiple 10 of the basic time step. Particle mesh Ewald algorithms, also with O(N In N)

scaling, are popular. We considered those algorithms in Sec.6.

The Ewald algorithm, having few numerical parameters, allows a straightforward
estimate of timing. The Ewald algorithm expresses the Coulomb interaction energy V'
due to charged particles in a cube of side L with periodic boundary conditions as

(5.1 14 =(1/2)Z(Vl; +V;)
ij
where
. erfe(ar,)
(5:2) V:; :qiqj(l_é‘ij)—
g
1 47 kK 2a
5.3 VE=qq. exp| — cos(k-r.)-05.q9. — ,
( ) i qlq.] 7Z'L3 ; kz p( 4a2] ( U) yqij \/;

following the presentation of [15], where the non-obvious aspects of the terminology in
(5.2)-(5.3) are explained. The time step optimization [15] results from the use of a
smooth cutoff function / to isolate the local and rapidly varying part of the short range
forces, through use of the formulas

10



1 = l[erf(r) +erfc(r)]
ror
(5.4) = l[h +erf (r) + erfc(r) — h]
r

~
~

+

N =

[erf (r)+ (erfc(r) —h)]

{~I=

short At Long At

Here the first term, 4/, is the local and rapidly varying part of the potential. It is
integrated with a fast time step to achieve numerical accuracy. The second term has these
same terms explicitly removed. It is the long range, slowly varying part of the potential. It
is integrated with a slow time step, assumed here to be a multiple 10 of the fast time step.
This division of terms is helpful, as the second term involves more operations, and is the
dominant part of the computation. The range of the local cutoff function /4 and the ratio of
fast to slow time steps are, of course related quantities. The term erf(r) is analyzed in
Fourier space, and is referred to as the k-space term. The term erfc() is referred to as the
real space term. The term /4 /7 is a multiple of the local (fast time step) term, and does
not need to be recomputed.

The basic steps in the algorithm are:

1. Compute the local, real space part of the forces with data coming within the
range of the cut off function / . For fast time steps, the potential has only the 4/r
component while for slow time steps it has a (1/7)[erfc(r)—h] term, the latter to be
combined with the & space terms.

2. Communicate the particle positions r; and charges ¢, all to all.

3. Assign k values to processors, or rather (since there are fewer & values than
processors), processors to k values. Separate the 7, and r, dependencies in

cos(k-r;) = cos(k-r,—k-r;) through use of a double angle formula. For each & value,
sum over positions7; .

4. Communicate all the resulting k£ value terms to all processors needing an 7,

force value. This communication is also all to all. The previous communication can be
regarded as going from all r; to all &, and this goes from all & to all ;.

5. Sum over all k& values for each positionr.

6. Update velocities and positions.
Only steps 1 and 6 are performed for fast time steps, while all are performed for slow

ones. Assuming O(N'"?) k values, the steps 3 and 5 are O(N*'?) , and these are the

limiting steps of the algorithm. Thus we will show that the algorithm is floating point
limited, and is not communication (latency or bandwidth) limited for the problem and
machine size we propose. Since we will find fewer k values than particles in a balanced
algorithm, the time limiting communication step is step 2. Likewise the communication
time for step 1 is smaller still, even though there are more of these steps. Due to limits of
local memory, steps 2 and 3 are interleaved, as are steps 4 and 5.

11



5.2 Communication Time Estimates

We now set N, =14 particles / processor. Assume P = 4’ x5’ =8x10° processors
arranged in a six dimensional torus, with 3 factors of sizer, =4, and 3 of size 5, and
N=N,xP=14x8x10° =1.12x10” = 10° particles. Using (2.5) we compute

Moops = 3+[1/2]+3[r, /2] =3-2+3-2 =12 .This level of parallelism is highly aggressive.

The success of this choice will be seen from the fact that the communication time is
dominated by the computational time.

The communication time for an all to all communication is the time to get the data onto
(or off of) a single processor. But the communication (bandwidth) time is not dependent
on the number of hops. Each piece of data is needed and used at each of the intermediate
processors, following a so-called store-and-forward protocol, as it moves to its
destination. The communication time, charged only when the data is used, is always a
single hop communication time. Thus the all-to-all communication time is

Lo =(2/Wh) X X X N +m,, 0 =(1/6)x107 x(3.5x64x N)+12x320x10

(5.5 single particle
=3 7N x107°+3.84x10°=4.2x10"+3.8x10° ~ 4.2x10" sec / step .

Here we have included one integer to label the particle charge, in addition to the three

doubles which describe the particle positions, or a total of 3.5 doubles per particle

storage. There are two all to all communications in each Ewald time step. One is from all

x to all £, and is estimated as above. The other, from all & to all x is proportional to the

number of k values, estimated as /N below, and is thus negligible. Thus the time Ll oal

estimated above is also the total communication time for a Ewald time step.

5.3 Truncation Error Analysis

Next, we estimate the number of terms and the time spent in evaluation of the Ewald
sums. The number of these terms determines the time spent in the two computational
steps. These are the rate limiting steps of the algorithm.

For the real space part of the sum, we assume that the cutoff function 4 extends to a
distance of 3 particle neighbors. Then there are a total of 7° /2 =172 short range particle
pair interactions to be computed per particle. They are communicated from 5° =125
processors, but as observed elsewhere, communication issues are not the limiting factor.
This number of terms has to be computed with a fast time step. Since this number of
terms is smaller by a factor of about 10 relative to the slow time step terms, we thereby
compensate for the 10 fold increase of work due to the fast time step.

12



The slow time step terms have two pieces. A real space sum with the erfc() summand and
a k space sum with summand exp() xcos(). We estimate the number of terms present in
each. These terms contain all  and & terms up to limits ,, and k_, respectively. These

limits are determined by the required accuracy. The limits are a function of that accuracy
and the Ewald splitting parameter . With the accuracy fixed, we adjust  so that each
sum represents an equal number of ops. In the leading order asymptotic solution of the
equations, the resulting « is independent of the error £'. First we fix 7, andk,, . Recall
that, as in Sec. 4, these numbers count the number of terms per coordinate direction
within the range of the cutoff.

Let E" denote the real space contribution to the RMS average error in the force per
particle. We choose integer charges ¢, randomly from {+1,+2, %3} . Then the RMS

average charge is|| ¢ ||=(g-¢)""* =~/14/3 . Thus

(5.6) E’ :%H qI’| Y. Graderfc(—ar)/r,|
17> Fina
Using the average density of points N /L’ and the asymptotic expression
2
(5.7) erfo(x) ~ SPEX)
X
we have
7 4rN 2 2
E =— 2exp(—a’r)|ar+1/ar|dr
- j p(-a’r)] ]
_ l4zN

= exp(=a’r. Ha+l/ar *
oDy TP @ ]

where we have simplified the analysis by evaluating the » and1/r factors at the lower
bound before performing the integral. Then

~WE =a’r, +[In(a’L’/zN)+In (3/14) |- In[a+1/ar,,’]

For simplicity, we analyze this formula using only the leading order asymptote,
(5.8) -InE =a’r’, .
We chooser,. =(1/a)(—InE")"*.

We next estimate the per particle RMS error from termination of the k-space Ewald sum
atk,, . We use double angle formulas to replace the factor cos(k-r;) = cos(k- (7, —r;)) by

cos and sin terms in the arguments k-7, andk-r,. The first of these factors is out of the

sum over j and k. The sum of the second is multiplied by the chargeg;. The sum over

defines the Fourier (sine or cosine) transform&(k) . This gives an expression of the form
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47’
3

P exp(—k*/4a’) |

1 —
E"=5||q||x| > q(k)

|k|>k,

‘max

(5.9)

! TR LY 4>
~>llglix| | q(k) exp(-k*/ 4“”(‘) &k |
2 k>J; r) K

‘max

where we make use of the density (L /)’ of points in k space. We know that ¢ ;s

bounded as a function of j, and thus ¢, /(1+ j %) is in L,, with a norm proportional to

[l ¢ |l. In Fourier space, we integrate by parts twice, and then apply the Schwartz

inequality to separate the ¢ and exp factors. Taking only the leading order term in the
asymptotic analysis of the resulting expression, we have
(5.10) ~InE* =k, °/4a?

We actually want to analyze the relative and not the absolute error. However, division by
the mean per particle force contributes a lower order term, and does not appear in the
leading order asymptotic error.

Note thaterand E = E” = E* are the only parameters in the expansion.

5.4 Truncation Error: Numerical Experiments

We have performed several numerical experiments to validate the performance models.
In our experiments, we distribute N =48’ =110,592 ~ 10’ particles in a 3D box of size
[’ = 48x48x 48 . Their coordinates are random perturbations, by 10%, of the inter-
particle unit distance or mesh size, from cubic lattice points. The mass of each particle is
normalized to 1. Their charges are random integers selected from {£1,£2,+3} . In

measuring the loads, we count the number of floating point operations, instead of
absolute time in seconds, to avoid machine-dependence for performance models.

Tables 2 and 3 summarize the results of our numerical experiments. In these tables, we
give the RMS relative truncation errors, for comparison to formulas (5.8) and (5.10). We
show relative RMS error in the 7-space and k-space contributions to the force field, and

the number of operations /" and f”*needed for the evaluation of the truncated
approximations to these force fields. In order to compute the errors £ and E*, we need
an exact value for the real and k-space terms. This is obtained by summing over all
indices in (5.1) and (5.2). In each set of the experiments, we select five equally-spaced
values fora €[0.1,0.3] . For each value of a, we select six values forr,  €[10,20] for

(L/27) €[3,8]for estimating E* . These

choices are made in order to find the optimal parameters which minimize the total
floating point operations f = f” + f* per particle per step at given error.

estimating £ and six values for n__ =k,

max
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In the following two tables and the three figures, the numbers are expressed in the usual

scientific notations. In other words,1.234E —3=1.234x10". Also, in the entire article,

we have used both In(x)and log(x) which mean the e-based and 10-based logarithm of x

respectively.
Fmax | @ =0.1 a=0.15 | a=0.2 a=0.25 a=0.3 fr
10 | 1.017E-1 | 2.108E-2 | 2.841E-3 | 2.439E-4 | 1.321E-5 65,346
12 | 5.497E-2 | 6.198E-3 | 3.764E-4 | 1.187E-5 | 1.902E-7 | 106,847
14 | 2.800E-2 | 1.592E-3 | 3.758E-5 | 3.583E-7 | 1.350E-9 | 161,554
16 | 1.251E-2 | 3.333E-4 | 2.744E-6 | 6.741E-9 | 4.841E-12 | 228,433
18 | 5.281E-3 | 5.895E-5 | 1.470E-7 | 7.850E-11 | 8.848E-15 | 307,635
20 | 2.092E-3 | 8.911E-6 | 5.817E-9 | 5.577E-13 | 3.453E-17 | 398,505

Table 2 The r-space error £ r dependence on o and 7, and the floating-point operation counts

f r varying with 7.

Nmax a=0.1 o =0.15 o =0.2 o =0.25 a=0.3 f"
3 | 4.440E-3 4266E-2 | 1.012E-1 | 1.564E-1 | 2.020E-1 5,655
4 |2.003E-4 9.702E-3 | 3.956E-2 | 7.846E-2 | 1.164E-1 | 13,404
5 | 2.840E-6 1.199E-3 | 1.064E-2 | 3.054E-2 | 5.579E-2 | 26,180
6 | 1.530E-8 9.827E-5 | 2.315E-3 | 1.057E-2 | 2.501E-2 | 45,239
7 | 6.039E-11 | 7.892E-6 | 5.270E-4 | 3.882E-3 | 1.191E-2 | 71,838
8 | 7.509E-14 | 3.599E-7 | 8.537E-5 | 1.137E-3 | 4.825E-3 | 107,233

Table 3 The k-space error £ k dependence on o and kp,,y = 2771,y / L and the floating-point

operation counts f k varying with 7.
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Figure 2 Graphical presentation of data in Table 2 (r-space) and formulas fit to these data. The curves are
the best fits to the experimental results shown as points. The left vertical axis is for the error £ " the right

is for the operation counts f " and the horizontal axis is for max-
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Figure 3 Graphical presentation of data in Table 3 (k-space) and formulas fit to these data. The curves are

the best fits to the experimental results shown as points. The left vertical axis is for the error £ k , the right

is for the operation counts f k and the horizontal axis is for 7,y
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Using the results in Tables 2 and 3, we fit £ to a function of two variables (depending on
o and 7max), and we fit E* to another function with two variables (depending on a and
nmax)- It 1s not difficult to justify the choice of a bi-quadratic form as the fitting function.
For r-space and k-space, we tried

—In(E") = (¢, +c,a + 030:2 Nd,r . + d3rn§ax)
- ln(Ek) = (cl + C26¥71 + C3(Z72 )(danax + dSnrznax )

It turns out that only two terms, (rma.x0) and (rmaxoc)2 for r-space and (#max/0t) and (nmx/oc)2
for k-space, produce significant coefficients while other coefficients simply vanish.

Similarly, we fit the operation counts /" and f 10 Fmax and Mmax, respectively, in
polynomials up to the 3rd order. In all fitting cases, the relative )(2 errors are less than
1.5% except the operation count f” for which we over-fit by nearly 10%.

The r-space error E” is well fit by the expression

(5.11) ~In(E")=0.855(r,, @)* +1.29(r, @)

and its associated operation count f” is fit by

(5.12) fr=52r

Similarly, the k-space error E* is well fit by:

(5.13) ~In(E") = 0.003514”‘31;;"+ 0.09037 max — 0 820 k‘f“”; +1.38 gy
a a 4a 2a

and its associate operation counts /™ is fit well by
(5.14) f* =209

max

The discrepancies between the theory and experiment errors, measured
bymax |E, . —E;. |/E; are 70%. These discrepancies could be reduced through

Theory Exp Theory >
inclusion of the lower order terms in the theory, a step not pursued in this work.

The above fitted formulas can be used to provide guidance for correct choices of Ewald
parameters and to predict the operations required for a given set of parameters. These
calculations can also be carried by our theoretical formulas. But, in using theoretical
formulas for such estimates, we must increase the expected errors by 70% to compensate
the discrepancy.

5.5 Operation Count Analysis

In this section, we derive a formula for total operation counts as a function of overall
error and the Ewald splitting parameter a. We set—In(E") = —In(E") = ¢ . We eliminate

Fmax from (5.11) and (5.12) to express f” in terms of ¢ and a. Similarly, we eliminate 7y,
from (5.13) and (5.14) to express /" in terms of ¢ and a. The resulting total operation

count f = f”" + f* per particle per step can then be written as a function of ¢ and a:
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f= (4 v0.49 +a’9 - 070} + [1000{(\/0.58 s —0.76)}3

It’s easy to show that, for fixed £, the total operation count function fis minimized at

5.15) . 1\/\/0.49+g—0.70
' 5\V0.58+£-0.76
See Figure 4.
4.E+6
——Error=1.0E-4
3.E+6 7 = Error = 1.0 E-6
- Error=1.0 E-8
2.E+6 -
e
- \‘\‘*—v/
0.E+0 T \ \ \ |
0.05 0.1 0.15 0.2 o 0.25 0.3 0.35
Figure 4 Total operation count as a function of & for E = 107 , 1070 , 1078,

Using (5.15), we can find the optimal & at which f = f” + f* is minimized for an a priori

error E = e °. We input the & and ¢ to the fitted error formulas (5.11) and (5.13) to find
Fmax and 7may, resulting in a complete determination of input parameters o, 7max, and 7max
for optimal Ewald calculations.

Let us demonstrate the above by one concrete example. We set units so that the inter-
particle distance is unity and we set £ =10~ thus & = —In E = 4xIn(10) =9.21. Plugging in
this value of ¢ to the above operation count equation, we find

a=0203and f, , =222,300

where f  is the optimal number of floating-point operations per particle per time step. In
addition, plugging in the values of ¢ and ¢ to the fitted error formulas, we find
=13andn_, =8.

}qnax

The time to evaluate both the 7- and the k- space terms is double the time to evaluate the &
space terms alone, by the above choice ofar. With P =8000 the time for a single (long)
Ewald time step is
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1
Px eefﬁciency X f
(5.16) =10°x222300/[8000x 0.3x10°]
=9.26x10"sec/slow step.

tEwald =Nx -f;)pt X

The local terms computed on a fast time step will be analyzed in detail in a following
paper, with inclusion of bonded terms and the full force terms needed for biological
modeling. Here we give a very simple argument just to estimate that the local terms are
not limiting. It is of course general experience that the long range forces are the limiting
contributions to the force calculation. The principle of local time stepping is well
established. Our proposal to use a multiple time stepping ratio of 10 is within the range
favored by others [15]. The allowed ratio of slow to fast time intervals is governed by the
cutoff function 4 in (5.4) and for a balanced calculation, /# should be chosen so that the
time spent on the long and short steps are comparable. Here we assume that a smooth
cutoff /# with a particle radius of 5 particles will be sufficient to allow a ratio of 10 for the
slow to fast time intervals. Then we refer to the LJ estimate of Sec. 4. Since we have a
factor 10 fewer particles now, the timing is reduced by a factor of 10 per fast time step.
But we have 10 fast time steps per slow step, so the time estimate is actually unchanged
from Sec. 4. Note that the short range LJ is more expensive than the short range Coulomb
to compute, but in fact the true short range forces will include Coulomb, LJ and various
bonded forces.

Thus the total time per step is estimated as
Lo = MAX {tEwald’tall o all} +i =

short range

=9.26x107 +3.33x107" =9.59x10sec/step.

total

(5.17)

We estimate the total computation time for one micro sec of real time using 1 fsec short
and 10 fsec long time steps as
10" x107° steps x9.59x107° sec / step

(5.18) =9.59x10%secx (8.64x10" sec/day)”
~ 11 days.

6. Particle Mesh Ewald

We discuss briefly the particle mesh Ewald method [15, 16, 17]. A particle mesh Ewald
algorithm evaluates the k& space Ewald sum by interpolating the Coulomb charges to a
mesh, transforming by an FFT, solving the Poisson equation as a multiplication operator
and applying an inverse FFT to evaluate the forces on an x space mesh. The forces are
then re-interpolated from the mesh to the particle positions. This algorithm scales as
O(N1In N) in contrast to the O(N*'*) for the Ewald method. The algorithm comes in

several flavors, of which the particle-particle-particle mesh Ewald (P°E) method is

19



recommended [18]. There are several parameters in this method, whose setting
determines the balance between speed and accuracy. The setting of these parameters has
been studied systematically [18, 19]. Accuracy can be assessed in a number of ways, a
common method being RMS error in the force field. Local charge neutrality does not
affect the errors, and locally they are proportional to the number of particles, i.e. the

density. Globally, the forces decay as O(1/#°) and the error behaves as O(1 f _[ 1/r ),

which is convergent at infinity. Thus large systems at fixed density have a uniform error
requirement. The magnitude of the allowed error is determined by comparison to the
random forces (e.g. Brownian motion, experimentally, or a numerical heat bath, in a
simulation) of the problem, among other factors. Generally, the particle mesh Ewald
algorithms offer increased speed with reduced accuracy in comparison to the Ewald
method, especially for large systems.

In P’E, the x space terms are considered with a fixed cutoff, so they scale as O(N) . This
setting would force the k space terms to scale as O(N*), but these are evaluated by FFTs,
with O(Nge; In Ny ) scaling. The mapping of charges from particle positions to the
mesh and the mapping of forces from the mesh to particle positions is local, i.e. O(N).
The FFT mesh is fixed by accuracy considerations, and at fixed density, it has an x space
density independent of N for large systems. Thus N, = O(N) gives the P’E method its
O(N In N)scaling. Values of N, =32" were used for N = 100 particles and a fifth order
charge assignment algorithm to achieve 5 digit accuracy [18, 19]. Scaling this FFT with
the mesh size N leads to impractical and probably unnecessarily large values of Ny, so
we leave Ny as a free parameter.

We assume that P°E is communication dominated. In fact if this is not the case, then the
P°E algorithm will be a clear success on QCDOC. Thus we examine the communication
pattern for P’E. The method has two FFTs, one of which maps scalar charges and the
other mapping vector forces. From the point of view of latency, this leads to two sets of
messages. The FFTs are actually a product of 3 one dimensional FFTs, each of size
Neer = 3/ Nppr - Each of these FFTs employs a reverse binary sort operation, to map data
associated with each index in one coordinate direction to the index with the reversed
binary expansion. The messages to accomplish this sort may be sent in parallel for
processors with distinct values of the other coordinates. Thus we use only 4 of the 24
communication channels and count messages for a purely one dimensional problem.
There are (fewer than) n.., such messages. Each has at most 2 hops. Thus we compute
the FFT latency per time step as

lopr = N X2Xx 6%/

If n... =128, then /., =4x10~ seconds, a very promising number. The bandwidth can
be bounded above in terms of that for the all to all Ewald communication, and it is
likewise promising, depending on the value ofn,.; .
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A more precise assessment of the P°E algorithm depends on accuracy requirements to
determine .., . We conclude that the particle mesh Ewald algorithm has the potential to

allow a significant improvement over the Ewald algorithm for MD on the QCDOC.
Moreover, P°’E will allow nearly linear scaling to larger systems of particles.

7. Conclusions

The QCDOC architecture has two attractive and unusual features: a very high degree of
communication parallelism and a very low latency. The result appears to be a design with
highly scalable parallel performance.

We have developed hardware and application code performance models to assess
application performance on this machine. In these models, parallel scaling is maintained

beyond P =8x10’ processors running an MD simulation on 10’ particles with long
range (Coulomb) forces, computed by the Ewald method. We project over one order of
magnitude in simulation speed and achievable simulation times over that obtained with
other hardware. See [13] for typical benchmark resultsand the more recent refernce [20,
21].

We have two basic conclusions to draw.

1. The QCDOC is an efficient platform for MD with long-ranged forces. Matrix
multiplication and many quantum chemistry problems, with a similar ratio of
communication to computation, are also promising candidates for this architecture. We
therefore demonstrated the usability of QCDOC to applications beyond Lattice QCD.

2. The switchless 24-fold parallelism of the QCDOC nearest neighbor network may be a
design paradigm to allow scalable performance for future generations of supercomputers.
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