JM Johnson Matthey Catalysts

NOx and PM Emissions Control on Heavy-duty Diesel Engines Using SCRT System

SCAQMD Off-road Emission reduction Technology Forum and Roundtable Discussion

May 1, 2007

Sougato Chatterjee

Johnson Matthey Catalysts Emission Control Technologies

Outline

- Introduction
- System Description
- Development Results
- Field Demonstrations
- Conclusions

Outline

- Introduction
- System Description
- Development Results
- Field Demonstrations
- Conclusions

Johnson Matthey Catalyst Areas of Expertise

- <u>Catalyst technology</u>: world-class facilities for research, development, analysis, modelling and testing of catalysts
- <u>Manufacturing technology</u>: 30 years of experience of supply to automotive OEM standards; 10 plants, all TS16949 certified.
- <u>Systems technology</u>: work to develop new aftertreatment systems, made available for integration into new engines and retrofitting.
- <u>Applications expertise</u>: have been applying retrofit aftertreatment in on-road and non-road for 15 years.

JMC

الله المركز ا

Introduction - SCRT[®] System Combined NOx and PM Control

• SCRT[®] = SCR + CRT[®]

- SCR= Selective Catalytic Reduction of NOx with urea
- DPF= Johnson Matthey CRT® Diesel Particulate Filter

Objective

Develop a retrofit SCR + DPF system for Heavy Duty Diesel applications that reduces PM, HC and CO emissions by > 90% and NOx emissions by 60 to 80%

Use ULSD fuel

Selective Catalytic Reduction (SCR)

Use ammonia (NH₃) to reduce NOx to N₂ under oxidizing conditions

JM

 $4 \text{ NO} + 4 \text{ NH}_3 + \text{O}_2 \longrightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$ $6 \text{ NO}_2 + 8 \text{ NH}_3 \longrightarrow 7 \text{ N}_2 + 12 \text{ H}_2\text{O}$

- Ammonia can be derived from a number of sources (e.g. urea, ammonium carbamate, liquid ammonia etc)
- NO₂ promotes SCR activity:

 $2NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O$ VERY FAST REACTION

- Proven in stationary source applications for 30 yrs
- Has been introduced for Euro IV and Japan 05 vehicles

Capability of SCRT System On-road Emissions

Capability of SCRT System Off-road Emissions

Outline

- Introduction
- System Description
- Development Results
- Field Demonstrations
- Conclusions

SCRT System Components

⇒CRT Diesel Particulate Filter

⇒SCR Catalyst system

- SCR catalyst
- NH₃ slip catalyst
- NOx sensor(s)
- Temperature sensors

⇒Urea delivery system

- Urea tank
- Urea Pump
- Air regulator
- Dosing Manifold
- ECU & wiring harness
- Nozzle
- Sensors

Retrofit SCRT System Diagram

SCRT System Components CRT Particulate Filter

- CO/HC/PM Emission Control System combining Oxidation Catalyst & Filter
- Engineered as a totally passive emission control system
- Uses NO₂ produced by a specially formulated catalyst to burn soot collected by the filter at typical operating temperatures of diesel engine exhaust
- Requires the use of Ultra Low Sulfur fuel

JMC

SCRT System Components SCR Catalyst

- High efficiency low temperature capable catalyst
- Proven durability
- In general, catalyst volume to engine volume 2:1

Primary Reactions:

- $4NO + 4NH_3 + O_2 = 4N_2 + 6H_2O$
- $6NO_2 + 8NH_3 = 7N_2 + 12H_2O$
- $NO + NO_2 + 2NH_3 = 2N_2 + 3H_2O$

SCRT System Components Urea Injection System

Urea Dosing Pump

- Manufactured by Grundfos Pumps Corp.
- Compact
- Precise Air and Urea mixing
- Proven technology -Currently in series production for Euro IV applications
- High volume, relatively low cost
- 12 or 24 VDC power capability

Urea Injection Controller

- Can handle up to 15 control inputs
- Analog, Digital and CAN input & outputs
- Can use either a look-up table (map) or algorithm for urea injection
- Capable of continuous logging of up to 8
 system parameters
- Developed and tested to on-road automotive standards

JMCO

Grundfos Pump

Control ECU

Outline

- Introduction
- System Description
- Development Results
- Field Demonstrations
- Conclusions

SCRT System Development Cummins ISM Engine, FTP Cycle Test Results

NOx concentration and SCR temp 8/11/05

SCRT System Development Caterpillar 3126 Engine, FTP Cycle Test Results

SCRT[®] System Testing With Biodiesel FTP Hot Tests, CAT 3126, 250 hp, 1998

SCRT System Development Volvo 10 L Engine, Test Cell Results – ESC Cycle

ESC Data V10 Engine NOX Reduction = 87%

Outline

- Introduction
- System Description
- Development Results
- Field Demonstrations
- Conclusions

SCRT System Field Trials System being tested on different applications, worldwide

Ralphs Grocery Truck

Long Beach Transit Bus

LA County Sanitation Trash Truck

BP Fuel Delivery Truck

SCRT Field Trial – BP Fuel Delivery Truck

Engine Model	CRT Size		SCR Size	
	Cat (liter)	Filter (liter)	Cat (liter)	Slip (liter)
CUM ISM 10.8 L	8.5	17	25.5	4.2

SCRT Field Data – On-Road NOx Reduction BP Fuel Delivery Truck

in a statistic sector and the sector of the sector sector is a sector of the sector of t

SCRT System on BP Truck Long Term NOx Reductions

Daily Nox Reduction BP Truck 8310

SCRT Field Trial - Long Beach Transit Bus

SCRT on Long Beach Transit Bus Typical On-road NOx reduction data for 6 days

SCRT on Long Beach Transit Bus Typical Urea Usage for NOx Reduction

• The average amount of urea injected every minute is recorded and added up for each day

Date	Urea used (ml)	Urea used (gal)
2/6/07	2510	0.66
2/7/07	4275	1.1
2/8/07	4321	1.1
2/9/07	3992	1.05

JM🐼

in a substantia de la seconda de la compañía de la seconda de la seconda de la seconda de la seconda de la sec

SCRT System on Long Beach Transit Bus Long Term NOx Reductions

LBT Bus Daily Conversion

JM 🐼

Daily Nox Reduction

SCRT Field Trial – Non-road Application Ingersoll Rand Air Compressor

- SCRT system was installed on a 2005 Ingersoll Rand P600WIR air compressor in Bronx, NY
- The engine is a 170HP John Deere 6IRF8TE (Tier 2)

SCRT Field Trial – Non-road Application Ingersoll Rand Air Compressor

in a substantia de la companya de l

SCRT Field Trial - Croton Air Compressor Typical NOx Reduction and Exhaust Temperature

NOX Reduction and SCR Inlet Temperature

Issues To Be Considered for Retrofit SCRT System Application in Off-road

- Mechanical Design
 - Limited space availability
 - Line of sight
- Mechanical durability
 - Filter & substrate material
 - Packaging
- Exhaust back pressure
 - Filter & DOC size
 - Substrate cell density
- Exhaust Temperature
 - In general warm
 - Good for CRT & SCR
- Engine out emissions
 - Tier 1 engines may have low NOx/PM
 - Issue with passive filter regen
- Urea & ULSD fuel availability

in a second the statement of the second s

Conclusions

- Overall, the combination of Selective Catalytic Reduction and CRT can be a very effective emission control device for the reduction of NOx, PM, CO and HC emissions from existing diesel vehicles. NOx reduction of 60 - 85% is achievable with a retrofit system
- Engine and vehicle testing results showed high NOx reduction capabilities of the SCRT system. It produced 70-88% NOx reduction over FTP, ETC, ESC and other real world drive cycles. The presence of the CRT also enables this system to reduce CO, HC and PM by 85-95%.
- The tests also showed the critical nature of the SCR temperature in determining the overall NOx reduction. The average SCR temperature will have to be over 200 C in order to obtain high NOx conversions since effective urea hydrolysis cannot be achieved below this temperature
- Following introduction of on-road system (estimated. end 2007), JM will develop retrofit SCRT system for non-road applications
- Design issues will have to be carefully evaluated for off-road application

Acknowledgments

- Environment Canada, ERMD
- LA County Sanitation
- British Petroleum
- Ralph's Grocery
- Long Beach Transit
- Eastern Municipal Water District
- LA Dept of Power and Water
- Cummins Inc.
- Caterpillar Inc.
- Valley Power System
- SCAQMD
- SMAQMD
- TERP

Contacts:

Sougato Chatterjee
 <u>Chatterjee@JMUSA.com</u>

WWW.JMCSD.COM

Johnson Matthey Catalysts Emission Control Technologies Division 380 Lapp Road Malvern, PA 19355 (800)RX-FOR-AIR

ne al este d'al tre alle de la companya de la comp