Reducing Emissions From Railroad Locomotives

Presented to the South Coast Air Quality Management District Offroad Emission Reduction Technology Forum and Roundtable Discussion

May 1, 2007

Christopher S. Weaver, P.E. President

Locomotive Emissions

- Line-haul into/out of LA basin
- Local train service within basin
- Switch locomotives
 - Railyards
 - Ports and intermodal facilities
 - Industrial plants
- Passenger Rail (AMTRAK / Metrolink)
 - 39 locomotives presently
 - 15 more locomotives to be purchased
- Locomotive servicing, maintenance, and testing
- Many locomotives have two-stroke diesel engines
 - Higher organic carbon (from lube oil)
 - Lower elemental carbon

EPA/CARB/UP/BNSF Memorandum of Understanding

- Average emissions equivalent to Tier 2 by 2010
- Weak penalty provisions
- "Poison pill" provision any further regulation cancels MOU
- Ultra-low emission locomotive (ULEL) loophole
 - 50 ULEL switchers w SCR can generate 5 g/BHP-hr year of fleet average credit through 2014
 - Credit can be used to increase fleet-average emission limit from 5.5 g/BHPhr to 10.5 g/BHP-hr for one year, or to 6.5 g/BHP for five years

Locomotive Contribution to SCAQMD Emissions Inventory

	2004 Emissions TPD			
	NOx	PM		
Total	37.3	1.03		
Metrolink	3.04	0.10		

State inventory (based on MOU) predicts freight rail emissions of 18.3 TPD in 2014 and 22.6 TPD in 2023

- Unlikely to be achieved due to weakness of MOU

• Port of LA Clean Air Plan projects freight rail traffic to double by 2020 (58 trains/day to 130)

Switch Locomotives

- Dedicated units designed for switch duty cycle
 - "Green Goat" diesel/battery-electric series hybrid
 - Multi-engine locomotives using smaller nonroad engines
- Engines have modern control technology
- Engines run only when needed
- Excellent candidates for DPF and SCR retrofit

Servicing/Maintenance Emissions

- Stationary source control technologies may be applicable
- Roseville Adanced Locomotive Emision Control System (ALECS) demonstration

Potential Emission Controls for Line-Haul Locomotives

• New locomotive emission standards

- EPA Tier 3 NOx same as present Tier 2 standard
- Tier 4 NOx proposal of 1.3 g/BHP-hr would be effective in 2017
- Existing locomotive inventory, operating patterns an obstacle

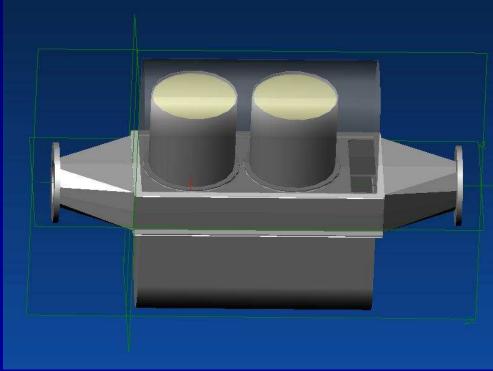
• Retrofit existing locomotives

- Diesel oxidation catalysts
- Selective catalytic reduction
- Diesel particulate filters

• Ultra-clean shuttle locomotives

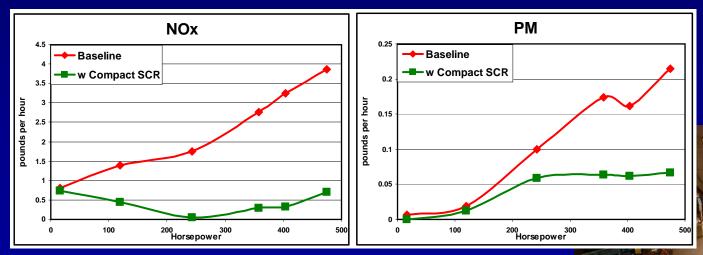
- Ports/intermodal facilities to railyards outside basin
- Congestion and operating advantages in port area as well as lower in-basin emissions
- Anti-idling systems
- Alternate fuels, electric traction NOT recommended

Status of SCR for Locomotives


- Widely used on similar engines in stationary applications
- 1994 ARB report identified SCR as most cost-effective measure for locomotives
 - Conceptual design based on stationary SCR systems
- Railroads have strongly resisted SCR proposals
 - Cost
 - Volume requirements on locomotive
- New emission control system at Roseville rail yard will capture locomotive emissions in a <u>stationary</u> hood and apply SCR
- But, new compact SCR systems provide major improvements in both cost and space demand, and would allow SCR control on-board
- Prototype under development for Metrolink locomotive

Compact Urea SCR System for Mobile Sources

Ferryboat Engine SCR System


Sized for 450 to 600 HP engine Dyno tested March 6-8 in Seattle Four vessels planned for San Francisco Bay

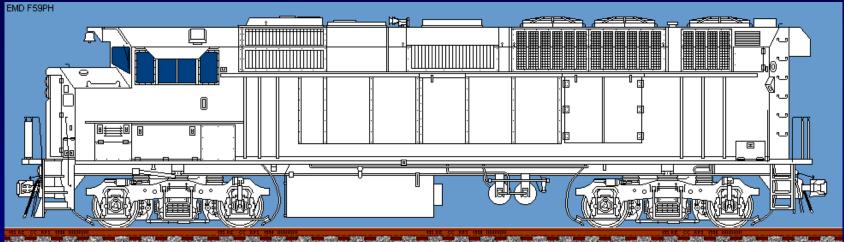
Emission Test Results of Ferryboat SCR

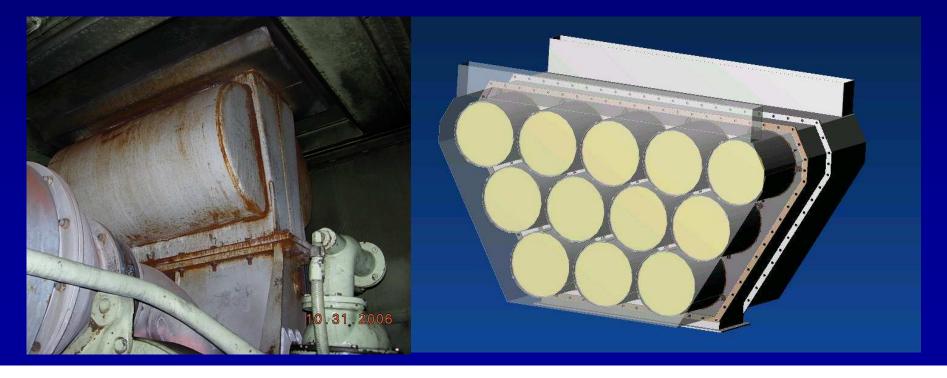
Pct	Cat Inlet	NOx Emissions (g/BHP-hr)			PM Emissions (g/BHP-hr)		
Power	Temp. (oC)	Baseline	w SCR	% Red	Baseline	w SCR	% Red
Ultra-Low Sulfur Diesel							
100%	271	3.29	0.64	80.4%	0.18	0.06	66.3%
85%	266	3.28	0.35	89.3%	0.16	0.07	58.9%
75%	264	3.17	0.35	89.0%	0.20	0.07	62.7%
50%	273	3.11	0.10	96.8%	0.18	0.11	38.6%
25%	206	5.04	1.71	66.0%	0.07	0.05	34.2%
Idle	86	15.6	15.6	0.0%	0.14	0.00	100.0%

Tested at Pacific Power Products

Kent, WA March 3-6, 2006

Locomotive Profile




Image © 2002 by Michael Eby ∢eby@mail.abacom.com>. All rights reserved Provided by The Railroad Paint Shop <http:#paintshop.railfan.net> for personal use only. Used by permission.

- Exhaust system
 configuration on Metrolink
 F59s is the same as on SD60
 freight locomotives
- Same SCR retrofit system
 could be used on both

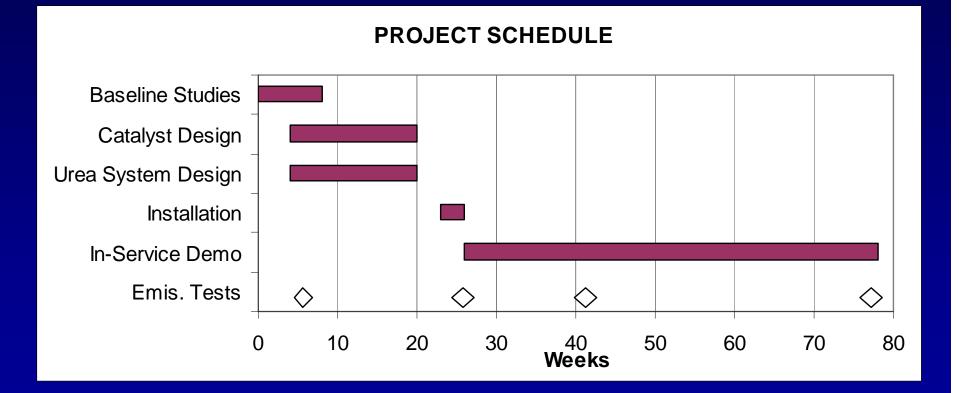
Locomotive SCR Demonstration

- \$430 K grant funding SCAQMD and TCEQ
- CARB and SCAQMD considering another \$250 K for emission testing at SWRI
- Target the propulsion engine of Metrolink F59 PH locomotive
 EMD 710 3000 HP
- Goal is to achieve 90% NOx reduction above Notch 3
- PM reduction estimated at 50 to 70%

Metrolink SCR Demonstration Technical Challenges

• Shock/vibration environment of locomotive

Catalysts and injection systems use technology developed for HD trucks


• Low backpressure tolerance of engine (6 inches H2O)

- Multiple parallel catalysts reduce backpressure

• High oil consumption / high oil content of exhaust

- Retrofit with low-oil cylinder packages
- Ti-V-W catalyst functions as DOX cat, burns SOF
- Catalyst elements replaceable when poisoned
- Crankcase vent eductor in exhaust stream
 - Add coalescing filter to crankcase vent
 - Move crankcase vent eductor or replace with pump

Metrolink SCR Demo - Schedule

Cost-Effectiveness of SCR in Metrolink Locomotives (Main Propulsion Only)

	NOx	PM
Annual Emissions (tpy)	29.2	0.9
Emission Reduction (tpy)	26.3	0.5
Capital Cost (est.)	\$ 300,000	
Annualized	73,167	
Liters Urea/Year	47,304	
Operating Cost	\$ 52,304	
Total Annual Cost	125,471	
Cost-Effectiveness	\$ 3,544	\$/ton

SCR Application to Freight Locomotives

- SCR highly cost-effective
- Nearly half the cost is for urea consumption
 - Can be turned on and off when entering/leaving pollution control areas
 - Automatic control based on GPS
- Cost-effective NOx control for nonattainment regions
- PM benefits would be experienced throughout area of operation
- ARB considering second demonstration in a freight locomotive