Understanding and Optimizing Data Input/Output of Large-Scale Scientific Applications

Presented by

Jeffrey S. Vetter (Leader) Weikuan Yu, Philip C. Roth

Future Technologies Group Computer Science and Mathematics Division

I/O for large-scale scientific computing

- Reading input and restart files
- Writing checkpoint files
- Writing movie, history files
- Gaps of understanding across domains; efficiency is low

SciDAC climate studies visualization at ORNL

SciDAC astrophysics simulation visualization at ORNL

The I/O gap

Widening gap between application I/O demands and system I/O capability.

Gap may grow too large for existing techniques (e.g.,checkpointing) to be viable because of decreases in system reliability as systems get larger.

System Size

Insight into I/O behavior

- Performance data collection infrastructure for Cray XT
- Gathers detailed I/O request data without changes to application source code
- Useful for
 - Characterizing application I/O
 - Driving storage system simulations
 - Deciding how and where to optimize I/O

Optimization through parallel I/O libraries

- Advantages from parallel I/O libraries
 - Interfacing application, runtime, and operating system
 - Ease of solution deployment

- Challenges approachable via libraries:
 - 1. Application hints and data manipulation
 - 2. Processor/memory architecture
 - 3. Parallel I/O protocol processing overhead

National Laboratory

- 4. File-system-specific techniques
- 5. Network topology and status

Opportunistic and adaptive MPI-I/O for Lustre (OPAL)

- An MPI-I/O package optimized for Lustre
- A unified code base for Cray XT and Linux
- Open source, better performance
 - Improved data-sieving implementation
 - Enabled arbitrary striping specification over Cray XT
 - Lustre stripe-aligned file domain partitioning
- http://ft.ornl.gov/projects/io/#download
- Provides better bandwidth and scalability than default Cray XT MPI-I/O library in many cases

Example results: OPAL

- Bandwidth for FLASH I/O benchmark.
- OPAL provided better bandwidth and scalability than default Cray XT MPI-I/O library.

Partitioned collective I/O (ParColl)

- Collective I/O is good for small I/O request aggregation.
- But global synchronization within is a barrier to scalability.
- ParColl partitions global processes, I/O aggregators, and the shared global file appropriately for scalable I/O aggregation.

Example results: ParColl

- Evaluated benchmarks: MPI-Tile-I/O and Flash I/O.
- ParColl improves collective I/O for various benchmarks.

Contacts

Jeffrey S. Vetter

Leader Future Technologies Group Computer Science and Mathematics Division (865) 356-1649 vetter@ornl.gov

Weikuan Yu

(865) 574-7990 wyu@ornl.gov

Philip C. Roth

(865) 241-1543 rothpc@ornl.gov

For more information, including code downloads, see http://ft.ornl.gov/projects/io/

