



# Validation of CERES/TRMM SSF Edition 2 Angular Distribution Models

Norman G. Loeb<sup>1</sup>, Natividad Manalo-Smith<sup>2</sup>, Konstantin Loukachine<sup>4</sup>, Seiji Kato<sup>1</sup>, Yongxiang Hu<sup>3</sup>

<sup>1</sup>Hampton University, <sup>2</sup>AS&M, <sup>3</sup>NASA LaRC, <sup>4</sup>SAIC

# <u>Outline</u>

- TOA Flux/ADM Production Schedule
- Recent Changes to SSF
- CERES ADM Types and Web Page
- SW Flux Validation
- LW and WN Flux Validation

# **TOA Flux Production Schedule**

### 1. <u>August 2001</u>

- Delivery of SSF Edition 2 SW, LW & WN ADMs.
- Prepare SSF Edition 2 validation results.
- 2. <u>September 2001</u>
- Begin production of CERES/TRMM Edition 2 SSFs.
- Complete SSF Edition 2 Quality Summary.
- Archive SSF Edition 2 pending Science Team Approval.
- 3. October 2001 March 2002
- Preparation of 2-3 manuscripts for publication summarizing TRMM ADMs and validation results.
- Begin developing CERES/Terra ADMs.

X

X

X

X

### Recent Changes to SSF (to appear in SSF Edition 2)

- Include all CERES footprints that have at least 1 VIRS pixel coverage (independent of whether imager data is bad).
  =>User's should carefully check SSF parameters: "percent imager coverage (SSF-54)" and "cloud property extrapolation over cloudy area (SSF-63)".
- Retain clear scenes over "hot" desert and land with saturated VIRS channel 4 radiances.
  - Use CERES WN brightness temperature threshold to identify clear scenes over very hot surfaces.
- Changed units of window (WN) unfiltered radiance and TOA flux from W m<sup>-2</sup>  $\mu$ m<sup>-1</sup> to W m<sup>-2</sup>.
  - WN unfiltered radiance & flux is defined over 8.1 11.8  $\mu m$  wavelength interval.

#### http://asd-www.larc.nasa.gov/Inversion/ CERES Inversion Group Home Page



**Overview** 

**Angular Distribution Models** 

**ADM Version Summary** 

**Validation Results** 

**Publications** 

Conferences

**Inversion Production Code** 

**Current Research** 

#### **Relevant Links**

Responsible NASA Official: Dr. Bruce A. Wielicki Web Curator: Dr. K. Loukachine K.Loukachine@larc.nasa.gov





# **CERES SW ADM Angular Bin Definitions**



### Scene Types for CERES/TRMM SW ADMs

| ADM Category |        | Scene Type Stratification     | Actual        |
|--------------|--------|-------------------------------|---------------|
|              |        |                               | Total         |
| Clear        | Ocean  | - 4 Wind Speed Intervals      | 4             |
|              | Land   | - 2 IGBP Type Groupings       | 2             |
|              | Desert | - Bright and Dark             | 2             |
|              | Snow   | - Theoretical                 | 1             |
| Cloud        | Ocean  | - Liquid and Ice              | 62 (L)        |
|              |        | - 12 Cloud Fraction Intervals | <b>53 (l)</b> |
|              |        | - 14 Optical Depth Intervals  |               |
|              | Land   | - 2 IGBP Type Groupings       |               |
|              |        | - Liquid and Ice              |               |
|              |        | - 5 Cloud Fraction Intervals  |               |
|              |        | - 6 Optical Depth Intervals   | 45            |
|              | Desert | - Bright and Dark Deserts     |               |
|              |        | - Liquid and Ice              |               |
|              |        | - 5 Cloud Fraction Intervals  |               |
|              |        | - 6 Optical Depth Intervals   | 33            |
|              | Snow   | - Theoretical                 | 1             |
| Total        |        |                               | 203           |



### Land and Desert IGBP Type Groupings



### ADM Scene Surface Types







### Clear Ocean ADMs: $\theta_0 = 30^{\circ} - 40^{\circ}$

#### Low Wind Speed



#### High Wind Speed



#### Moderate Wind Speed



#### All Wind Speeds



# **Clear Ocean TOA Flux From CERES**

- Define ADMs for 4 discrete wind speed intervals (m s<sup>-1</sup>):
  < 3.5; 3.5 5.5; 5.5 7.5; > 7.5
- Estimate instantaneous flux/albedo using ADM:

$$\hat{A} = \frac{r(\theta_o, \theta, \phi)}{R_j(w_{k,}\theta_o, \theta, \phi)}$$

Account for aerosol optical depth variations theoretically

$$\hat{A}' = \hat{A} \left( \frac{R^{th}(w_k, I^{avg})}{R^{th}(w_k, I^{obs})} \right)$$

where  $R^{th}(w_k, I^{obs})$  is a theoretical anisotropic factor inferred from an instantaneous observation and  $R^{th}(w_k, I^{avg})$  is determined from the average radiance used to construct the ADM class.







Loeb and Kato, 2001 (*J. Climate*, submitted)



#### SW TOA Flux Validation

- Does mean all-sky flux depend on viewing geometry?
- Comparisons with Direct Integration Fluxes:
  - Solar zenith angle dependence (SW)
  - Latitudinal dependence
  - Regional fluxes
- Instantaneous Flux Uncertainties
  - Use alongtrack data to examine consistency of incident fluxes from the same scene

# **CERES SW ADM Angular Bin Definitions**





















#### Flux Bias Definitions

• ADM mean flux bias in angular bin  $(\theta_o, \theta_j, \phi_k)$ :

$$\Delta(\boldsymbol{\theta}_{o},\boldsymbol{\theta}_{j},\boldsymbol{\phi}_{k}) = \overline{F}_{ADM}(\boldsymbol{\theta}_{o},\boldsymbol{\theta}_{j},\boldsymbol{\phi}_{k}) - F_{DI}(\boldsymbol{\theta}_{o})$$

• Footprint-weighted ADM mean flux bias:

$$\Delta_{\Omega}(\boldsymbol{\theta}_{o}) = \frac{1}{n_{k}} \frac{1}{n_{j}} \sum_{k=1}^{n_{k}} \sum_{j=1}^{n_{j}} \Delta(\boldsymbol{\theta}_{o}, \boldsymbol{\theta}_{j}, \boldsymbol{\phi}_{k}) w_{j}$$

where  $w_j$  is a weighting factor accounting for the relative effect of different viewing zenith angles on gridded time-averaged fluxes.  $n_k$  and  $n_j$  are the number of relative azimuth and viewing zenith angle bins.

• Standard deviation in footprint-weighted ADM flux bias:

$$\sigma_{\Omega}(\theta_{o}) = \sum_{k=1}^{n_{k}} \sum_{j=1}^{n_{j}} \frac{\left[\Delta(\theta_{o}, \theta_{j}, \phi_{k}) - \overline{\Delta}(\theta_{o})\right]^{2}}{(n_{k}n_{j} - 1)} w_{j}$$

⇒ measure of consistency in ADM mean flux estimate from individual viewing directions.



Footprint-Weighted All-Sky Mean Albedo and Flux Bias vs  $\theta_o$ 







#### Tropical ADM Mean Flux Bias (Footprint-Weighted; March 1998 Solar Zenith Angle Sampling)

| (W m <sup>-2</sup> ) | ERBE-Like                  |                         | SSF Edition 2              |                         |
|----------------------|----------------------------|-------------------------|----------------------------|-------------------------|
| <i>θ</i> -Range      | Mean ( $\Delta_{\Omega}$ ) | Std $(\sigma_{\Omega})$ | Mean ( $\Delta_{\Omega}$ ) | Std $(\sigma_{\Omega})$ |
| <i>θ</i> < 50°       | -2.7                       | 3.3                     | -0.05                      | 2.1                     |
| <i>θ</i> < 70°       | 0.50                       | 5.6                     | 0.11                       | 2.2                     |

#### All-Sky Direct Integration Flux by Latitude & Solar Zenith Angle














-180





Flux Difference (W m<sup>-2</sup>)

-2

| ADM Mean Flux Biases over 20°×20° Regions<br>(March 1998 Solar Zenith Angle Sampling)<br>(W m <sup>-2</sup> ) |           |                     |               |                     |
|---------------------------------------------------------------------------------------------------------------|-----------|---------------------|---------------|---------------------|
|                                                                                                               | ERBE-Like |                     | SSF Edition 2 |                     |
| <i>θ</i> -Range                                                                                               | Δ         | $\sigma_{\!\Delta}$ | Δ             | $\sigma_{\!\Delta}$ |
| <i>θ</i> < 50°                                                                                                | -2.8      | 1.5                 | -0.07         | 1.4                 |
| <i>θ</i> < 70°                                                                                                | 0.35      | 0.74                | -0.15         | 0.52                |
| CERES<br>GOAL                                                                                                 | 0         | 1                   | 0             | 1                   |

















# LW and WN TOA Flux Validation

- Does mean all-sky flux depend on viewing geometry?
- Comparisons with Direct Integration Fluxes:
  - Regional fluxes
  - Latitudinal flux dependence
- Flux consistency as a function of cloud and clear-sky parameters.

# **TOA LW & WN Flux Estimation from Satellite**

## Flux:

 $M = 2\pi \int_0^{\pi/2} L(\theta) \cos \theta \sin \theta \, d\theta$  $L(\theta) = \text{Measured Radiance}$ 

# Instantaneous Flux Estimate:

$$\hat{M} = \frac{\pi L(\theta)}{R(\theta)}$$

 $R(\theta) = LW$  Anisotropic Factor



| Scene -              | Types for CERE | S/TRMM LW and WN ADI                                  | <u>Ms</u>  |
|----------------------|----------------|-------------------------------------------------------|------------|
| ADM Category         |                | Parameter Stratification                              | Total      |
|                      | Ocean          | 3 Precipitable Water<br>4 Vertical Temperature Change | 12         |
|                      |                | 3 Precipitable Water                                  |            |
|                      | Land           | 4 Vertical Temperature Change                         | 36         |
| Clear                |                | 3 Surface Emissivity                                  |            |
|                      |                | 3 Precipitable Water                                  |            |
|                      | Desert         | 4 Vertical Temperature Change                         | 36         |
|                      |                | 3 Surface Emissivity                                  |            |
| Broken               |                | 3 Precipitable Water                                  |            |
| Cloud Field          | Ocean/Land/    | 6 ∆T (Sfc-Cloud)                                      | 288 (O)    |
| (4 intervals) Desert |                | 4 IR Emissivity                                       | 288 (L)    |
| (                    |                | 2 Dresinitable Weter                                  | 288 (D)    |
| Overcast             | Ocean+         |                                                       | 108        |
|                      | Land+Desert    | 6 ∆I (Stc-Cloud)                                      | IVO        |
|                      |                | 6 IR Emissivity                                       | <b>E</b> A |









#### Daytime LW ADM Mean Regional Flux Biases (*θ* < 50°) (Jan, Feb, Mar 1998)

**ERBE-Like – DI Flux Difference** 







### Daytime LW ADM Mean Regional Flux Biases (<u>θ < 50°</u>) (Jun, Jul, Aug 1998)

**ERBE-Like – DI Flux Difference** 













| ADM Regional LW Flux Biases : <u>Daytime</u><br>(10°×10° regions; Jan-March 1998)<br>(W m <sup>-2</sup> ) |           |                     |               |                     |
|-----------------------------------------------------------------------------------------------------------|-----------|---------------------|---------------|---------------------|
|                                                                                                           | ERBE-Like |                     | SSF Edition 2 |                     |
| <i>θ</i> -Range                                                                                           | Δ         | $\sigma_{\!\Delta}$ | Δ             | $\sigma_{\!\Delta}$ |
| <i>θ</i> < 50°                                                                                            | 3.7       | 1.9                 | 0.87          | 1.7                 |
| <i>θ</i> < 70°                                                                                            | 0.67      | 0.60                | 0.21          | 0.57                |
| CERES<br>GOAL                                                                                             | 0         | 0.5                 | 0             | 0.5                 |

| ADM Regional LW Flux Biases: <u>Daytime</u><br>(10 <sup>°</sup> ×10° regions; Jun-Aug 1998)<br>(W m <sup>-2</sup> ) |           |                     |               |                     |
|---------------------------------------------------------------------------------------------------------------------|-----------|---------------------|---------------|---------------------|
|                                                                                                                     | ERBE-Like |                     | SSF Edition 2 |                     |
| <i>θ</i> -Range                                                                                                     | Δ         | $\sigma_{\!\Delta}$ | Δ             | $\sigma_{\!\Delta}$ |
| <i>θ</i> < 50°                                                                                                      | 3.5       | 2.2                 | 0.52          | 1.9                 |
| <i>θ</i> < 70°                                                                                                      | 0.64      | 0.68                | 0.18          | 0.56                |
| CERES<br>GOAL                                                                                                       | 0         | 0.5                 | 0             | 0.5                 |







| SSF Edition 2 A | DM Regio<br>(10°×1<br>(/ | nal LW Flux<br>0° regions)<br>// m <sup>-2</sup> ) | x Biases : | <u>Nighttime</u>    |
|-----------------|--------------------------|----------------------------------------------------|------------|---------------------|
|                 | Jan-Mar                  |                                                    | Jun-Aug    |                     |
| <i>θ</i> -Range | Δ                        | $\sigma_{\!\Delta}$                                | Δ          | $\sigma_{\!\Delta}$ |
| <i>θ</i> < 50°  | 0.66                     | 1.5                                                | 0.46       | 2.0                 |
| <i>θ</i> < 70°  | 0.45                     | 0.46                                               | 0.52       | 0.36                |
| CERES<br>GOAL   | 0                        | 0.5                                                | 0          | 0.5                 |








| SSF Edition 2 ADM Regional WN Flux Biases: Daytime<br>(10°×10° regions)<br>(W m <sup>-2</sup> ) |         |                     |         |                     |  |  |  |
|-------------------------------------------------------------------------------------------------|---------|---------------------|---------|---------------------|--|--|--|
|                                                                                                 | Jan-Mar |                     | Jun-Aug |                     |  |  |  |
| <i>θ</i> -Range                                                                                 | Δ       | $\sigma_{\!\Delta}$ | Δ       | $\sigma_{\!\Delta}$ |  |  |  |
| <i>θ</i> < 50°                                                                                  | 0.48    | 0.79                | 0.33    | 0.87                |  |  |  |
| <i>θ</i> < 70°                                                                                  | 0.07    | 0.27                | 0.03    | 0.32                |  |  |  |
| CERES<br>GOAL                                                                                   | -       | -                   | -       | -                   |  |  |  |

| SSF Edition 2 ADM Regional WN Flux Biases: Nighttime $(10^{\circ} \times 10^{\circ} \text{ regions})$<br>(W m <sup>-2</sup> ) |         |                     |         |                     |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|---------|---------------------|--|--|
|                                                                                                                               | Jan-Mar |                     | Jun-Aug |                     |  |  |
| <i>θ</i> -Range                                                                                                               | Δ       | $\sigma_{\!\Delta}$ | Δ       | $\sigma_{\!\Delta}$ |  |  |
| <i>θ</i> < 50°                                                                                                                | 0.34    | 0.66                | 0.25    | 0.86                |  |  |
| <i>θ</i> < 70°                                                                                                                | 0.23    | 0.22                | 0.25    | 0.18                |  |  |
| CERES<br>GOAL                                                                                                                 | -       | -                   | -       | -                   |  |  |













## **Summary and Conclusions**

- CERES/TRMM SSF Edition 2 Status:
- SW, LW & WN ADMs have been delivered.
- Production of Edition 2 SSFs to begin week of September 24<sup>th</sup>.
- Archival requires:
  - (i) Science Team approval and
  - (ii) Quality Summary
- Recent Changes to SSF:
- Include all CERES footprints with any VIRS coverage.
- Include footprints over hot land and desert for which VIRS IR radiance saturates.
- Change units of window channel unfiltered radiance & TOA flux to W m<sup>-2</sup>.
- New ADM web page: http://asd-www.larc.nasa.gov/Inversion

## - SW TOA Flux Validation:

- SSF Ed2 SW fluxes show less dependence on viewing geometry than ERBE-Like (≈ 10% for ES8; ≈ 2% SSF).
- CERES goal for regional mean flux accuracy ( $1\sigma < 1 \text{ W m}^{-2}$ ) is attained provided full viewing zenith angle coverage < 70° is used. For  $\theta < 50^{\circ}$ ,  $1\sigma$  error is 1.4 W m<sup>-2</sup>.
- Near-nadir cloudy-sky SSF Ed2 fluxes larger than ERBE-Like at small optical depths and smaller at large cloud optical depths (differences up to  $\pm 75$  W m<sup>-2</sup> for  $\theta_{\tilde{o}} \approx 43^{\circ}$ ).
- First estimates of instantaneous flux uncertainties from alongtrack measurements: < 10 W m<sup>-2</sup> for clear scenes;
  ~20 W m<sup>-2</sup> for overcast.
  - => Further study needed with multiple CERES instruments.

- LW and WN TOA Flux Validation:

- SSF Ed2 LW fluxes show less dependence on viewing geometry than ERBE-Like (9 W m<sup>-2</sup> for ES8; 1.5 W m<sup>-2</sup> for Ed2).
- CERES goal for regional mean LW flux accuracy (1σ < 0.5 W m<sup>-2</sup>) is almost reached. 1σ error is≈ 0.56 W m<sup>-2</sup> during daytime.
- Nighttime LW flux shows a 0.5 W m<sup>-2</sup> mean bias with  $1\sigma$  of  $\approx$  0.4 W m<sup>-2</sup>.
- WN 1  $\sigma$  flux error is 0.3 W m^2 . Nighttime WN flux bias is 0.25 W m^2.
- Near-nadir cloudy-sky SSF Ed2 LW fluxes are smaller than ERBE-Like at small emissivity but comparable for emissivity close to 1.0 (differences at small  $\epsilon$  up to 25 W m<sup>-2</sup>).
- SSF Ed2 LW flux errors as a function of precip water are a factor of 3-4 smaller than ERBE-Like.

## Future Work (Terra)

- Increase angular resolution of ADMs.
- Land SW ADMs stratified by vegetation index.
- Empirical SW, LW and WN ADMs over snow.
- Use of multi-CERES instruments for instantaneous flux errors.
- Determine flux errors by cloud type, cloud and clear-sky parameters.
- Improve theoretical tools for ADM development and comparisons between observations and theory.