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Reconfigured in 2004.

Aerosol processes affecting radiative forcing of climate change.

Field measurements, instrumentation, laboratory and theory, modeling.
Second solicitation 2007.

35 Science projects: DOE National Labs, other federal agencies,
universities, private sector.

Major field projects:

MArine Stratus Experiment (MASE) — California coast, 2005.
Megacity Aerosol Experiment—-MEXico City (MAX-MEX) — 2006.
Cumulus Humilis Aerosol Processing Study (CHAPS) — OK, 2007.

Indirect and Semi-Direct Aerosol Campaign (ISDAC) — North Slope
Alaska, 2008.

VAMOS Ocean-Cloud-Atmospheric-Land Study (VOCALS) — Chile
coast, 2008.



OVERVIEW

The need to reduce uncertainty in aerosol forcing.

Aerosol processes that must be understood and represented
in climate models.

Some highlights of recent research in DOE’s Atmospheric
Science Program — emphasis carbonaceous aerosols.

Representing aerosols in global chemical transport models
and global climate models.

Summary.
DOE workshop on “grand challenges” in climate science.



THE NEED TO REDUCE
UNCERTAINTY IN
AEROSOL FORCING



GLOBAL-MEAN RADIATIVE FORCINGS (RF)

Pre-industrial to present (Intergovernmental Panel on Climate Change, 2007)
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GLOBAL MEAN TEMPERATURE CHANGE

Ensemble of 58 model runs with 14 global climate models

models using only natural forcings

models using both natural and anthropogenic forcings
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¢¢ Models can ... simulate many observed aspects of climate change over
the instrumental record. One example is that the global temperature
trend over the past century ... can be modelled with high skill when
both human and natural factors that influence climate are included.

IPCC AR4, 2007




CORRELATION OF AEROSOL FORCING, TOTAL
FORCING, AND SENSITIVITY IN CLIMATE MODELS

Eleven models used in 2007 IPCC analysis
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Modified from Kiehl, GRL, 2007
Climate models with higher sensitivity have lower total forcing.

Total forcing decreases with increasing (negative) aerosol forcing.



IMPLICATIONS OF UNCERTAINTY IN
CLIMATE SENSITIVITY

Uncertainty in climate sensitivity translates directly
into . . .

e Uncertainty in the amount of incremental
atmospheric CO, that would result in a given
increase 1n global mean surface temperature.

e Uncertainty in the amount of fossil fuel carbon that
can be combusted consonant with a given climate
effect.

At present this uncertainty is more than a factor of 2.

Reduction in uncertainty in aerosol forcing is
essential to reducing uncertainty in climate sensitivity.



DEPARTMENT OF ENERGY
ATMOSPHERIC SCIENCE PROGRAM

SCIENCE TEAM MEETING

February 25-27, 2008
Annapolis MD

Presentations available at www.asp.bnl..gov
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AEROSOL PROCESSES THAT
MUST BE UNDERSTOOD
AND REPRESENTED IN
CLIMATE MODELS



AEROSOL PROCESSES THAT MUST BE
UNDERSTOOD AND REPRESENTED IN MODELS
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APPROACH TO DETERMINE
AEROSOL FORCING

Numerical simulation of physical processes
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Isomorphism of processes to computer code

Modeling aerosol processes requires understanding these processes,
developing and testing their numerical representations, and incorporating
these representations in global scale models.



ATMOSPHERIC AEROSOL
PROCESS RESEARCH

What’s new?

Organics



DOMINANCE OF ORGANIC AEROSOL

Measurements by aerosol mass spectrometer
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Organic aerosol 1s major or dominant species throughout the
anthropogenically influenced Northern Hemisphere.
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Secondary fraction increases with increasing distance from urban sources.



AEROSOL IN MEXICO CITY BASIN

Photo credit Berk Knighton
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Photo credit Berk Knighton


AEROSOL IN MEXICO CITY BASIN

Photo credit Berk Knighton
Mexico City 1s a wonderful place to study aerosol properties and evolution.
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Photo credit Berk Knighton


SECONDARY AEROSOL PRODUCTION
Parcel age measured using - Log(NOx/NOy) as clock
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Kleinman et al, ACP, 2008
Dilution 1s accounted for by normalizing aerosol concentration to CO above
background.
~3 X increase 1n organic aerosol.
Measured increase in organic aerosol exceeds modeled based on
laboratory experiments and measured volatile organic carbon tenfold.



Following the growth of particles formed
from nucleation at Tecamac, Mexico
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Sulfate accounts for only ~10% of particulate mass.

Growth rate exceeds that from sulfuric acid by order of magnitude.
Smith, McMurry et al., GRL, 2008



AEROSOL TRANSPORT AND EVOLUTION
Mexico City, March 22, 2006
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AEROSOL COMPOSITION AND

OPTICAL PROPERTIES
Mexico City (TO site), Project average, March 2006 — Low RH
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Aerosol mass spectrometry: Jose Jimenez, Allison Aiken; Optical properties: Pat Arnott, Lupita Paredes

Light scattering coefficient tracks mass concentration.
Single scattering albedo reflects change in aerosol composition.



ISOPRENE ENHANCEMENT TO
SECONDARY ORGANIC AEROSOL

Modeled SOA without and with isoprene at surface and 5.2 km
Without isoprene With isoprene

[ug m3]
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0.72

0.00

5.2 km

Hénze an;l Seinféld, GRL, 2006
Isoprene increases global SOA by more than a factor of 2.

Relative enhancement 1s much greater in free troposphere (note different scales).



COMPOSITION MATTERS

Size dependent critical supersaturation of aerosol particles
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J. Hudson, Y.-N. Lee, M. Alexander

Measurements below (110-170 m) and above (400-470 m) clouds off the
coast of California, north of San Francisco, on July 25, 2005.

Higher supersaturation is required to activate particles with greater organic

fraction.

Bulk composition determined by PILS (particle into liquid sampler).

Size-dependent composition determined by aerosol mass spectrometer.



CLOSURE STUDY ON CCN CONCENTRATION

CCN concentration at 0.22% supersaturation
for 9 flights during MASE, July 2005
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LABORATORY STUDIES OF ACTIVATION OF MIXED
ADIPIC ACID — AMMONIUM SULFATE PARTICLES

Sparingly soluble organic acid — soluble inorganic salt
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Koehler theory works well mixed adipic acid and sulfate particles.

For slightly soluble compounds initial particle phase is very important.

P. Davidovits, Boston Coll.; T. Onasch, Aerodyne, Inc., et al.



SOOT-CONTAINING FRACTION OF PARTICLES IN
CLOUDWATER AND INTERSTITIAL AIR

Cloudwater virtual impactor measurements at Holme Moss, UK
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REPRESENTING AEROSOLS
IN GLOBAL CHEMICAL
TRANSPORT MODELS



AEROSOL OPTICAL DEPTH IN 17 MODELS
(AEROCOM)

Comparison also with surface and satellite observations
Observed

0.16

Satellite m Al
*g‘ 0.12 - B Sea salt
T
.g O Dust
5 0.08 - ‘I
© )
S 0.04 - i
IIIIII| ‘IIIIIII.I .
0 - B Sulfate
LO LS UL SP CT MI NF OT OG IM GM GO GI TM GR NM NC

Kinne et al., ACP, 2006
Surface measurements: AERONET network.

Satellite measurements: composite from multiple instruments/platforms.
Are the models getting the “right” answer for the wrong reason?

Are the models getting the “right” answer because the answer 1s known?
Are the satellites getting the “right” answer because the answer 1s known?
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REPRESENTING
AEROSOL FORCING IN
CLIMATE MODELS



GLOBAL MEAN AEROSOL FORCING

Top of atmosphere forcing by direct, semi-direct, and indirect effects
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IPCC AR4, 2007
Forcings are comparable: -2 W m-2+ 1 W m-=2. . .
despite different aerosol components and cloud types.
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TOP OF ATMOSPHERE AEROSOL FORCING

Forcing by direct, semi-direct, and indirect effects

Northern Hemisphere Southern Hemisphere
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Many differences in detail.
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SUMMARY

Aerosol forcing is substantial in the context of greenhouse gas
forcing.
Uncertainty in aerosol forcing is substantial in this context.

This uncertainty greatly limits ability to evaluate performance
of climate models over the twentieth century.

Exciting research. Important new findings. Much still at
exploratory stage.

Modeling at sensitivity stage.

A path forward exists to quantify aerosol forcing much better
than at present.

Quantifying aerosol forcing would require substantial effort
by U.S. and international partners.

Essential research elements are missing or under-represented
in national and international portfolios.
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GRAND CHALLENGES IN CLIMATE SCIENCE
Charge to the Workshop

Under Secretary for Science

Washington, DC 20585
October 1, 2007

What are the grand challenges in . . .

1. Understanding Earth’s past and present climate variability
and forcing;

2. Reducing uncertainty and improving confidence in projecting
how the Earth’s climate at regional to global scales may

change in the future in response to natural and/or human-
induced forcing;

3. Understanding and predicting the sensitivity and adaptability
of managed and natural ecosystems to climate change; and

4. Integrating data and knowledge from research and
observations on climate and Earth system processes into
climate and Earth system models and modeling .





