Applied conservation biology: Analyzing and partitioning intraspecific diversity

Robin Waples

Northwest Fisheries Science Center National Marine Fisheries Service Seattle, Washington USA

Q: What is a population (ESU, MU, distinct population segment) and how do you identify one?

A: It depends

What will you do with the information?

What are the objectives?

Reality: Divergence occurs along a continuum

How many units?

Take home message #1:

There is no single 'correct' answer to the question, What is a stock (ESU, MU ...)?

Two steps are involved:

Describe biological relationships

Decide on a threshold of divergence

NMFS ESU concept for salmon (1991)

1. Substantial reproductive isolation

- Tagging data
- Neutral genetic markers

2. Importance to evolutionary legacy

- Ecological differences in habitat
- Life history/morphological differences (proxies for local adaptations)

Joint FWS/NMFS DPS policy (1996)

1. Discreteness

- Markedly separated (genetics, morphology ...)
- International boundaries

2. Significance

- Unusual ecological setting
- Loss would create significant gap in range
- Differs markedly in genetic characters

COSEWIC and Designatable Units under SARA

Revised DU guidelines closely parallel DPS policy in US

Pacific species currently under review:

Darkblotched, quillback, yelloweye rockfish

White hake

Deepwater redfish

Basking shark

Some ESU references

Fraser and Bernatchez 2001 *Mol. Ecol*Review paper

Waples 2006 Book chapter

What would salmon ESUs look like if they were defined according to other published ESU criteria?

Key references for populations:

Waples, R. S., and O. Gaggiotti. 2006. What is a population? Molecular Ecology 15:1419-1439

Manel, S., O. Gaggiotti, and R. S. Waples. 2005.
Assignment methods: matching biological questions with appropriate techniques. *Trends in Ecology and Evolution* 20:136-142.

Two population concepts:

(Andrewartha and Birch 1984)

Ecological paradigm

A group of individuals that co-occur in space and time and have an opportunity to interact (cohesive forces are demographic)

Evolutionary paradigm

A group of interbreeding individuals that exist together in time and space

(cohesive forces are genetic)

Take home message #2:

Most published definitions of 'population' are

- Not quantitative
- Not testable
- Not repeatable

Identifying populations: Examples of possible objectives

- 1. We want to ask evolutionary questions that depend on identifying 'populations' or 'ESUs'
- 2. We need to manage "MUs" or "populations" separately because of a legal mandate
- 3. We want to maximize sustainable harvest; we want to minimize impacts on "weak" stocks

Matching the population concept with conservation objectives

We want to minimize impacts on "weak" stocks, because

- Locally depleted stocks take a long time to rebuild (Ecological paradigm)
- Local extirpation might represent an irreversible loss of biodiversity (Evolutionary paradigm)

Take home message #3:

It is important to choose a population (ESU, etc.) concept that is appropriate for your Objective(s).

If we overharvest area A, will it be replenished by immigration from B?

Take home message #4:

A standard statistical test does not answer the question,

"Is it different enough?"

With large samples of individuals and loci, even small genetic differences can be highly significant

A possible population criterion

Ecological paradigm (units = m)

Migration rate less than a specified level, leading to demographic independence

 $(H_0: m < 0.1)^*$

*Local demes tend to have independent demographic trajectories if *m* is less than about 10% (Hastings 1993)

Genetic data and the ecological paradigm

Fundamental problems:

- 1. Genetic indices yield information about *mN_e* but need information about *m*
- 2. Transition to demographic independence occurs in region of high gene flow $(m \sim 10\%)$ where genetic methods have little power

Waples, Punt, Cope (2008)

Flavors of demographic independence

- ESA (avoid extinctions): migration low enough to allow separate PVAs
- MMPA (stocks = functioning units in ecosystems): avoid local depletions
- MSA (avoid overfishing): migration too low to provide rescue effect, generally within 10 yr

Some strategies for dealing with high gene flow species

Get more data (individuals, samples, loci)

Careful attention to sampling protocols

Departures from randomness

Understand life history

Temporal replication

Combine information from different methods

Summary

Clarify objectives

Clarify population paradigm

Clarify how different units have to be

Clarify science vs mgt/policy/legal roles

Recognize limitations of statistical tests

Holistic approach