Printer-friendlyIncreaseDecrease
Receive JPL news and feature stories in your favorite RSS reader

LATEST NEWS  |  BLOG  |  MEDIA ROOM  |  PRESS KITS  |  FACT SHEETS  |  PROFILES

Comets and Life On Earth

August 17th, 2009
Donald Yeomans
Donald Yeomans

With the recent discovery of the amino acid glycine in the comet dust samples returned to Earth by the Stardust spacecraft, it is becoming a bit more clear how life may have originated on Earth. Water is a well-known ingredient in both comets and living organisms, and now it appears that amino acids are also common to comets and living organisms. Amino acids are used to make proteins, which are chains of amino acids, and proteins are vital in maintaining the cell structures of plants and animals.

Amino acids had previously been identified in meteorite samples, and these samples are thought to be the surviving fragments from asteroid collisions with the Earth. So now it appears that both comets and asteroids in the Earth’s neighborhood, the so-called near-Earth objects, delivered some of the building blocks of life to the early Earth.

Asteroid Eros - Mosaic of Northern Hemisphere
Asteroid Eros - Mosaic of Northern Hemisphere. Image Credit: NASA/JPL/JHUAPL
› Full image and caption

Impacts of comets and asteroids with the early Earth likely laid down the veneer of carbon-based molecules and water that allowed life to form. Once life did form, subsequent collisions of these near-Earth objects frustrated the evolution of all but the most adaptable species. The dinosaurs checked out some 65 million years ago because of an impact by a six mile-wide comet or asteroid off the coast of the Yucatan peninsula. Fortunately, the small, furry mammalian creatures at the time were far more adaptable and survived this impact event. Thus, present day mammals like us may owe our origin and current position atop Earth’s food chain to these near-Earth objects, one of which took out our dinosaur competitors some 65 million years ago.

Today, most of the attention directed toward near-Earth objects has to do with the potential future threat they can pose to life on Earth. However, the recent Stardust discovery of a cometary amino acid reminds us that, were it not for past impacts by these objects, the Earth may not have received the necessary building blocks of life, and humans may not have evolved to our current preeminent position on Earth. While giving thanks to these near-Earth objects, we still need to make sure we find the potentially hazardous comets and asteroids early enough so we don’t go the way of the dinosaurs.

For more information on near-Earth objects, see: http://www.jpl.nasa.gov/asteroidwatch/index.cfm


Five Things About Viewing Mars in August

August 6th, 2009
Jane Houston Jones
Jane Houston Jones

If you’re like me, you may have received an e-mail this summer telling you go outside on August 27 and look up in the sky. The e-mail, most likely forwarded to you by a friend or relative, promises that Mars will look as big as the moon on that date, and that no one will ever see this view again. Hmmm, it looks like the same e-mail I received last summer and the summer before that, too. In fact this same e-mail has been circulating since 2003, but with a few important omissions from the original announcement.

I’m Jane Jones, an amateur astronomer and outreach specialist for the Cassini mission at Saturn, and I’m here to set the record straight on when and how you can actually see Mars this month.

 

1. How did the “Mars in August” e-mail get started in the first place?

In 2003, when Mars neared opposition — its closest approach to Earth in its 22-month orbit around the sun — it was less than 56 million kilometers (less than 35 million miles) away. This was the closest it had been in over 50,000 years. The e-mail that circulated back then said that Mars, when viewed through a telescope magnified 75 times, would look as large as the moon does with the unaided eye. Even back in 2003, to the unaided eye, Mars looked like a reddish star in the sky to our eyes, and through a backyard telescope it looked like a small disc with some dark markings and maybe a hint of its polar ice cap. Without magnification, it never looked as large as the moon, even back in 2003!

2. Can the moon and Mars ever look the same size?

No. The moon is one-quarter the size of Earth and is relatively close — only about 384,000 kilometers (about 239, 000 miles) away. On the other hand, Mars is one-half the size of Earth and it orbits the sun 1-1/2 times farther out than Earth’s orbit. The closest it ever gets to Earth is at opposition every 26 months. The next opposition is in January 2010.

Mars Chart
A sky chart shows where Mars will be in August. Image credit: NASA/JPL.
› View full image

At that time, Mars will be 98 million kilometers (61 million miles) from Earth, almost twice as far as in 2003. So from that distance, Mars could never look the same as our moon.

3. Is Mars visible in August 2009?

Mars rises in the east at about 1:30 a.m. this month and is best seen closer to dawn. It is a ruddy star-like object about the same brightness as the brightest stars you’ll see. Look for Mars above the constellation Orion in the pre-dawn sky. The moon is close by on the mornings of August 15 and 16. The brighter object in the sky below and left of Mars is Venus!

4. Can I see Mars and the moon at the same time this month?

If you get up before sunrise on August 15 and 16, you can see the waning crescent moon pass by Mars. The next two mornings, August 17 and 18, you’ll see the moon pass by Venus, which is the bright object below Mars in the morning sky. This will be a great time to compare the sizes of the moon and Mars for yourself!

5. Will the “Mars in August” e-mail return next year?

Most certainly! But next year, you’ll be armed with facts, and perhaps you will have looked at the red planet for yourself and will know what to expect. And you will know exactly where to put that email. In the trash!


The Lowdown on Jupiter’s Black Eye

July 29th, 2009
Glenn Orton
Glenn Orton

We’ve had such great feedback and comments to our earlier post about the recent impact at Jupiter that we wanted to give you more details, plus answer some questions. My name is Glenn Orton, a senior research scientist at JPL. My colleague and fellow JPL blogger Leigh Fletcher is on a well-deserved vacation for a bit, and he filled in for me while I was at a conference talking about another aspect of our research and the Jupiter impact last week.

I’ve been on Anthony Wesley’s email list (as I am for many in the amateur astronomy community) for some time, so it wasn’t happenstance that I was aware of his Jupiter observation. Anthony is the Australian-based amateur astronomer who alerted the world to this big impact. When we received news of his discovery, we immediately wanted to verify it with some of the sophisticated telescopes NASA uses. Having actively observed in both the visible and infrared during the Shoemaker-Levy-9 impacts in 1994, I was aware that a quick verification was possible by looking at a wavelength with lots of gaseous absorption, which suppresses light reflected from Jupiter’s deep clouds.

Jupiter
This image shows a large impact shown on the bottom left on Jupiter’s south polar region captured on July 20, 2009, by NASA’s Infrared Telescope Facility in Mauna Kea, Hawaii. Image credit: NASA/JPL/Infrared Telescope Facility

Luck was on our side. Several months before the impact, our JPL team had been awarded observing time on NASA’s Infrared Telescope Facility (IRTF) atop Mauna Kea in Hawaii. We had the midnight to 6 a.m. shift (from our Pasadena office, which meant we started work at 3 a.m.) so much of our observing time would take place before Jupiter rose over Australian skies. Another piece of luck is that Anthony’s “day job” involves software engineering so he was able to watch the same telescope instrument status and data screens as we were, while we did remote-style observing from the IRTF over the Internet. He would also be doing his own (now *very important*) post-impact observing. Weather was just as “iffy” over Mauna Kea as in Australia, so it was lucky for all of us that we could catch this event.

With Leigh, several JPL summer interns and me huddled at our side-by-side computers at JPL (one with instrument controls and one showing the data), and Anthony online from Australia, we got started. We knew the location of Anthony’s dark spot would be coming over Jupiter’s rising limb (edge) just as our allotted time was beginning. A near-infrared spectrometer was in the center of the telescope from the previous observer. Although it wasn’t our instrument of choice (we wanted images!), it has a very nice guide camera sensitive to the near infrared, so we used it rather than waiting for the 20-40 minute hiatus needed by the telescope operator to move it out of the way and put our preferred instrument in its place. This turned out to be a good decision because the very first image showed us something brighter than anyplace else on the planet — exactly where Anthony’s dark feature was located. For me, this totally clinched the case that this was an impact. Even better was the fact that Anthony was looking on in real time. We e-mailed him what was obvious - he was *definitely* the father of a new impact!

Right after this we collected data that may help us sort out any exotic components of the impactor or of Jupiter’s atmosphere and just how high the particulates have spread. Then we switched instruments to something at much longer wavelengths that told us the temperatures were higher, and that ammonia gas had probably been pushed up from Jupiter’s troposphere (the lower part of the atmosphere) and ejected into its stratosphere (higher up in the atmosphere). We finished up with our preferred (more versatile) near-infrared camera and ended up, pretty tired, at 9 a.m. (this was a midnight to 6 a.m. run in Hawaii, and in California we were three hours ahead). Then we took some of the screen shots we’d been making and used them to submit a press release. Another person had already alerted a clearinghouse for important astronomical bulletins, so that was another thing that was important but that we didn’t need to do.

Now some responses to posts:

Good post from Mike Salway who is another one of the cadre of the world’s talented Jupiter observers. I should note that, in fact, there aren’t all that many of us who track the time evolution of phenomena in the planets in the professional community, either (see the web pages for the International Outer Planet Watch: http://dawn.ucla.edu/IJW/).

Asim. Neither NASA nor JPL is capable of observing everything in the sky. There is a program to search for asteroids whose orbits will intersect the Earth’s, but not at Jupiter. In fact, it’s unlikely this object could have been seen, given that it may have been at most a half kilometer in size. For Shoemaker-Levy 9, we were both lucky and the disruption of the comets left a lot of very shiny material around it which made it easier to see.

Denise. It hit quite a bit further south than the Shoemaker-Levy 9 fragments, almost at 60 deg S latitude.

Patrick, Jim, BobK. I suspect that the only link between this and the SL9 fragments is the voracious appetite of Jupiter, the great gravitational vacuum cleaner in that part of the solar system! SL9 fragments impacted from the south; this was from the east.