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Introduction

Michelson's 1880 article on the measurement
of the speed of light (Astronomical Papers,
1,1880, pp. 109-145) is a classic of both ex-
perimental physics and metrology. These notes
consist of a partial re-analysis of the original
data from this experiment. The analysis pre-
sented here is admittedly incomplete. It is in-
tended primarily to illustrate the power of a
Bayesian point of view in the analysis of high-
quality data on a real-world measurement sys-
tem.

Still, the results are of some historical inter-
est. Some have argued that Michelson's pub-
lished uncertainty was excessively pessimistic
(e.g., McKay and Oldford, Statistical Science,
15, 2000, p. 273). However, the uncertainty
presented here is consistent with Michelson's
original assessment. One important lesson to
be learned from this is that it is not necessar-
ily the case that a Bayesian approach will lead
to smaller uncertainties. Rather, the Bayesian
point of view provides a natural framework for
accurate modeling of measurement systems,
and, consequently, realistic assessments of un-
certainty.



Outline: Part I

It is hoped that these notes will serve as a tu-
torial on the application of Bayesian methods
to the analysis of a measurement system. So
we will devote as much space to the prelimi-
nary model-building phase of the analysis as to
the statement of the model and the discussion
of results.

These remainder of these notes are organized
in three sections. In Part I, we present the
data, using various plots in order to informally
examine its structure. This leads to four can-
didate statistical models, of which one is se-
lected. This part of the analysis is not Bayesian.
We could have applied Bayesian model selec-
tion techniques, but we did not in order to re-
duce the number of new ideas, and keep this in-
troduction as straightforward as possible. The
use of Bayesian model selection techniques would
have been unlikely to change the results, at
least for this example.



Outline: Parts II and III

In Part II, we use the results of Part I to formu-
late a reasonable Bayesian hierarchical model,
incorporating temperature e�ects, variability among
experimental runs, variability between data sets
taken within the same run, and within-set mea-
surement variability. We are also able to model
the within-set variability itself, making use of
information which Michelson provides on the
relative quality of the image measurements.

Posterior inference on various quantities are
obtained using the Gibbs sampler, and these
results are interpreted in Part III. Here we es-
timate the overall uncertainty of Michelson's
determination, we examine and compare the
magnitudes and uncertainties regarding sources
of variability, and we evaluate the \�t" of the
model to the data.



Part I: Exploratory Data Analysis
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The data consist of 100 mesurements, made
over 28 days. Each measurement was an av-
erage of several replicates. The following page
shows a histogram of all of the data, with a
superposed best-�tting normal (Gaussian) dis-
tribution.

Although the simple bell-shaped curve provides
a reasonable �rst approximation, it certainly
leaves room for improvement. One of the ob-
jectives of the present analysis is to include de-
tails of the measurement process in a Bayesian
statistical model. As a result, we will be able
to better explain the variability in the measure-
ments, and thus better characterize the mea-
surement uncertainty.



The E�ect of Measurement Day
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Raw Data Shows Time Trend

The 100 measurements were made on 18 dis-
tinct days. Michelson does not provide precise
time-of-day information, but he does indicate
whether the measurements were made in the
morning or the evening. On some days there
are both morning and evening measurements,
for a total of 24 distinct combinations of day
and time-of-day, which we will call 24 data
sets. The sets are numbered chronologically,
and displayed here along with the correspond-
ing mean determinations. Note the slight, but
probably not random, time trend, indicated here
by the broken line (a lowess local regression
smooth of the data).



Measurement Runs
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The 100 measurements were made in 5 runs

of 20 measurements each. Presumably some-
thing was done to the measurement process
which distinguishes these runs. Perhaps there
was some \tuning" or calibration of the ap-
paratus. In the above plot, the 100 measure-
ments are shown chronologically, with vertical
lines delimiting the runs. The horizontal lines
indicate the average measurement within each
run. It can be seen that there is evidence of
possible variability between runs, and that this
might explain the apparent trend with set num-
ber (equivalently, measurement day).



Temperature E�ect
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Michelson also provides the air temperature (to
the nearest degree) at the time that each mea-
surement was made. The above plot shows
that temperature, in addition to run and set
number, should be considered as an indepen-
dent variable (covariate) in a model of the speed
of light measurements. We now have three
candidate covariates: dataset number (day/time
of measurement), measurement run, and tem-
perature. In order to see which of these fac-
tors are useful in explaining the apparently non-
random behavior of these measurements, we
will �t and compare least-squares regression
models. Once we've decided which factors to
use, then we will proceed with Bayesian mod-
eling and model interpretation.



Data Quality
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Michelson’s Data Quality Assessments
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An essential part of the measurement involved
the viewing of an image. Michelson was so
concerned with errors introduced in this part
of the measurement that he ranked the qual-
ity of the image viewed on a three-level scale:
good, intermediate, and poor. (He included all
of the data in his �nal analysis, though). This
plot displays the measurements against data
set number (i.e., \time"), with colors indicat-
ing the three grades of quality. We will make
use of this information in our model by allow-
ing the measurement standard deviation to be
di�erent for di�erent image qualities.



Part II: Modeling

We consider 4 models in order of increasing
complexity:

Model 0 Simple random sample, with a constant mean

Model 1 Model 0, and a linear dependence of the
mean on temperature;

Model 2 Model 1, plus a random shift in the mean
for each run;

Model 3 Model 2, plus an additional random shift in
the mean for each set.

Models are �t by least squares (regression), and
compared using 3 P-values comparing Model 3
with 2, 2 with 1, and 1 with 0. A P-value is a
frequentist measure of statistical signi�cance.
Small values indicate high signi�cance. Values
of less than 0.05 would traditionally be taken to
mean that the more complicated model o�ers
a statistically signi�cant improvement over the
simpler model. There are Bayesian alternatives
to using P-values which would be preferable
here. But, as we will see, the P-values for the
above comparison are so small that it is highly
unlikely that a fully Bayesian approach would
have changed the conclusion.



Selecting a Model for the Mean

ci = �+ �(Ti � �T) + ri + si + ei

where Ti is the temperature for measurement i, ri and
si are shifts in the mean due to the corresponding run
and set, and ei is the remaining measurement error.

Model P-value
Model 0 �

Model 1 �+ (Ti � �T )� P = 0:008
Model 2 �+ (Ti � �T )�+ ri P = 0:0003322
Model 3 �+ (Ti � �T )�+ ri + si P = 0:00000015

The P-values are measures of signi�cance, com-
paring the each model with the one tabulated
immediately above. All of them are substan-
tially less than 0.05, suggesting that the com-
plexity of Model 3 is justi�ed. This model as-
sumes that the mean speed of light measure-
ment depends linearly on temperature, with ad-
ditional random shifts due to run and set.



Residual Plot for Model 3
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Residuals of Model Model With
Set, Run and Temperature

The residuals from the regression �t of Model
3 are displayed above. These residuals vary
about zero, with no obvious pattern, suggest-
ing that the model adequately explains the struc-
ture in the data. Consequently, a locally-linear
lowess �t to the data, indicated by the bro-
ken line, is quite 
at. This should be com-
pared with plot against temperature shown pre-
viously, where the lowess line showed some trend.



Residuals with Michelson's Quality

Indications
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A second residual plot appears above, with the
data points coded according to quality. Note
that nothing remains of some of the patterns
which were apparent in the previous plot of
these quality indications (such as many of the
low-quality \red" points being low). But there
doesn't seem any reason to belive that the
\best" points are in some way preferable, ei-
ther in terms of mean or variability. Still, we
will allow the within-set measurement standard
deviation depend on these quality categories in
our model, and compare them a posteriori.



Part 3: Bayesian Modeling and Analysis

In this section, we propose a Bayesian hier-
archical model based on what we've learned
during the data exploration and model selec-
tion phases of this study. In this model, the
ith measurement is assumed to have a normal
(Gaussian) distribution, centered at a mean �i,
which depends on temperature, run and data
set. The standard deviation for this normal
distribution �e;j, will be allowed to di�er, de-
pending on the data quality class of the mea-
surement (j = 1;2;3). The mean �i depends
on random e�ects for run (ri) and set (si),
which will also be assumed to have normal dis-
tributions, centered at zero, and with stan-
dard deviations �r and �s, respectively. All
of these parameters are also assumed to have
prior distributions. These second-level (hyper-
prior) distributions are chosen to be \nonin-
formative". That is, these hyperpriors are as-
signed functional forms which can be expected
not to introduce information not present in the
data. (These noninformative distributions are
not even proper probability distributions, but
this does not introduce any diÆculties, either
conceptually or computationally).

The model is �t using the Gibbs sampler, a spe-
cial case of Markov Chain Monte Carlo, using
the software package Bugs. Markov chains are
checked for convergence, and posterior distri-
butions are estimated and interpreted for vari-
ous quantities of interest.



A Bayesian Hierarchical Model Motivated

by Model 3

p(cij�i; �e;j) � N(�i; �e;j)

�i = �+ �(Ti � �T ) + ri + si

p(�) / const.

p(�) / const.

p(rij�r) � N(0; �2r )

p(si) � N(0; �2s )

p(�r) / 1=�r

p(�s) / 1=�s

p(�e;j) / 1=�e;j

The likelihood, priors, and hyperpriors are given
above for a Bayesian model which includes a
\�xed e�ect" for temperature, and \random
e�ects" for data set in run. Also, the mea-
surement error �e;j is allowed to depend on the
data quality class.



Posterior Distributions of � and �
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The Gibbs sampler approximates the posterior
distributions of parameters by choosing ran-
dom samples from full conditional distributions,
which are univariate probability distributions in
which all parameters are regarded as constant
except one. There are as thus as many full con-
ditional distributions as there are parameters in
the model, and these are sampled from sequen-
tially, updating the �xed parameters as each
random draw is made. The �gure above il-
lustrates approximate posterior probability dis-
tributions for the slope and intercept in our
model. The density estimates in the right hand
�gures were obtained from 5000 approximate
random samples from the respective distribu-
tions, shown above to the left.



Posteriors of Measurement Error

Standard Deviations
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The �gure above illustrates the three poste-
rior distributions corresponding to the three
within-set error variances �e;j corresponding to
the three data quality classes. Although these
standard deviation distributions appear to be
di�erent, there is no obvious pattern. For ex-
ample, the \best" measurements do not tend
to have the smallest estimated measurement
error. This could be because some of the things
that made measurements good or bad are al-
ready accounted for in the between-set, between-
run, and temperature e�ects in the model.



Posteriors of Run, Set and Measurement

Error Standard Deviations
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The above plots compare the posterior distri-
butions of the standard deviations correspond-
ing to three components of variability. The
values of these standard deviations are compa-
rable. In other words, the variability between-
runs and between-sets are each of roughly the
same magnitude as the within-set measurement
uncertainty; hence it is important to include
these sources of variability in any model of
this measurement system. The more di�use
the posterior is, the more uncertainty there is
in the corresponding quantity (eg., there were
100 measurements, but only 5 runs).



Posterior Distribution of Run E�ects
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The posterior distributions for the shifts in the
mean due to each of the �ve runs are displayed
above. Note the trend in the peaks of these
distributions, corresponding to the decreasing
trend in measurements due to run which was
observed graphically earlier.



Posterior Distribution of Data Set E�ects
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The above display provides 95% posterior prob-
ability intervals (credible intervals) for the shift
in the mean measurement due to data set, ad-
justing for run and temperature. Note that
many of these posteriors are more or less cen-
tered on the horizontal zero line, indicating set
e�ects which are probably near zero. On the
other hand, a few of the set e�ects di�er sub-
stantially from zero. In a more complete analy-
sis, one would look back at the measurements
on those days, to see if there is evidence of
anything out of the ordinary occurring.



Posterior Uncertainty in Speed of Light

from Michelson's Data
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The above �gure is probably the most inter-
esting one in this analysis. The posterior dis-
tribution in � re
ects the uncertainty in the
speed of light in Michelson's data, based on
our chosen model. The shaded areas cut o�
2.5% probability in each tail, so that the inter-
val between these shaded regions represents a
95% uncertainty interval on c. The two super-
posed intervals are for a simple random sample
analysis, and for Michelson's published uncer-
tainty. (Michelson had adjusted his result to
correspond to the speed of light in a vacuum;
we shift the center of his interval here so that
the results can be more easily compared.)



Michelson's knew that the simple random sam-
ple interval was too narrow. He included var-
ious sources of uncertainty in much the same
way that a modern metrologist would compile
an \uncertainty budget" of Type A and Type B
uncertainties. We have reached a similar con-
clusion, without his detailed knowledge of the
measurement system, by examining and mod-
eling the apparent sources of variability in his
measurement process. Although the striking
agreement above is in part due to chance, it
strongly suggests consistency with Michelson's
original assessment.



Posterior Predictive Goodness-of-Fit:

Bayesian Hierarchical Model
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In order to see visually how well the model �ts
the data, posterior predictions for each of the
100 measurements were made. The above plot
shows 100 95% posterior predictive probability
intervals (the broken lines). The solid and open
circles indicate the median of the posterior, and
the data values. The �t seems to be adequate.



Posterior Predictive Goodness-of-Fit:

Simple Random Sample
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The above plot corresponds to the one on the
previous page, except that the model is now
our \Model 0", a common mean and variance
for all observations. For this model, the pos-
terior predictive distribution is a common t-
distribution for all the observations; hence the
parallel lines for the uncertainties and the me-
dian predictions. Although most of the obser-
vations fall within the prediction intervals, the
�t is obviously inferior to that of Model 3.


