SAND2005-1079C

Sandia Zettaflops Story

A Million Petaflops

Erik P. DeBenedictis Sandia National Laboratories

February 24, 2005

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Applications and \$100M Supercomputers

[Jardin 03] S.C. Jardin, "Plasma Science Contribution to the SCaLeS Report," Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet. [Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, "High-End Computing in Climate Modeling," contribution to SCaLeS report. [NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, "Compute as Fast as the Engineers Can Think!" NASA/TM-1999-209715, available on Internet.

[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.

[DeBenedictis 04], Erik P. DeBenedictis, "Matching Supercomputing to Progress in Science," July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library

An Exemplary Zettaflops Problem

- The Limits of Moore's Law
- Beyond Moore's Law
 - Industry's Plans
 - Nanotech and Reversible Logic
- Conclusions

Ref. "High-End Computing in Climate Modeling," Robert C. Malone, LANL, John B. Drake, ORNL, Philip W. Jones, LANL, and Douglas A. Rotman, LLNL (2004)

Exemplary Exa- and Zetta-Scale Simulations

- Sandia MESA facility using MEMS for weapons
 Laser spot
- Heat flow in MEMS not diffusion; use DSMC for phonons
- Shutter needs 10 → Exaflops on an overnight run for steady state
- Geometry optimization → 100 Exaflops overnight run
 - Adjust spoke width for high b/w no melting

FLOPS Increases for MEMS

- An Exemplary Zettaflops Problem
- The Limits of Moore's Law
- Beyond Moore's Law
 - Industry's Plans
 - Nanotech and Reversible Logic
- Conclusions

*** This is a Preview ***

	Best-Case I Logic	Microprocesso Architecture	r	Physical Factor	Source of Authority			
	2×10 ²⁴ logic ops/s			Reliability limit 750KW/(80k _B T)	Esteemed physicists (T=60°C junction temperature)			
				Derate 20,000 convert logic ops to floating poin	Floating point engineering t (64 bit precision)			
Expert Opinion	rt 100 Exaflops 800 Petaflops on ← 125:1 →			Derate for manufacturing margin (4×)	g Estimate			
Estimate	stimate 25 Exaflops 200			Uncertainty (6×)	Gap in chart			
	4 Exaflops	32 Petaflops		Improved devices (4×)	Estimate			
	1 Exaflops	8 Petaflops		Projected ITRS	ITRS committee of experts			
Assumption: Supercomputer		90 Toroflops		(100×)				
is size & cost of Red Storm: US\$100M budget; consumes 2 MW wall power; 750 KW to active components				Lower supply voltage (2×)	ITRS committee of experts			
		40 Teraflops		Red Storm	contract National National			

Metaphor: FM Radio on Trip to Austin

- You drive to Austin listening to FM radio
- Music clear for a while, but noise creeps in and then overtakes music
- Analogy: You live out the next dozen years buying PCs every couple years
- PCs keep getting faster
 - clock rate increases
 - fan gets bigger
 - won't go on forever
- Why...see next slide

Details: Erik DeBenedictis, "Taking ASCI Supercomputing to the End Game," SAND2004-0959

Driving away from FM transmitter \rightarrow less signal Noise from electrons \rightarrow no change

Increasing numbers of gates \rightarrow less signal power Noise from electrons \rightarrow no change

Scientific Supercomputer Limits

	Best-Case Logic	Microprocesso Architecture	r	Physical Factor	Source of Authority			
	2×10 ²⁴ logic ops/s			Reliability limit 750KW/(80k _B T)	Esteemed physicists (T=60°C junction temperature)			
				Derate 20,000 convert logic ops to floating poin	Floating point engineering (64 bit precision)			
Expert Opinion	100 Exaflops ← 12	800 Petaflops 5:1 →		Derate for manufacturing margin (4×)	g Estimate			
Estimate	25 Exaflops	200 Petaflops		Uncertainty (6×)	Gap in chart			
	4 Exaflops	32 Petaflops		Improved devices (4×)	Estimate			
	1 Exaflops	8 Petaflops		Projected ITRS	ITRS committee of experts			
Assumption: Supercomputer		80 Teraflops		(100×)				
IS SIZE & COST OF Red Storm: US\$100M budget; consumes 2 MW wall power; 750 KW to active components				Lower supply voltage (2×)	ITRS committee of experts			
		40 Teraflops		Red Storm	contract Sandia			

- An Exemplary Zettaflops Problem
- The Limits of Moore's Law
- Beyond Moore's Law
 - Industry's Plans
 - Nanotech and Reversible Logic
- Conclusions

Proceeding

- So industry has plans to extend Moore's Law, right?
 - Next slide shows ITRS Emerging Research Devices (ERD), the devices under consideration by industry
 - All are either hotter, bigger, or slower
 - Erik is now on ITRS ERD committee

- What is scientifically feasible for Gov't funding?
 - Nanotechnology
 - Efforts all over
 - Reversible logic
 - Odd name for a method of cutting power below k_BT
 - Not currently embraced by industry

ITRS Device Review 2016

Table 65	Estimated Parameters	for	Emerging	Research 1	Devices an	id I	Technole	ogies i	n the	year	201	6
----------	----------------------	-----	----------	------------	------------	------	----------	---------	-------	------	-----	---

Technology	T _{min} sec	T _{max} sec	CD _{min} m	CD _{max} m	Energy J/op	Cost min \$/gate	Cost max \$/gate
Si CMOS	3E-11 ¹²¹	1E-6	8E-9	5E-6	4E-18	1E-11	3E-3
RSFQ	1E-12	5E-11	3E-7	1E-6	2E-18	1E-3	1E-2
Molecular	1E-8	1E-3	1E-9	5E-9	1E-20	1E-12	1E-10
Plastic	1E-4	1E-3	1E-4	1E-3	4E-18	1E-7	1E-6
Optical (digital, all optical)	1E-16	1E-12	2E-7	2E-6	1E-12	1E-3	1E-2
NEMS (conservative)	1E-7	1E-3	1E-8	1E-7	1E-21	1E-8 ¹²²	1E-5
Biologically Inspired	1E-13	1E-4	6E-6	5E-5	3E-25	5E-4	3E-1
Quantum	1E-16	1E-15	1E-8	1E-7	1E-21	1E3	1E5

In this table T stands for system cycle time (switching time), CD stands for critical dimension (e.g., physical gate length), Energy is the intrinsic operational energy of one device, and Cost is defined as \$ per gate.

↑ Larger

 \uparrow Hotter

- An Exemplary Zettaflops Problem
- The Limits of Moore's Law
- Beyond Moore's Law
 - Industry's Plans
 - Nanotech and Reversible Logic
- Conclusions

Ref. "Clocked Molecular Quantum-Dot Cellular Automata," Craig S. Lent and Beth Isaksen IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 9, SEPTEMBER 2003

here Simulation at a Zettaflops

Supercomputer is 211K chips, each with 70.7K nodes of 5.77K cells of 240 bytes; solves 86T=44.1Kx44.1Kx 44.1K cell problem. System dissipates 332KW from the faces of a cube 1.53m on a side, for a power density of 47.3KW/m². Power: 332KW active components; 1.33MW refrigeration; 3.32MW wall power; 6.65MW from power company. System has been inflated by 2.57 over minimum size to provide enough surface area to avoid overheating. Chips are at 99.22% full, comprised of 7.07G logic, 101M memory decoder, and 6.44T memory transistors. Gate cell edge is 34.4nm (logic) 34.4nm (decoder); memory cell edge is 4.5nm (memory). Compute power is 768 EFLOPS, completing an iteration in 224µs and a run in 9.88s.

Chip Diaa/

- An Exemplary Zettaflops Problem
- The Limits of Moore's Law
- Beyond Moore's Law
 - Industry's Plans
 - Nanotech and Reversible Logic

Conclusions

Conclusions

- Important applications exist to 1 Zettaflops
- Performance of \$100M μPbased supercomputers will rise to only ~100 Petaflops
 - This would meet current ASC demand
 - Will take decades to reach this level
 - But then again, 100
 Teraflops was
 supposed to as well

- Advanced Architectures (e. g. PIM) will rise to ~10 Exaflops
 - Sandia has proposal outstanding to deploy Cyclops PIM-based system
- Nanotech and Reversible logic good to perhaps 1 Zettaflops

