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a b s t r a c t

We describe an approach to dynamically couple a fish bioenergetics-based population

dynamics model to the NEMURO lower trophic level nutrient–phytoplankton–zooplankton

model. The coupled models, denoted NEMURO.FISH and configured for Pacific herring

(Clupea harengus pallasii) on the west coast of Vancouver Island, are capable of simulating

the daily dynamics of the lower trophic levels and the daily average weight and numbers

of individual herring in each of 10 age classes over multiple years. New recruits to the

herring population are added each June based on either constant recruitment or dynamic

recruitment generated from an environmental Ricker spawner–recruitment relationship.

The dynamics of the three zooplankton groups in the NEMURO model determine the con-

sumption rate of the herring; herring consumption affects the zooplankton, and egestion

and excretion contribute to the nitrogen dynamics. NEMURO was previously calibrated to

field data for the West Coast Vancouver Island. Thirty-year simulations of herring growth

and population dynamics were performed that used repeated environmental conditions
for the lower trophic levels of NEMURO and historical environmental variables for the

herring spawner–recruit relationship. Herring dynamics were calibrated to the west coast

of Vancouver Island such that the coupled models reasonably duplicated observed herring

weights-at-age and total herring biomass. Additional 30-year simulations under constant
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recruitment with herring coupled and uncoupled from NEMURO clearly showed the effects

of the feedback mechanism between the two models and also showed that herring have

small to moderate effects on their prey. Monte Carlo uncertainty analysis showed the impor-

tance of feeding- and respiration-related parameters to predicted individual and population

herring growth. The utility of the NEMURO.FISH framework for improving our understanding
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of climate change ef

. Introduction

redicting and understanding the effects of global climate
hange on ecosystems and fish production in oceanic systems
s essential if we are to develop quantitative approaches to

anaging sustainable marine resources. There has been much
iscussion on the relative roles of top down (e.g., top predators)
ersus bottom up (e.g., climate change and resource limita-
ion) regulation of marine ecosystems (Cury et al., 2000; Rejas
t al., 2005; Ware and Thomson, 2005). The resolution of the
oles of bottom-up versus top-down control remains elusive,
nd the importance of the impact of variability of physi-
al forcing versus harvesting pressure on the structure and
unction of marine ecosystems remains unresolved in many
nstances. Field-based studies to establish the importance of
he bottom-up and top-down controls are a difficult undertak-
ng, given the complexity of even the smallest marine ecosys-
em. Such studies are even more difficult in continental shelf
nd open ocean domains, where the ecosystems under con-
ideration exchange material with neighboring areas. Another
pproach to answering these questions is to use theoretical or
imulation models to study the links between climate variabil-
ty and its effects on marine ecosystems. Of particular interest
s how climate effects propagate through the food web and
ffect the growth and population dynamics of pelagic fishes.

There are different variants of marine ecosystem mass-
alance or bioenergetic models (e.g., see Carlotti et al., 2000;
e Quéré et al., 2005 for reviews). In most situations, the objec-
ives behind building a model dictate the system boundaries
i.e., which components of the model receive the most detailed
ttention and which components can be more or less ignored
nd treated as simple closure terms). Lower trophic level (LTL)
utrient–phytoplankton–zooplankton (NPZ) models are com-
on representations of the marine ecosystem (Fennel and
eumann, 2004). They are formulated to describe and quan-

ify biogeochemical cycling of elements and LTL dynamics,
nd generally consider the higher trophic levels (HTL) as an
mposed closure/mortality term on the phyto- or zooplank-
onic species. Adult fish bioenergetic models with completely
losed life cycles (Rose et al., 1999), fish larvae early life his-
ory models (Vlymen, 1977; Beyer and Laurence, 1980), and fish
ndividual-based models (Letcher et al., 1996) are also avail-
ble. Typically, they begin with zooplankton food density as a
riving force external to the model formulations. Since their
ocus is on fish, less attention is given to the nutrient and LTL
ood-web connections.
Despite the recognition by the oceanography scientific
ommunity that integration of knowledge across several
rophic levels of the marine ecosystem is an important and
ecessary step, very few models effectively link LTL models to
on marine ecosystem dynamics is discussed.

© 2006 Elsevier B.V. All rights reserved.

the commercially important fishes. Runge et al. (2004) point
out that there are few examples of multi-trophic level coupled
marine ecosystem models that allow for density-dependent
interactions between trophic levels via numerical or func-
tional response processes. We assert that only fully coupled
multi-trophic level ecosystem models can be used to address
the ever-present question of how climate change will impact
biological productivity in the ocean.

The effective marriage of LTL NPZ models and HTL full-
life cycle fish models are rare, mainly due to the difficult
practical and theoretical problems associated with resolving
relevant temporal and spatial scales at all biologically mean-
ingful trophic levels (Hermann et al., 2001). Many examples
(Hinckley et al., 1996; Werner et al., 1996) have successfully
combined LTL and HTL models but only in an uncoupled
manner. To be relevant to the climate change question, fully
coupled ecosystem models must include a description of the
LTL food resource, predation by the HTL consumers, a mech-
anistic description of the dynamic feedback between the two,
and a climate impact scenario.

In this paper we aim to address this identified deficiency.
We coupled a LTL model, called NEMURO (North Pacific
Ecosystem Model for Understanding Regional Oceanography;
Kishi et al., 2007), with a “Wisconsin model” (Ney, 1993)
bioenergetics formulation and a population dynamics model
of Pacific herring (Clupea harengus pallasi), to examine how
climate forcing propagates through the food web. The Wis-
consin bioenergetics models, a suite of fish bioenergetics
models developed by researchers associated with the Uni-
versity of Wisconsin Center for Limnology (Kitchell et al.,
1977) are based on an energy balance equation that equates
energy consumed with energy expended and gained. This
approach is an alternative to other bioenergetic approaches
such as dynamic energy budget models (Kooijman, 1993) and
the metabolic theory of ecology (Brown et al., 2004), both of
which use a unified theory of metabolism that scales easily
to describe the dynamics of individuals, populations, com-
munities and ecosystems and trophic webs. Wisconsin-based
bioenergetics models (Hansen et al., 1993; Ney, 1993; Hanson
et al., 1997) however, have been widely applied in fisheries
science (Hartman and Brandt, 1995; Essington, 2003; Tang
et al., 2003; and many others). Since our focus is the upper
trophic level fish response to climate impacts we will rely on
them here to describe herring dynamics.

The NEMURO model simulates the daily predator–prey
interactions and biogeochemical cycling of phytoplankton,
zooplankton, nutrients, and detritus. The herring model sim-

ulates the daily growth and mortality of herring in each of
10 age-classes, and is coupled to NEMURO via herring con-
sumption dependent on zooplankton, and herring excretion
and egestion contributing to the nitrogen cycle. The coupled
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Fig. 1 – Schema

models (Fig. 1) are called NEMURO.FISH (NEMURO.for Includ-
ing Saury and Herring). Ito et al. (2004, 2007) describes the
saury version of the NEMURO.FISH model. The NEMURO and
fish bioenergetics models can be solved simultaneously (cou-
pled) or separately (uncoupled), allowing for investigation of
the feedbacks between herring dynamics and their prey.

The NEMURO and fish bioenergetics model formulations
are fairly generic. The NEMURO model has been applied to a
variety of locations (e.g., Yamanaka et al., 2004; Kishi et al.,
2004). We describe the fish model in the context of its appli-
cation to Pacific herring in an upwelling system off the West
Coast of Vancouver Island (WCVI). Herring were selected as
a candidate fish species because they are commercially har-
vested, are well studied over their wide geographic range,
are an ecologically important link between lower and higher
trophic levels, and rely on zooplankton for food through-
out their entire ontology. The WCVI herring population was
selected because of the availability of LTL data (Robinson and
Ware, 1999; Tanasichuk, 2002; Mackas et al., 2004), and long-
term information on herring recruitment and weights-at-age
(Hay et al., 2001; Schweigert, 2004).

In this paper, we describe the NEMURO.FISH model using
the WCVI herring as an example and point the reader to Kishi
et al. (2007) for a description of NEMURO. We focus on the fish
component of NEMURO.FISH and the methods for dynamically
coupling the NEMURO and fish models. Section 2 describes
the bioenergetics-based population dynamics model, and its
application to WCVI herring. Sections 3 and 4 describe the

simulation methods, and Section 5 contains a description of
how NEMURO.FISH was calibrated and results of a Monte Carlo
uncertainty analysis of the coupled models. Section 6 summa-
rizes our conclusions.
NEMURO.FISH.

2. Methods

2.1. NEMURO

The NEMURO model implemented in this paper simulates the
dynamics of the nutrient–phytoplankton–zooplankton food
web in a single well-mixed spatial box that represents the sur-
face layer of the water column (Fig. 1; Kishi et al., 2007). The
food web is represented with eleven state variables: nitrate
(NO3), ammonium (NH4), small phytoplankton (PS), large phy-
toplankton (PL), small zooplankton (ZS), large zooplankton
(ZL), predatory zooplankton (ZP), particulate organic nitrogen
(PON), dissolved organic nitrogen (DON), particulate organic
silicate (Opal), and silicic acid (Si(OH)4). All state variables are
tracked in the units of mol N l−1. NEMURO is a system of 11
coupled ordinary differential equations, with one equation
describing the rate of change of each state variable.

The rate of change of each NEMURO state variable is
expressed as the sum of process rates that affect that
state variable. Photosynthesis, respiration, excretion, and
mortality affect each phytoplankton state variable; grazing,
egestion, excretion, and mortality affect each zooplankton
state variable. Nutrient state variables are reduced by pho-
tosynthesis uptake, changed by various combinations of
phytoplankton and zooplankton respiration, egestion, excre-
tion, mortality, and converted among nutrient forms via
first-order, temperature-dependent decomposition reactions.
Phytoplankton photosynthesis, respiration, and mortality,

and zooplankton grazing and other mortality, are all
temperature-dependent. Photosynthesis also depends on
the average light (integrated over the water column) and
nitrate and ammonium concentrations, with photosynthesis
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Fig. 2 – Straight line approximation to a seasonal energy
density curve for Pacific herring.

jday

− 60

(5750 − 9800)
e c o l o g i c a l m o d e l l i n

f PL (diatom-like) also dependent on silicic acid (Si(OH)4).
razing is dependent on the concentrations of (sometimes
ultiple) prey using a temperature-dependent Ivlev formu-

ation. Phytoplankton and zooplankton excretion is implicitly
emperature-dependent because it is a function of photosyn-
hesis.

.2. Fish bioenergetics

he growth of an individual herring is followed daily as the
ifference between consumption and the losses due to res-
iration, specific dynamic action, egestion, excretion, and
eproductive output. Formulas and parameters for the indi-
idual components in the bioenergetics model follow the
erminology and symbols used in the Wisconsin bioenerget-
cs models (Hanson et al., 1997). For some processes, we use
ormulations and parameter values specific to age-0 (young-
f-the-year), age-1, and age-2+ (age-2 and older) herring.
ioenergetics models have been widely applied to freshwa-
er and marine fish species (Ney, 1990, 1993; Hanson et al.,
997). Most model formulation and parameters for Pacific her-
ing followed the approach used by Rudstam (1988) for Atlantic
erring (C. harengus).

.2.1. Growth
he growth rate of an individual Pacific age i herring is calcu-

ated as weight increment per unit of weight per day:

dWi

dt
= [Ci − (Ri + Si + EGi + EXi)]

CALz

CALf
Wi − EGGi Wi, (2.2.1.1)

here for an age i herring, Ci is the consumption, EXi the
xcretion or losses of nitrogenous excretory wastes, EGi the
gestion or losses due to feces, Ri the respiration or losses
hrough metabolism, Si the specific dynamic action or losses
ue to energy costs of digesting food, EGGi the fraction of
ody weight lost on the day of spawning, Wi the weight of
he fish (g wet weight), t the time (d), CALz the energy density
J) of zooplankton (J g zooplankton−1), and CALf is the energy
ensity (J) of herring (J g fish−1). Consumption, respiration, spe-
ific dynamic action, excretion, and egestion are in units of
prey g fish−1 d−1, which are converted to g fish g fish−1 d−1 by

he ratio of the prey to herring energy densities. Terms for indi-
idual processes in Eq. (2.2.1.1) are described below. Values of
sh-related parameters used in model simulations are shown

n Table 1.

.2.2. Prey and herring energy density
e used a fixed energy density for zooplankton and for

ge-0 and age-1 herring, and seasonally varying energy

CALf =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪

9800 +
(

(90 +

5750 +
(

(jday(
ensity for age-2+ herring. We set CALz based on a typi-
al value of 2580 J g zooplankton−1 (617.22 cal g zooplankton−1)

⎩ 9800 + (jday − 27
for marine copepods (Laurence, 1976), where 1 cal = 4.18 J.
In comparison, Aneer (1980) used an energy density esti-
mate of 3800 J g zooplankton−1 (909 cal g zooplankton−1) for a
mixed prey assemblage. While young herring exhibit a sea-
sonal energy cycle (Paul and Paul, 1998; Paul et al., 1998),
for simplicity, we assumed a constant energy density of
4460 J g fish−1 wet wt for age-0 and age-1 herring. (Foy and Paul,
1999).

We chose to describe the energy density of age-2+ herring
(CALf, J g fish−1) as changing seasonally. Research has shown
that energy density of clupeids varies seasonally, peaking in
fall and declining through winter with lower energy densi-
ties for age-0 compared to older fish (Flath and Diana, 1985;
Arrhenius and Hansson, 1996; Arrhenius, 1998b; Paul et al.,
1998). Higher energy densities were found for Pacific herring
off Alaska (Paul et al., 1998; Foy and Paul, 1999) compared
to Great Lakes alewives and Baltic Sea clupeids. Paul et al.
(1998) found age-2+ Pacific herring energy density peaked at
9800 J g fish−1 (range: 9400–10 200) in fall (1 October) just after
summer feeding, and decreased after that, reaching a mini-
mum in spring (1 March) after spawning of about 5750 J g fish−1

(range: 5200–6300). Females had higher energy densities in
both seasons than males by 200–400 J g fish−1. These seasonal
changes are a result of feeding-related fat deposition. Based
upon Paul et al. (1998), we constructed a piece-wise linear
function for the energy density (CALf, J g fish−1) of age-2+ her-
ring (Fig. 2):

)
(5750 − 9800)

151

)
if jday < 60

)
(9800 − 5750)

274 − 60

)
if jday ≥ 60 and jday < 274) , (2.2.2.1)
4)
151

if jday ≥ 274

where jday is the calendar day of the year (1 January = 1, 2
January = 2, etc.).
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Table 1 – Summary of parameter values and initial conditions used in the herring bioenergetics-based population
dynamics model

Symbol Parameter description Value

Consumption (C)
aC Intercept for Cmax at (te1 + te3)/2 0.642
bC coefficient for Cmax vs. weight 0.256
te1 Temperature for xk1 (◦C) 1.0a, 1.0b, 1.0c

te2 Temperature for xk2 (◦C) 15.0a, 15.0b, 13.0c

te3 Temperature for xk3 (◦C) 17.0a, 17.0b, 15.0c

te4 Temperature for xk4 (◦C) 23.0a, 25.0b, 23.0c

xk1 Proportion of Cmax at te1 0.10a,b,c

xk2 Proportion of Cmax at te2 0.98a,b,c

xk3 Proportion of Cmax at te3 0.98a,b,c

xk4 Proportion of Cmax at te4 0.01a,b,c

Metabolism (R)
aR Intercept for R 0.00528a, 0.0033b,c

bR Coefficient for R vs. weight 0.007a, 0.227b,c

cR Coefficient for R vs. temperature 0.083a, 0.0548b,c

dR Coefficient for R vs. swimming speed 0.0a, 0.03b,c

SDA Coefficient for specific dynamic action 0.125a, 0.175d

Swimming speed (U)
aA Intercept U (<ktu) (cm s−1) 1.0a, 3.9b,c

aA Intercept U (≥ktu) (cm s−1) 1.0a, 15.0b,c

bA Coefficient U vs. weight 0.0a, 0.13b,c

cA Coefficient U vs. temperature (<ktu) 0.0a, 0.149b,c

cA Coefficient U vs. temperature (≥ktu) 0.0a, 0.0b,c

ktu Cutoff temperature for swimming speed coefficients for age-1+ (◦C) 9.0

Egestion and excretion (EG and EX)
aF Proportion of consumed food egested 0.125a, 0.16d

aE Proportion of consumed food excreted 0.078a, 0.10d

Multispecies functional response
v11 Vulnerability of ZS to age-0 1.0
v12 Vulnerability of ZS to age-1 0.5
v13 Vulnerability of ZS to age-2+ 0.0
v21 Vulnerability of ZL to age-0 0.1
v22 Vulnerability of ZL to age-1 1.0
v23 Vulnerability of ZL to age-2+ 0.5
v31 Vulnerability of ZP to age-0 0.0
v32 Vulnerability of ZP to age-1 0.5
v33 Vulnerability of ZP to age-2+ 1.0
K11 Half saturation constant for ZS to age-0 (g wet weight m−3) 0.15
K12 Half saturation constant for ZS to age-1 (g wet weight m−3) 1.15
K13 Half saturation constant for ZS to age-2+ (g wet weight m−3) 0.78
K21 Half saturation constant for ZL to age-0 (g wet weight m−3) 0.15
K22 Half saturation constant for ZL to age-1 (g wet weight m−3) 1.15
K23 Half saturation constant for ZL to age-2+ (g wet weight m−3) 0.78
K31 Half saturation constant for ZP to age-0 (g wet weight m−3) 0.35
K32 Half saturation constant for ZP to age-1 (g wet weight m−3) 1.15
K33 Half saturation constant for ZP to age-2+ (g wet weight m−3) 0.78

Population dynamics
M1 Natural mortality for age-1 (year−1) 0.44
M2 Natural mortality for age-2 (year−1) 0.44
M3 Natural mortality for age-3 (year−1) 0.44
M4 Natural mortality for age-4 (year−1) 0.44
M5 Natural mortality for age-5 (year−1) 0.44
M6 Natural mortality for age-6 (year−1) 0.44
M7 Natural mortality for age-7 (year−1) 0.44
M8 Natural mortality for age-8 (year−1) 0.44
M9 Natural mortality for age-9 (year−1) 0.44
M10 Natural mortality for age-10 (year−1) 0.44
F1 Fishing mortality for age-1 (year−1) 0.0
F2 Fishing mortality for age-2 (year−1) 0.0
F3 Fishing mortality for age-3 (year−1) 0.0
F4 Fishing mortality for age-4 (year−1) 0.25
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Table 1 (Continued )

Symbol Parameter description Value

F5 Fishing mortality for age-5 (year−1) 0.25
F6 Fishing mortality for age-6 (year−1) 0.25
F7 Fishing mortality for age-7 (year−1) 0.25
F8 Fishing mortality for age-8 (year−1) 0.25
F9 Fishing mortality for age-9 (year−1) 0.25
F10 Fishing mortality for age-10 (year−1) 0.25
Kmat1 Maturity for age-1 (%) 0.0
Kmat2 Maturity for age-2 (%) 0.0
Kmat3 Maturity for age-3 (%) 0.95
Kmat4 Maturity for age-4 (%) 1.0
Kmat5 Maturity for age-5 (%) 1.0
Kmat6 Maturity for age-6 (%) 1.0
Kmat7 Maturity for age-7 (%) 1.0
Kmat8 Maturity for age-8 (%) 1.0
Kmat9 Maturity for age-9 (%) 1.0
Kmat10 Maturity for age-10 (%) 1.0
elhm Early life history mortality from egg to age-2 (year−1) 0.58

Initial conditions
N1 Initial number of age-1 (number m−3) 5.0E−03
N2 Initial number of age-2 (number m−3) 3.22E−04
N3 Initial number of age-3 (number m−3) 2.07E−04
N4 Initial number of age-4 (number m−3) 1.34E−04
N5 Initial number of age-5 (number m−3) 6.70E−05
N6 Initial number of age-6 (number m−3) 3.36E−05
N7 Initial number of age-7 (number m−3) 1.69E−05
N8 Initial number of age-8 (number m−3) 8.45E−06
N9 Initial number of age-9 (number m−3) 4.24E−06
N10 Initial number of age-10 (number m−3) 2.13E−06
W1 Initial size of age-1 (g wet weight m−3) 0.2
W2 Initial size of age-2 (g wet weight m−3) 60.0
W3 Initial size of age-3 (g wet weight m−3) 80.0
W4 Initial size of age-4 (g wet weight m−3) 125.0
W5 Initial size of age-5 (g wet weight m−3) 140.0
W6 Initial size of age-6 (g wet weight m−3) 150.0
W7 Initial size of age-7 (g wet weight m−3) 170.0
W8 Initial size of age-8 (g wet weight m−3) 180.0
W9 Initial size of age-9 (g wet weight m−3) 190.0
W10 Initial size of age-10 (g wet weight m−3) 200.0

Exogenous variables
L Light (ly min−1) Eq. (2.6.1)
TEMP Sea surface temperature (◦C) Eq. (2.6.2)
SST Sea surface temperature for spawning (◦C) Eq. (2.4.3.2)
AIR Air temperature for spawning (◦C) Eq. (2.4.3.2)
NPPI North Pacific Pressure Index Eq. (2.4.3.2)

Values in bold are calibrated values.
a Values for age group 0 herring.

2
D
a
d

C

w
(
f
W

b Values for age group 1 herring.
c Values for age group 2 and older herring.
d Values for age group 1 and older herring.

.2.3. Consumption
aily consumption rate (g prey g fish−1 d−1) was determined
s the proportion of a maximum daily consumption rate that
epended on herring weight and water temperature:

max = aCW−bC
i fC(T), (2.2.3.1)
here Cmax is the maximum consumption rate
g prey g fish−1 d−1), fC(T) a temperature-dependence function
or consumption (Eq. (2.2.4.1)), T the water temperature (◦C),

i the mass of an age i herring (g wet weight), aC the intercept
of the allometric mass function (for a 1 g fish at the optimal
temperature), and bC is the slope of the allometric mass
function. Weight-related parameters of maximum daily con-
sumption rate are usually estimated from ad libitum feeding
experiments conducted at the optimum temperature (Hanson
et al., 1997). Rudstam (1988) used the slope and intercept
derived by De Silva and Balbontin (1974) for the processes in

the bioenergetics model for adult Atlantic herring C. harengus
consumption. We specified single values of aC and bC for
all herring age classes based on adult herring (Table 1); only
limited data were available on larval and juvenile herring



i n g
150 e c o l o g i c a l m o d e l l

maximum consumption rates (Rudstam, 1988; Arrhenius,
1998a; Klumb, 2003; Maes et al., 2005). Realized consumption
was calculated by applying (2.2.3.1) to a multispecies function
response formulation given in Eqs. (2.3.1) and (2.3.2).

2.2.4. Temperature dependence of maximum consumption
For cool and cold-water species, maximum consumption
temperature dependence in bionergetics models is generally
modeled as a dome shaped-like curve proposed by Thornton
and Lessem (1978). The Thornton and Lessem function is the
product of two sigmoid curves: one curve is fit to the increas-
ing segment of the temperature dependence function (gcta)
and a different curve is fit to the decreasing segment (gctb).

fC(T) = gcta × gctb, (2.2.4.1)

where T is the water temperature (◦C) and

tt5 = 1
te2 − te1

, (2.2.4.2)

t5 = tt5 × ln

[
xk2(1.0 − xk1)
xk1(1.0 − xk2)

]
, (2.2.4.3)

t4 = e[t5(T−te1)], (2.2.4.4)

tt7 = 1
te4 − te3

, (2.2.4.5)

t7 = tt7 × ln

[
xk3(1.0 − xk4)
xk4(1.0 − xk3)

]
, (2.2.4.6)

t6 = e[t7(te4−T)], (2.2.4.7)

gcta = xk1 × t4
(1.0 + xk1(t4 − 1.0))

, (2.2.4.8)

gctb = xk4 × t6
(1.0 + xk4(t6 − 1.0))

. (2.2.4.9)

Defining the shape of the curve involves specifying eight
parameters: four water temperatures, and the percentages of
maximum consumption associated with each temperature.
For the increasing part of the curve, te1 is the lower tempera-
ture at which the temperature dependence is a small fraction
(xk1) of the maximum rate, and te2 is the water temperature
corresponding to a large fraction (xk2) of the maximum con-
sumption rate. For the decreasing portion of the curve, te3 is
the water temperature (≥te2) at which dependence is a frac-
tion (xk3) of the maximum and te4 is the temperature at which
dependence is some reduced fraction (xk4) of the maximum
rate. We used three different sets of the eight parameters,
corresponding to age-0, -1, and -2+ herring (Table 1). Propor-
tion parameters are from Arrhenius (1998a) and temperatures
parameters are from Arrhenius (1998a) for age group 0 and
from Rudstam (1988) for the other age groups.
2.2.5. Respiration
Respiration or metabolic rate is dependent on body weight,
water temperature, and activity (swimming speed). We chose
an allometric function to represent standard metabolism and
2 0 2 ( 2 0 0 7 ) 144–164

multiplied it by a temperature function and an activity factor
to estimate total respiration costs:

Ri = aRW−bR
i fR(T) × activity × 5.258, (2.2.5.1)

where for an age i herring, Ri is the resting respiration (i.e.,
standard metabolism) (g prey g fish−1 d−1), Wi the wet weight
(g) of an age i herring, fR(T) the temperature dependence func-
tion for respiration, T the temperature (◦C), aR the intercept of
the allometric mass function and represents the respiration
rate of a 1 g fish at 0 ◦C and no activity, bR the slope of the
allometric mass function for standard metabolism, and activ-
ity is the activity multiplier ≥1. The coefficient 5.258 converts
g O2 g fish−1 d−1 from Eq. (2.2.5.1) into g prey g fish−1 d−1 using
the following conversion:

13 560 J
g(O2)

× 1 g zoop
2580 J

= 5.258 g zoop g(O2)−1. (2.2.5.2)

The temperature dependence of respiration is a simple
exponential relationship:

fR(T) = ecRT, (2.2.5.3)

where cR approximates the Q10 (the rate at which the function
increases over relatively cool water temperatures). We repre-
sented activity as a function of body weight, conditioned on
water temperature:

activity = edRU, (2.2.5.4)

where U is the swimming speed in cm s−1 and dR is a coefficient
relating swimming speed to metabolism. Swimming speed is
calculated as a function of body weight and temperature using

U = aAWbA ecAT. (2.2.5.5)

Activity rates of fishes vary widely with growth rate and
food density (Ware, 1975) while laboratory measurements of
metabolism during activity may be higher than actual costs
in the wild since larvae are passively moved by water cur-
rents. Exponential functions have typically been used to model
activity costs of adult Atlantic herring (Rudstam, 1988). The
exponential model of activity is comprised of three compo-
nents: (1) U, which is the weight dependence of swimming
speed (cm s−1), (2) the temperature dependence of swimming
speed (cA), and (3) the relation of respiration to swimming
speed (dR). The parameter aA is the intercept (cm s−1) for a 1 g
fish at 0 ◦C. Swimming speeds of age-1+ Atlantic herring were
only dependent on weight for temperatures warmer than 9 ◦C
(Rudstam, 1988). Klumb et al. (2003) used routine metabolism
parameters without an activity multiplier in a bioenergetics
model for age-0 alewife.

Values of weight-related respiration parameters (aR, bR)
were specified separately for age-0 and age-1+ herring, and

parameters related to activity (aA, bA, cA) were specified sep-
arately for age-0, age-1, and age-2+ herring after (Rudstam,
1988), with parameter values chosen so that temperature-
dependence was eliminated above 9 ◦C (Table 1).
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General information on bR is available for adult fish,
nd typical values are 0.25–0.15 (Winberg, 1956). For clu-
eids, slopes of the metabolism–weight relationship (bR) are
.19–0.28 for Atlantic menhaden, Brevoorita tyrannus (Hettler,
976), 0.215 for alewife (Stewart and Binkowski, 1986), and
.227 for Atlantic herring (De Silva and Balbontin, 1974).
udstam (1988) used 0.227 in the adult Atlantic herring bioen-
rgetics model, and this value has also been applied to age-0
erring (Kerr and Dickie, 1985; Arrhenius, 1998a). The relation
f respiration to weight of fishes has been found to change
ntogenetically, with isometric (mass independent) relations
or larvae switching to negative allometries in adults (Post
nd Lee, 1996). Values for herring respiration parameters used
n Eq. (2.2.5.1) are based on laboratory studies carried out by
lumb et al. (2003).

.2.6. Specific dynamic action
pecific dynamic action is part of total respiration and repre-
ents the energy allocated to the digestive processes of food,
rincipally the deamination of proteins but also the absorp-
ion, transportation, and deposition of food (Beamish, 1974).

e formulated specific dynamic action as

i = SDAi(Ci − EGi), (2.2.6.1)

here, for an age i herring, Si is the specific dynamic action
g prey g fish−1 d−1), SDAi the specific dynamic action coeffi-
ient, Ci the consumption rate (g prey g fish−1 d−1) and EGi is
he egestion rate (g prey g fish−1 d−1). The parameter SDA in
ur model is the proportion of assimilated energy lost to spe-
ific dynamic action. In general laboratory studies show that
t can range from 3 to 41% depending on diet, meal size,
ody weight and temperature (Beamish and Trippel, 1990). For
dult Atlantic herring (Rudstam, 1988), SDA was assumed to be
7.5% based on data for aholehole Kuhlia sandvicensis (Muir and
iimi, 1972). Arrhenius (1998a) lowered SDA to 15% for age-0
tlantic herring. Larval clupeids have been found to assimi-

ate food more efficiently than adults (Kiørboe et al., 1987). In
nergetic terms, Kiørboe et al. (1987) estimated SDA for larval
tlantic herring to be 10% of assimilated ration. To accommo-
ate this ontogenetic shift, we used separate values of SDA
or an age-0 and age-1+ herring. The value for age-0 was set
o 12.5%, the mean of 10% reported by Arrhenius (1998a) and
he 15% reported by Kiørboe et al. (1987). The value for age-1+
as set to 17.5%, as reported by Rudstam (1988) (Table 1).

.2.7. Egestion and excretion
gestion was modeled as a constant proportion (aF) of con-
umption:

Gi = aFCi. (2.2.7.1)

In the Atlantic herring models (Rudstam, 1988), egestion
g prey g fish−1 d−1) was assumed to be 16% of consumption
g prey g fish−1 d−1). The proportion of consumption egested
as been found to be relatively low in larval and juvenile clu-

eids (Kiørboe et al., 1987; Limburg, 1994). Arrhenius (1998a)
sed 16%, the value from the adult Atlantic herring model

Rudstam, 1988), for the proportion of assimilated ration
gested by larval Atlantic herring. Both Kiørboe et al. (1987)
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and Limburg (1994) found the percent of food egested was
10% (by mass). However, Klumpp and von Westernhagen (1986)
found egestion for Atlantic herring larvae ages 8–33 d averaged
17.6% (range: 13.4–25.6%) of their ration. Based on the above
three studies on larval and juvenile clupeids (Klumpp and von
Westernhagen, 1986; Kiørboe et al., 1987; Limburg, 1994), we
chose 12.5% as a first approximation for the proportion of con-
sumption egested for an age-0 herring, and 16% for age-1+
herring (Table 1).

Excretion (g prey g fish−1 d−1) was modeled as a constant
proportion (aE) of assimilation (consumption minus egestion):

EXi = aE(Ci − EGi). (2.2.7.2)

Rudstam (1988) assumed excretion was 10% of assimila-
tion based on rates reported by Elliott (1976) for brown trout.
Few studies on larval fish excretion have been conducted. For
three species, Blennius pavo, plaice Pleuronectes platesssa, and
Atlantic herring, Klumpp and von Westernhagen (1986) found
the mean percent of the assimilated ration excreted was 6.0,
6.6, and 10.7%, respectively. Due to high mortality for Atlantic
herring larvae in Klumpp and von Westernhagen’s study (see
Klumb, 2003), we used the average value of 7.8% as a first
approximation of the percent of assimilation excreted by an
age-0 herring, and assumed excretion for age-1+ herring was
10% (Table 1).

2.2.8. Reproductive losses
On the day of spawning (15 March), the average weight of
an individual herring in each age class is reduced by 25%
to account for gamete production. This value compares to
Rudstam (1988) who used 15%. Thus, EGGi in Eq. (2.2.1.1)
was set to 0.25 × Kmati (values for maturities and percentage
weight loss—Douglas Hay, pers. commun.). We multiply 0.25
by Kmati to account for the young ages when not all individ-
uals in the age class are mature. For example, if Kmati is 0.4
then the weight loss due to spawning for the average individ-
ual in that age class is 40% of 25% loss because only 40% of the
individuals are spawning.

2.3. Multispecies feeding functional response

A Type II functional response equation for multiple prey types
(Rose et al., 1999) was used to compute daily consumption
of each age i herring (Ci, g prey g fish−1 d−1), which was deter-
mined as sum of its consumption rates of each prey type j:

Ci =
3∑

j=1

Cij, (2.3.1)

Cij = Cmax(PDijvij/Kij)

1 +
∑3

k=1(PDikvik/Kik)
, (2.3.2)

where Cmax is the maximum consumption rate
(g prey g fish−1 d−1) of individual herring of age i from Eq.

(2.2.3.1), PDij the density of prey type j (g prey m−3) to age
i herring, vij the vulnerability of prey type j to age i her-
ring (dimensionless), and Kij is the half saturation constant
(g prey m−3) for individual age i herring feeding on prey type
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j. A total of three prey types generated by NEMURO were
included in the current fish model: ZS (j = 1), ZL (j = 2), and ZP
(j = 3). In the vicinity of Vancouver Island, herring eat mainly
copepod eggs as larvae, copepod adults and nauplii as juve-
niles, and euphausiids as adults (Hay et al., 2001). The three
zooplankton groups in NEMURO represent functional groups
based on prey size. We treated the ZS as including microzoo-
plankton, ZL as including copepods, and ZP as representing
euphausiids and chaetognaths. Densities of each of the three
zooplankton types were calculated in NEMURO in mol N l−1,
and are converted to g wet weight m−3 by multiplying
by:

tt1 = 14 g N
mol N

1 g dry weight
0.07 g N dry weight

1 g wet weight
0.2 g dry weight

103 l
m3

= 10−6 g wet weight m−3. (2.3.3)

Vulnerabilities were specified to reflect roughly how diets
of larger herring shift towards larger prey species, and the Kij

parameters were determined by calibration (Table 1).

2.4. Population dynamics model

2.4.1. Herring life cycle
Southern British Columbia herring are comprised of the WCVI
and the Strait of Georgia (SOG) stocks. We used information
for the WCVI and SOG stocks in our herring application of
NEMURO.FISH because adults of these two stocks commingle
on their summer feeding grounds. Southern British Columbia
herring spawn in early March in subtidal areas of sheltered
inlets, sounds, and bays, with the WCVI and SOG stocks
spawning in their respective spawning areas (Table 2). Adults
of both stocks then leave their spawning grounds and com-
mingle in their summer feeding grounds in the shelf waters
(<200 m deep) off the west coast of Vancouver Island (roughly
the La Perouse Bank area), where most of each year’s growth
occurs (Hay et al., 1988; Tanasichuk, 1997). Eggs adhere to veg-
etation and other hard substrates in the spawning areas, and
after about 2–3 weeks eggs hatch into yolk-sac larvae; the yolk-
sac larval stage lasts about 1 week. Larvae metamorphose into
juveniles about 2–3 months after hatching (Lassuy, 1989). Juve-
niles remain inshore near their spawning areas, progressively
moving into deeper nearshore waters, until the summer of
their third year when juveniles from both stocks join the adults
and move onto shelf waters. During every fall, adults move
progressively inshore from their summer feeding grounds on
the shelf until they reach their respective nearshore spawn-
ing grounds for spawning in March of the next year (Hay et al.,
2001).

2.4.2. Mortality
The number of individuals in each of the ten age-classes is
decremented daily based on annual mortality rate:

dNi,y = −[Mi + Fi]Ni,y, (2.4.2.1)

dt

where Ni,y is the number of herring (numbers m−3) in age class
i in year y, Mi the instantaneous natural mortality (year−1),
and Fi is the instantaneous fishing mortality (year−1) on age
2 0 2 ( 2 0 0 7 ) 144–164

class i. On 20 March of each year, just after spawning, sur-
viving individuals are promoted to the next age-class, and a
new number of age-0 individuals are specified. In the model,
the first age class of herring corresponds to young-of-the-year
(0–12 months), the second age class corresponds to age-1 her-
ring (12–24 months), etc. Total biomass (TB, g wet weight m−2)
at any given time is computed as

TB =
[

10∑
i=1

NiWi

]
MLD, (2.4.2.2)

where Ni is the numbers of individuals in age class i (num-
ber m−3) and Wi average weight per individual in age class i
(g wet weight). Multiplying by the mixed layer depth (MLD, m)
converts g wet weight m−3 into g wet weight m−2. As a reason-
able approximation, we used a constant mixed layer depth of
100 m to compute herring biomass.

2.4.3. Recruitment
Spawning biomass in year y is calculated on 15 March as

SBy =
[

10∑
i=1

Ni,yWi,y Kmati

]
0.5 × 10−9(100.0 × 21334.0 × 10−6)

(2.4.3.1)

where SBy is the spawning biomass in year y (1000 MT) and
Kmati is the fraction mature of age i herring (Hay et al.,
1987). Spawning biomass is multiplied by 0.5 because only
half of the spawning biomass goes to WCVI, with the other
half going to the SOG. The remaining constants adjust for the
volume of the modeled (i.e., feeding) area (100 m deep times
21 334 km2) and convert SB to units of 1000 MT (which is used
in the spawner–recruit relationship) by multiplying by 10−9 (g
to 1000 MT) and by 10−6 (m2 in a km2). With this formulation,
spawning biomass is calculated as the biomass of fish present
in the feeding area that will migrate to the spawning area.

Recruitment of herring, which introduces the new num-
ber of age-0 individuals each year, was modeled in two ways:
constant or dynamically using a spawner–recruit function.
Recruitment in the model was defined as the number enter-
ing on 20 June of the same year of spawning (i.e., at about
3 months of age), and all new recruits started at a weight
of 0.2 g wet weight. The number of recruits each year under
constant recruitment was set to 155.1 number m−3. The con-
stant recruitment value was determined as the average value
predicted under the baseline simulation using the dynamic
recruitment option. How we calibrated the dynamic recruit-
ment version is described later in Section 3.

Constant recruitment was useful for some model analy-
ses because predicted herring weight-at-age reached steady
state over time, and for comparing herring effects on
their prey dynamics. Inclusion of an environment-dependent
spawner–recruit relationship was also useful because it per-
mitted the reproduction of observed recruitment variation on

annual and multi-decadal time scales, and allowed for closure
of the life cycle (self-sustaining simulations) and investigation
of regime shifts and climate variation effects on growth via
their effects on recruitment.
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Table 2 – Schematic representation of the herring life cycle showing calendar months, age in months, life stages, typical
weights and lengths of individuals, and general habitat information

Note that herring live to age 7–10; the information shown for ages-3 and older is generally applicable to older individuals. Habitat letter codes are:
0+ juveniles: A = nearshore (mainly <50 m deep), B = deeper, nearshore waters (about 100 m deep), C = nearshore, deep and shallow; 1+ juveniles:
D = nearshore, deep and shallow, E = deeper, inshore waters, F = deeper, nearshore waters, G = nearshore, deep and shallow; 2+ pre-recruit and
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age-3+: H = mainly shelf waters up to 200 m deep, I = begins migration
to nearshore spawning areas, L = migrating to shelf waters, M = feedin
life history stages, temporal variation in migrations, life history (Hay

Dynamic recruitment was determined using an environ-
ent-dependent Ricker spawner–recruit model fitted to long-

erm data for WCVI herring (Williams and Quinn, 2000a,b;
ose et al., 2007b).

3,y+3 = e(3.27−0.031 SBy+0.258 NPPIy−0.193 AIRy−0.281 SSTy)×10−6×10−9

(2.4.3.2)

here N3,y+3 is the age-3 recruits 3 years later (num-
ers g spawning biomass−1), SBy the spawning biomass

1000 MT), NPPIy is the North Pacific Pressure Index, AIRy the
ir temperature, and SSTy is the sea surface temperature in
ear y. NPPI, AIR, and SST are expressed as annual anomalies
Fig. 3). The coefficients at the end of Eq. (2.4.3.2) convert
ecruitment in millions of recruits per 1000 MT of spawning
iomass into recruit per gram of spawning biomass. The
umber of newly recruiting age-0 individuals on 20 June was

etermined as the estimate of age-3 recruits (N3,y) times the
pawning biomass in year y (expressed in g wet weight m−3),
nflated by the survival occurring between roughly 6 months
f age-1 and age-3 (elhm, fraction), and multiplied by 2 to
earshore over-wintering areas, J = deep nearshore waters, K = moving
helf waters. Data source: juvenile herring size-at-age (Haegele, 1997);

cCarter, 1997); size-at-age (Schweigert et al., 2002).

reflect both WCVI and SOG returns.

N1,y = N3,y SBy × 2

elhm
. (2.4.3.3)

2.5. Dynamic linkage of fish and NEMURO models

In NEMURO.FISH, the bioenergetics and NEMURO models are
solved simultaneously. Zooplankton prey groups determine
the consumption term of the fish bioenergetics model, and
are, in turn, reduced by the amount eaten by the herring. Her-
ring excretion is added to the ammonium pool of NEMURO,
and herring egestion waste is added to the PON pool. NEMURO
represents time in units of s, while the fish model operates on
daily rates. Linkages between the NEMURO and fish models
therefore involved fish models rates expressed as annual or
daily rates being converted into rates expressed in s for the
NEMURO.FISH system of differential equations. All differen-

tial equations were solved using a fourth-order Runge–Kutta
numerical integration routine using a time step of 1 d.

The total rates of predation of zooplankton and rates of
excretion and egestion of nutrients (g m−3 d−1) were computed
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Fig. 3 – Historical annual anomalies of the three
environmental variables (NPPI, SST, and AIR) used in the

Ricker spawner–recruit relationship.

as

ZStot =
10∑
i=1

Ci1WiNi, (2.5.1)

ZLtot =
10∑
i=1

Ci2WiNi, (2.5.2)

ZPtot =
10∑
i=1

Ci3WiNi, (2.5.3)

EXtot =
10∑
i=1

EXi WiNi, (2.5.4)

EGtot =
10∑
i=1

EGi WiNi, (2.5.5)

where Ci,j is the consumption rate of the ith age class of her-
ring on the jth zooplankton group, Ni and Wi the numbers and
average weight of individuals in the ith age-class, and EXi and
EGi are the egestion and excretion rates. NEMURO state vari-
able differential equations were modified to include loss or
gain terms due to herring:

dZS
dt

= dZS
dt

(from NEMURO) − ZStot

tt1 × d2s
, (2.5.6)

dZL = dZL
(from NEMURO) − ZLtot

, (2.5.7)

dt dt tt1 × d2s

dZP
dt

= dZP
dt

(from NEMURO) − ZPtot

tt1 × d2s
, (2.5.8)
2 0 2 ( 2 0 0 7 ) 144–164

dNH4

dt
= dNH4

dt
(from NEMURO) + EXtot

tt1 × d2s
, (2.5.9)

dPON
dt

= dPON
dt

(from NEMURO) + EGtot

tt1 × d2s
, (2.5.10)

where d2s is 86 400 s d−1, and tt1 (Eq. (2.3.3)) converts mol N l−1

to g wet weight m−3. Since it appears in the denominator
of the right hand term in Eqs. (2.5.6)–(2.5.10) it converts
g wet weight m−3 in the fish model to the NEMURO units of
mol N l−1.

2.6. Application NEMURO to WCVI

NEMURO, uncoupled from the herring bioenergetics model,
was calibrated to monthly field data on nutrients, phytoplank-
ton, and zooplankton densities collected in the WCVI and
California Current ecosystems (Rose et al., 2007a).

Solar radiation data were collected from 49◦N latitude and,
based on idealized equations relating light to latitude, we esti-
mated that maximum total light for the area off the West Coast
of Vancouver Island (∼49◦N latitude) is around 1000 W m−2 but
varies seasonally. If we assume that the amount of radiation
in the 400–700 nm wavelength, or photosynthetically available
radiation (PAR), was 40% of the solar radiation at the sea sur-
face (Apel, 1987), then we would expect PAR at 49◦N to be
around 400 W m−2. We took 2 years of light data from 3D-
NEMURO (W m−2) (Aita et al., 2006), averaged by Julian Day
then converted to units of ly min−1 by multiplying W m−2 by
0.001433 (1 ly min−1 = 698 W m−2), and fitting a sinusoid to the
data. The 3D-NEMURO data were based on light data from
the NCEP/NCAR (National Centers for Environmental Predic-
tion, NOAA National Weather Service, and National Center for
Atmospheric Research) reanalysis data set. A sinusoid was fit
to the data with nonlinear regression. The equation describing
seasonal solar radiation was

L = 0.0357 +
(

0.2502 × 0.5

(
1 − cos

(
2�(JDAY + 7)

365

)))
,

(2.6.1)

where JDAY is Julian day and L is light ly min−1. The trigono-
metric function that relates day of year to daily solar radiation
and the observed data are given in Fig. 4.

Daily surface water temperature measurements were
taken from the Amphitrite Lighthouse off the west coast of
Vancouver Island (48◦55′N, 125◦32′W). A sinusoid describing
seasonal water temperature:

TEMP = 5.0 +
(

9.0 × 0.5

(
1 − cos

(
2�(JDAY − 90)

365

)))
(2.6.2)

was fit to the data using nonlinear regression, where JDAY is
the Julian day and TEMP is the surface water temperature (◦C).
Observed data and the fit curve are given in Fig. 5.
Mixed layer depth was specified as piece-wise linear func-
tion of day of year. Rose et al. (2007a) used both ad hoc
(fit-by-eye) and automated (optimization) calibration to deter-
mine a set of NEMURO parameter values (Table 3) that best



e c o l o g i c a l m o d e l l i n g 2 0

Fig. 4 – Observed and predicted daily incident light for West
Coast of Vancouver Island (used as a driving variable for
the NEMURO model).

Fig. 5 – Observed and predicted mean sea surface
temperature at Amphitrite Lighthouse (48◦55′N, 125◦32′W)
(
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used as a driving variable for the NEMURO model).

eproduced the monthly averaged field data over a typical
ear.

. Model simulations

EMURO.FISH was run for 30 years using repeated envi-
onmental conditions (solar radiation, temperature, mixed
ayer depth) for NEMURO and using either constant or
ynamic herring recruitment. Calibration of the herring model

sed dynamic recruitment and Kij parameters of the multi-
pecies functional response and the early life history survival
ate (elhm) were adjusted until herring dynamics satisfied
hree constraints that were based on historical WCVI data:
2 ( 2 0 0 7 ) 144–164 155

(1) the total herring biomass had to be between 2 and
5 g wet weight m−2, (2) the maximum weight of an adult her-
ring was about 200 g wet weight ind−1, and (3) there had to
be good agreement between observed and predicted herring
weight-at-age (g ww) over all age groups. We did not adjust
the NEMURO parameters from their previously calibrated val-
ues (Rose et al., 2007a). Since NEMURO.FISH was run with no
interannual variation in environmental conditions, we did not
see the need to allow NEMURO to spin-up before dynamically
coupling the two models. Thus, the models were dynamically
couple from the very beginning of the simulation.

In an earlier exploration of NEMURO.FISH dynamics
(Rose et al., 2004), we performed two simulations under
constant recruitment with and without herring affecting
NEMURO dynamics (i.e., coupled versus uncoupled). Running
NEMURO.FISH uncoupled eliminated the effects of herring
consumption on zooplankton and of herring excretion and
egestion on nutrient dynamics. Constant recruitment was
used to make comparison of the two simulations easier. Under
dynamic recruitment, herring affects on NEMURO dynamics
would influence herring spawning biomass, which in turn
would affect recruitment and subsequent herring biomass
and therefore NEMURO dynamics. Comparison of simulated
zooplankton and nutrient densities between coupled and
uncoupled simulations with constant recruitment permits
determination of the degree of influence herring have on their
prey and on nutrient recycling.

4. Uncertainty analysis

We performed a Monte Carlo uncertainty analysis of the her-
ring version of the NEMURO.FISH model using Latin Hypercube
sampling (McKay et al., 1979; Rose et al., 1999). Monte Carlo
uncertainty analysis allows parameters to be varied together,
rather than one-at-a-time in the traditional approach to sensi-
tivity analysis. Probability distributions are assigned to model
parameters, and multiple simulations are performed using
repeated sampling of parameter values from their distribu-
tions. Latin hypercube sampling uses a stratified sampling
approach to each parameter distribution to ensure adequate
coverage of the range of parameter values with relatively
fewer simulations. Correlation analysis is then applied relat-
ing predicted output variables to parameter values over the
simulations. The premise is that the greater the correlation
between a parameter and the predicted variable (% variance
explained in the output variable by the input parameter),
the more influence that parameter has in controlling model
behavior (Rose et al., 1991).

Three sets of uncertainty analyses were performed under
dynamic recruitment, with each consisting of 300 30-year
model simulations. All parameters were assigned normal
probability distributions with means set to their calibration
values and standard deviations set so that their coefficient
of variation (CV) was 1%. Thirty-seven of the possible 115
fish parameters were held constant for all three sets of sim-

ulations; thus, 78 fish-related parameters were allowed to
vary. The 37 parameters held constant were the tempera-
ture effects on consumption, three fishing mortalities for
unexploited age groups (F1, F2, and F3), and all ten maturity
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Table 3 – Parameters calibrated to the West Coast Vancouver Island version of the NEMURO lower trophic level model

Parameter Description Value Units

Small phytoplankton (PS)
IoptS Optimum light intensity 0.15 ly min−1

VmaxS Maximum photosynthetic rate at 0 ◦C 5.629629E−06 s−1

KNO3S Half saturation constant for NO3 1.0E−06 mol N l−1

KNH4S Half saturation constant for NH4 0.1E−06 mol N l−1

�s NH4 inhibition coefficient 1.5e + 06 mol N−1

kGppS Temperature coefficient for photosynthetic rate 0.0693 ◦C−1

MorPS0 Mortality rate at 0 ◦C 0.67708 (mol N l−1)−1 s−1

kMorPS Temperature coefficient for mortality 0.0693 ◦C−1

ResPS0 Respiration rate at 0 ◦C 3.4722E−07 s−1

kResPS Temperature coefficient for respiration 0.0693 ◦C−1

�S Ratio of extracellular excretion to photosynthesis 0.135

Large phytoplankton (PL)
IoptL Optimum light intensity 0.15 ly min−1

VmaxL Maximum photosynthetic rate at 0 ◦C 8.259259E−6 s−1

KNO3L Half saturation constant for NO3 3.0E−06 mol N l−1

KNH4L Half saturation constant for NH4 0.3E−06 mol N l−1

KSiL Half saturation constant for Si 6.0E−06 mol Si l−1

�L NH4 inhibition coefficient 1.5E+06 mol N−1

kGppL Temperature coefficient for photosynthetic rate 0.0693 ◦C−1

MorPL0 Mortality rate at 0 ◦C 0.3356 (mol N l−1)−1 s−1

kMorPL Temperature coefficient for mortality 0.0693 ◦C−1

ResPL0 Respiration rate at 0 ◦C 3.472222E−07 s−1

kResPL Temperature coefficient for respiration 0.0693 ◦C−1

�L Ratio of extracellular excretion to photosynthesis 0.135

Small zooplankton (ZS)
GRmaxSps Maximum rate of grazing PS at 0 ◦C 3.62962E−06 s−1

kGraS Temperature coefficient for grazing 0.0693 ◦C−1

�S Ivlev constant 0.4E+06 (mol N l−1)−1

PS2ZS* Threshold value for grazing PS 0.043E−06 mol N l−1

AlphaZS Assimilation efficiency 0.7
BetaZS Growth efficiency 0.3
MorZS0 Mortality rate at 0 ◦C 0.877 (mol N l−1)−1 s−1

kMorZS Temperature coefficient for mortality 0.1099 ◦C−1

Large zooplankton (ZL)
GRmaxLps Maximum rate of grazing PS at 0 ◦C 1.157E−06 s−1

GRmaxLpl Maximum rate of grazing PL at 0 ◦C 2.6296E−06 s−1

GRmaxLzs Maximum rate of grazing ZS at 0 ◦C 1.6296E−06 s−1

kGraL Temperature coefficient for grazing/predation 0.0693 ◦C−1

�L Ivlev constant 1.4e + 06 (mol N l−1)−1

PS2ZL* Threshold value for grazing PS 4.0E−08 mol N l−1

PL2ZL* Threshold value for grazing PL 4.0E−08 mol N l−1

ZS2ZL* Threshold value for grazing ZS 4.0E−08 mol N l−1

AlphaZL Assimilation efficiency 0.7
BetaZL Growth efficiency 0.3
MorZL0 Mortality rate at 0 ◦C 0.877 (mol N l−1)−1 s−1

kMorZL Temperature coefficient for mortality 0.1099 ◦C−1

Predatory zooplankton (ZP)
GRmaxPpl Maximum rate of grazing PL at 0 ◦C 1.3148E−06 s−1

GRmaxPzs Maximum rate of grazing ZS at 0 ◦C 1.3148E−06 s−1

GRmaxPzl Maximum rate of grazing ZL at 0 ◦C 2.3148E−06 s−1

kGraP Temperature coefficient for grazing/predation 0.0693 ◦C−1

�P Ivlev constant 1.4e + 06 (mol N l−1)−1

PL2ZP* Threshold value for grazing PL 4.0E−08 mol N l−1

ZS2ZP* Threshold value for grazing ZS 4.0E−08 mol N l−1

ZL2ZP* Threshold value for grazing ZL 4.0E−08 mol N l−1

�PL Preference coefficient for PL 4.605e + 06 (mol N l−1)−1

�ZS Preference coefficient for ZS 3.01e + 06 (mol N l−1)−1

AlphaZP Assimilation efficiency 0.7
BetaZP Growth efficiency 0.3
MorZP0 Mortality rate at 0 ◦C 0.877 (mol N l−1)−1 s−1

kMorZP Temperature coefficient for mortality 0.1099 ◦C−1
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Table 3 (Continued )

Parameter Description Value Units

Nitrification
Nit0 Nitrification rate at 0 ◦C 0.34722E−06 s−1

kNit Temperature coefficient for nitrification 0.0693 ◦C−1

Decomposition
setVP PON sinking velocity 4.6296E−04 m s−1

VP2D0 Decomposition rate of PON to DON at 0 ◦C 1.1574E−06 s−1

kP2D Temperature coefficient for PON decomposition to DON 0.0693 ◦C−1

VP2N0 Decomposition rate of PON to NH4 at 0 ◦C 1.1574E−06 s−1

kP2N Temperature coefficient for PON decomposition to NH4 0.0693 ◦C−1

VD2N0 Decomposition rate of DON to NH4 at 0 ◦C 2.3148E−06 s−1

kD2N Temperature coefficient for DON decomposition to NH4 0.0693 ◦C−1

setVO Opal sinking velocity 4.6296E−04 m s−1

VP2Si0 Decomposition rate of Opal to silicate at 0 ◦C 1.1574E−06 s−1

kP2Si Temperature coefficient for Opal decomposition 0.0693 ◦C−1

Miscellaneous
˛1 Light extinction coefficient of sea water 0.04 m−1

˛2 Self-shading coefficient for PS + PL 4.0E + 04 (mol N)−1 m−1

LLN Number of sublayers for light calculations 100
RSiNPL Si:N ratio of PL 2.0 mol Si mol N−1

RSiNZL Si:N ratio of ZL and ZP 2.0 mol Si mol N−1

RCN C:N ratio 6.625 mol C mol N−1

TNO3d Nitrate concentration in the deep layer 25.0E−06 mol N l−1

SiOH4d Silicate concentration in the deep layer 35.0E−06 mol Si l−1
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Values in bold are calibrated values that differ from those reported in

arameters. These were selected because the 24 parameters
n Eqs. (2.2.4.1)–(2.2.4.9), if allowed to become random vari-
bles, could cause the log terms in Eqs. (2.2.4.3) and (2.2.4.6) to
enerate improper mathematical expressions. This situation
enerated fatal errors causing model execution to terminate
rematurely. Three F values from the unexploited age groups
ere forced to be zero to retain conditions known to take
lace in the commercial fishery (i.e., they are never exploited).
inally, the 10 maturity parameters, if they were allowed to
e random variables, could reach biologically unrealistic val-
es (i.e., values less than zero for younger ages and values
reater than one for older ages). In the first set of 300 sim-
lations (labeled LTL), just the 75 NEMURO parameters were
aried and the 78 fish model parameters were held constant.
n the second set of simulations (labeled FISH), all 75 NEMURO
arameters were held constant and the 78 fish related param-
ter were allowed to vary. In the third set of simulations
labeled ALL), all 153 (75 NEMURO and 78 fish) parameters
ere allowed to vary. Correlations were examined for two

ontrasting years in the 30-year simulation: year 23 that had
igh herring biomass and low prey biomass and for year 3
hat had low herring biomass and high prey biomass. Peak
erring biomass was 7.506 g wet weight m−2 in year 23 versus
.802 g wet weight m−2 in year 3.

In order to perform the sensitivity analysis we needed to
hoose (and our choice was arbitrarily) a few model output
ariables to assess sensitivity. To keep things simple we chose
nly two. We chose herring weight-at-age 5 since a 5-year old

as in the middle of the herring life span. We also chose

otal population biomass (g wet weight m−2) on day 80 with
he rational that total biomass would be a good integrator of
ensitivities across all age groups in the population.
i et al. (2007).

5. Results

5.1. Calibration

In comparison to the three constrains described in Section 3,
daily total biomass and herring weights by age class (output on
JDAY = 80 each year) exhibited reasonable dynamics over the
30-year dynamic recruitment simulation (Fig. 6a and b). Pre-
dicted herring growth was similar to the observed weight over
time of the 1972 cohort (Fig. 6c). The previously calibrated val-
ues for NEMURO are shown in Table 3, and the final parameter
values for the herring model are given in Table 1. We fol-
lowed a single herring cohort over years to compare to the 1972
cohort. The 1972 cohort, from the historical catch-at-age data
(age-0 in 1972, age-1 in 1973, etc.), was selected because it con-
tained the most size-at-age observations spanning 10 calendar
years.

5.2. Coupled versus uncoupled simulations

By year 10, predicted herring mean weight-at-age was lower
in the coupled simulation than in the uncoupled simulation
(Fig. 7). In the uncoupled constant recruitment assumption
run (Fig. 7a), herring continued to grow throughout the simu-
lation until steady state was eventually achieved. Maximum
weight-at-age for the oldest age group was approximately
200 g and was consistent with observed data. In the cou-

pled constant recruitment assumption run (Fig. 7b), herring
consumption appeared as a mortality term on zooplankton
prey abundance. The mortality terms were greater than the
production terms and the prey abundance decreased. Conse-
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Fig. 6 – Dynamic results showing total biomass (top panel), individual weight for the 10 age groups carried in the
population dynamics model (middle panel), and the correspondence between observed and predicted herring size-at-age

g ye
gure
(bottom panel). Arrows on the top panel show the contrastin
legend for the middle panel is located at the bottom of the fi

quently herring growth rate decreased as they consumed their
food resource and the overall trend between the two simula-
tions are quite different—increasing in the uncoupled run and
decreasing in the coupled run.

Herring had little impact on ZS (Fig. 8a) and mostly affected
ZL (Fig. 8b) and ZP (Fig. 8c), causing lower densities in ZL and
ZP in the coupled run. From the simulations performed, it can-
not be determined from Figs. 7 and 8 if the results in Fig. 8b
and c are mainly from the direct influence of consumption
on ZL and ZP. The decrease in ZP could be an indirect con-
sequence of a decrease in its prey (ZL) from direct herring
consumption. It is also possible that the decrease in ZP could
be due to a combination of indirect loss of ZPs main food
resource (i.e., ZL) and herring consumption directed at ZP. In

either case, it is clear that including herring consumption as
a dynamic mortality term on the zooplankton resulted in a
density-dependent feedback and lower herring growth rates
in the coupled simulation.
ars used for the Monte Carlo uncertainty analysis. The
.

The effects of including the feedbacks were also apparent
in the predicted dynamics of the LTLs. Predicted densities of
ZL over time were generally lower under the coupled simu-
lation than under the uncoupled simulation (Fig. 8b). Much
smaller effects of herring consumption were predicted for ZS
and ZP (Fig. 8a and c), because ZL was the dominant prey in
the diet of simulated herring. The effects of herring excretion
on ammonia and the effects of egestion on PON were both
relatively small (Fig. 9a and b). Interestingly, the variation in
the zooplankton densities in the coupled simulation caused
by herring selectively consuming ZL cascaded downward in
the food web resulting in consistent (albeit small) increases in
PL density (Fig. 9c).
5.3. Uncertainty analysis

When NEMURO parameters were held constant and only fish-
related parameters were varied (top row of Fig. 10, labeled
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Fig. 7 – Predicted daily average weights per individual by
age class of herring from (a) uncoupled and (b) coupled
simulations of the NEMURO.FISH model (from Rose et al.,
2004, Fig. 4.2).

Fig. 8 – Predicted lower trophic level response of small
zooplankton (a), large zooplankton (b), and predatory
zooplankton (c) from uncoupled and coupled simulations of
the NEMURO.FISH model (from Rose et al., 2004, Fig. 4.4).

Fig. 9 – Predicted lower trophic level response of ammonia
(a), PON (b), and large phytoplankton (c) from uncoupled
and coupled simulations of the NEMURO.FISH model (from

Rose et al., 2004, Fig. 4.5).

FISH), weight-at-age 5 and total biomass were most sensi-
tive to the parameters associated with the allometric weight
effect on consumption (kcmaxa and kcmacb; corresponding
to aC and bC in Eq. (2.2.3.1)) and the allometric weight effect
on respiration (krespa3 and krespb3; corresponding to aR and
bR in Eq. (2.2.5.1)). Also the parameter associated with the
activity aspect of respiration (krespd3; dR of Eq. (2.2.5.4)) was
important. These results were consistent for both the low her-
ring biomass–high prey biomass year and the high herring
biomass–low prey biomass year. Total biomass was more sen-
sitive to kcmaxa than weight-at-age 5, and weight-at-age 5
was more sensitive to krespb3 when herring biomass was high
and prey biomass was low.

When the fish parameters were held constant and the
NEMURO parameters were varied (middle row of Fig. 10,
labeled LTL), total biomass and weight-at-age 5 were sen-
sitive to the growth efficiency of their most important
prey ZL (BetaZL), the temperature-dependent mortality of
ZL (KMorZL), and the maximum photosynthetic rate of PL
(VmaxL). When herring biomass was low and prey biomass

high (middle row, left panel), optimum light intensity for PL
(IoptL) was the next most important parameter, but when her-
ring biomass was high and prey biomass low (middle row,
right panel), mortality of ZL (MorZL0) became more impor-
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Fig. 10 – Results of the Monte Carlo uncertainty analysis showing correlations between parameter values and age-5 weight
and total biomass for a year of low herring biomass and high prey biomass (left panels) and a year of high herring biomass
and low prey biomass (right panels). NEMURO.FISH was run with all NEMURO parameters constant and only fish parameters
allowed to vary (top row, labeled FISH), all fish parameters held constant and only NEMURO parameters were allowed to
vary (middle row, labeled LTL), and for both NEMURO and fish parameters allowed to vary (bottom row, labeled ALL). Bars
indicate the squared correlation coefficient between total biomass (black bars) and weight-at-age 5 (grey bars) with model
parameters. Fish bioenergetics model parameter names (Table 1) can be matched to their uncertainty analysis variable
names with the following key: kba1 = bA for age group 0; kaa1t2 = aA (for temp ≥ ktu), age group 1; kcmaxa = aC; kcmaxb = bC;
krespa2 = aR for age group 1; krespa3 = aR for age group 2 and older; krespb3 = bR for age group 2 and older; krespc3 = cR for
age group 2 and older; krespd3 = dR for age group 2 and older. All other variable names can be located in Tables 1 and 3.
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ant. When herring biomass was high and prey biomass low
middle row, right panel), total biomass was sensitive to ZL
rowth efficiency (BetaZL) and weight-at-age 5 was sensitive
o PL maximum photosynthetic rate (VmaxL).

When all parameters were varied (bottom row of Fig. 10,
abeled ALL), total biomass and weight-at-age 5 were still very
ensitive to the allometric weight effect on consumption and
espiration, similar to when fish only parameters were varied
top row). Of interest was the fact that total biomass and
eight-at-age 5 were sensitive to the maximum photosyn-

hesis rate of PL (VmaxL) when herring biomass was high and
rey biomass was low (bottom row, right panel). This implies
bottom-up control of herring growth when prey biomass
as low.

Sensitive parameters reported here differ from those
eported by Yoshie et al. (2007) for the NEMURO model. How-
ver, NEMURO used here was calibrated to the West Coast of
ancouver Island, whereas Yoshie et al. (2007) analyzed the
EMURO model calibrated to station A7 and ocean station P
nd they found differences in sensitivities between their two
alibrated sets of parameter values.

. Discussion and conclusions

here has been an increasing appreciation of climate effects
n fish growth, recruitment, and population dynamics and
ecognition that effective resource management requires
nderstanding and quantitative tools, including models, for
redicting climate effects on fish populations. Bioenergetics
odeling offers a sound approach for simulating the growth

f fish in response to changing environmental conditions.
he model described here provides a useful tool to exam-

ne the impact of climate change on the upper trophic levels
f the marine ecosystem and to explore causes of observed
regimes” of varying productivity in exploited fish stocks.

We used the WCVI herring as a template for configur-
ng NEMURO.FISH because the WCVI ecosystem and herring
re well-studied and herring are an important link between
he LTLs and top predators. Realistic herring weight-at-age
nd biomass were generated in 30-year simulations. Herring
opulation dynamics were affected by herring growth rates,
hich affected spawning biomass that, with environmental

orcing, affected subsequent young-of-the-year recruitment.
imulations under constant recruitment using coupled and
ncoupled versions of NEMURO.FISH showed that herring
ave small to moderate effects on their zooplankton prey,
hich can then potentially affect nutrient dynamics. Monte
arlo uncertainty analysis showed that predicted weight-at-
ge and population biomass were most sensitive to allometric
arameters of maximum consumption and respiration, that
ther important parameters sometimes differed between the
wo output variables, and that LTL parameters can, at times,
e important to fish dynamics.

We recognize that in a perfect world we should have simul-
aneously calibrated the coupled models. In some situations

he grazing effect of herring could be important, but pre-
iminary runs indicated that the impact of herring grazing
n zooplankton were generally small and we knew that the
TL calibration data were poor temporally and by trophic
2 ( 2 0 0 7 ) 144–164 161

level. Therefore we had to average over several data sources
(Rose et al., 2007a). With this knowledge, and aiming towards
simplified calibration, we separated the calibration into two
steps. First we calibrated the NEMURO LTL to the observed
available LTL data and then we calibrated the herring bioen-
ergetics model to observed herring size-at-age data given the
calibrated LTL. If we were able to go back and readjust the
zooplankton mortality in NEMURO in a simultaneous calibra-
tion, the adjustment would be small because the effect of
herring grazing on zooplankton in the coupled model would
be small. Despite issues concerning calibration sequence, it
still remains that this model is one of the few to dynamically
link the HTL and LTL in a density-dependent manner. This per-
spective affords a small glimpse into how marine ecosystems
may respond to climate change.

NEMURO.FISH has finite behaviors which may limit its
ability to mimic many systems. But the benefit is that
NEMURO.FISH is simple, general, and relies on information
available for many fish species. NEMURO.FISH provides a use-
ful tool to better understand intra- and inter-population varia-
tion in fish growth and survival, and to relate results to climate
change and ecosystem carrying capacity. NEMURO.FISH can
also be used to test the hypothesis that physical forcing factors
regulate primary production and that the effect is apparent in
zooplankton standing stock, through which it is transferred to
variation in HTLs.

Ultimately we hope one day to forecast the consequences
of climate variability on the ecosystems of the subarctic North
Pacific. We believe coupled LTL and bioenergetics-based fish
models will enhance our understanding of how climate con-
ditions under different regimes can influence fish population
dynamics and productivity.
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