Comparative Risk Analysis for Deepwater Production Systems

Final Project Report

Prepared for: Minerals Management Service

Prepared by: Offshore Technology Research Center

> Robert B. Gilbert The University of Texas at Austin & E.G. Ward Texas A&M University

> > Andrew J. Wolford EQE International

> > > January 2001

Executive Summary	iv
 Introduction	1 1 1 2
2. Approach	3
2.1 Participation of Technical Experts	3
2.2 Workshop Process	6
2.3 Risk Measures	8
2.4 Descriptions of Study Systems	9
2.5 Quantitative Risk Assessment	13
2.5.1 Preliminary Risk Assessments	14
2.5.2 Final Risk Assessments	16
3. Results	
3.1 Risks for Fatalities	
3.2 Risks for Oil Spills	20
3.2.1 Frequencies of Spills	20
3.2.1.1 Frequencies of Production Spills	20
3.2.1.2 Frequencies of Transportation Spills	23
3.2.1.3 Frequencies of Spills from All Sources	
3.2.2 Total Volume of Oil Spilled over Lifetime	
3.2.3 Maximum Single Oil Spill in Lifetime	37
3.3 Summary	
4. Conclusions and Recommendations	41
4.1 Conclusions	41
4.2 Recommendations	42
5. Acknowledgments	44
6. Bibliography	45
List of Tables	

TABLE OF CONTENTS

Table 2.1 Industry, Sources for Workshop Dortisinants	1
Table 2.1 Industry Sources for Workshop Participants	4
Table 2.2 Additional Industry Sources for Technical Expertise	5
Table 2.3 Summary of Risk Measures	8
Table 2.4 Summary of Attributes for Study Systems	13
Table 2.5 Sub-System Categories Used in Risk Assessment	16
Table 3.1 Summary of Fatality Rates (90-Percent Confidence Intervals)	20
Table 3.2 Summary of Oil Spills from Crude Tankers in Gulf of Mexico	27
Table 3.3 Expected Return Periods for Spills	
Table 3.2 Summary of On Spins from Crude Tankers in Gun of Mexico	

List of Figures

Fig. 2.1 Flowchart for Workshop Process	6
Fig. 2.2 Timeline for Study Systems	10
Fig. 2.3 Physical Layout for Study Systems (Plan View)	10
Fig. 2.4 Schematic of Production Systems for Study Systems (Flow Diagram)	11
Fig. 2.5 Schematic of Transportation Systems for Study Systems (Flow Diagram)	12
Fig. 3.1 Average Total Number of Fatalities in Lifetime	18
Fig. 3.2 Expected Contributions to Average Total Fatalities versus Activity	19
Fig. 3.3 Annual Frequency for Production Spills versus Spill Size	21
Fig. 3.4 Comparison of Production Spill (>1,000 bbl) Frequencies with Published Data	23
Fig. 3.5 Annual Frequency for Transportation Spills versus Spill Size	24
Fig. 3.6 Comparison of Transportation Spill (>1,000 bbl) Frequencies with Published Data	26
Fig. 3.7 Comparison of Pipeline Spill Frequencies with Published Data	28
Fig. 3.8 Annual Frequency for Spills from All Sources versus Spill Size	29
Fig. 3.9 Contribution of Production to Annual Frequency for Each Spill Size	30
Fig. 3.10 Contribution of Transportation to Annual Frequency for Each Spill Size	31
Fig. 3.11 Average Total Volume of Oil Spilled over Lifetime - All Sources	32
Fig. 3.12 Contribution to Average Total Spill Volume versus Spill Size	33
Fig. 3.13 Average Total Volume of Oil Spilled over Lifetime - Production Sources	35
Fig. 3.14 Average Total Volume of Oil Spilled over Lifetime - Transportation Sources	36
Fig. 3.15 Contribution to Average Total Spill Volume versus Spill Source	37
Fig. 3.16 Average Maximum Volume Spilled from a Single Incident in the Lifetime	38
Fig. 3.17 Contribution of Maximum Spill Volume to Total Spill Volume	39

Appendices

Appendix A – Glossary of Major Technical Terms Used in Study

Appendix B – List of Workshop and Interview Participants

Appendix C – Conceptual Descriptions for Study Systems

- C.1 Spar General Arrangement Drawings and Operation Schedule
- C.2 TLP General Arrangement Drawings and Operation Schedule
- C.3 Hub/Host Jacket General Arrangement Drawings and Operation Schedule

C.4 FPSO General Arrangement Drawings and Operation Schedule

Appendix D – Methodology for Risk Calculations

Appendix E – Fatality Risk Assessments

- E.1 Fatality Risk Assessment for Spar
- E.2 Fatality Risk Assessment for TLP
- E.3 Fatality Risk Assessment for Hub/Host Jacket
- E.4 Fatality Risk Assessment for FPSO

Appendix F – Oil Spill Risk Assessments

- F.1 Oil Spill Risk Assessment for Spar F.2 Oil Spill Risk Assessment for TLP
- F.3 Oil Spill Risk Assessment for Hub/Host Jacket
- F.4 Oil Spill Risk Assessment for FPSO

EXECUTIVE SUMMARY

A quantitative risk analysis was performed to assess and compare oil spill and fatality risks for four representative deepwater production systems in the Gulf of Mexico. Three of the study system types have already been operated successfully in the Gulf of Mexico: two floating production systems in deepwater with oil pipelines, a Spar and a Tension Leg Platform (TLP); and a shallow-water jacket serving as a hub and host to deepwater production. One of the study system types has not been used in the Gulf of Mexico: a tanker-based Floating Production Storage and Offloading (FPSO) system with oil transportation to shore via shuttle tankers. The objective of this analysis was to understand and compare the risks of the FPSO with those for currently acceptable alternatives for deepwater production.

Conceptual system descriptions that are representative of existing and typical technology in the Gulf of Mexico were developed for the four systems. The scope of these descriptions included the entire production systems and operations from the wells through the transport of product to the shore.

Three risk measures were assessed and analyzed for each system: the total number of fatalities in a 20-year production life as a measure of the human safety risk, the total volume of oil spilled in a 20-year production life as a measure of the chronic environmental risk, and the maximum volume spilled in a single incident in a 20-year production life as a measure of the acute environmental risk. The process of developing the conceptual descriptions for the systems and then evaluating the risks has drawn on expertise from all facets of oil and gas production, including operators, contractors, manufacturers, class societies and regulators.

Conclusions

The following major conclusions have been drawn from the results of this analysis:

- 1. There are no significant differences in the fatality risks among the four study systems.
- 2. There are no significant differences in the oil-spill risks among the four study systems.
- 3. The average total volume of oil spilled during the facility lifetime will be dominated by rare, large spills rather than frequent, small spills.
- 4. The major contribution to the oil spill risks for all systems is the transportation of oil from the production facility to the shore terminal by either pipelines or shuttle tankers. Spill risks for pipelines and shuttle tankers are comparable, although the frequencies and sizes of possible spills are different for pipelines versus shuttle tankers. The spill risks for pipelines are dominated by the possibility of spills between 10,000 and 100,000 bbl in size that are expected to occur once every 600 years on average. The spill risks for shuttle tankers are dominated by the possibility of spills between 100,000 and 500,000 bbl in size that are expected to occur on average once every 4,500 years.
- 5. The confidence intervals in predicted oil spill volumes range over about an order of magnitude, reflecting the limited quantity and quality of historical data available to estimate frequencies for rare events.

Therefore, the expected risks associated with the FPSO are comparable to those for already accepted alternatives for deepwater production, including a Spar, a TLP and a shallow-water

jacket serving as a hub and a host to deepwater production.

Recommendations

The following recommendations have been developed from this work:

- 1. The results from this study should be periodically updated because they provide a valuable baseline for future analyses of risk in the Gulf of Mexico. The three measures of risk used in this study can all be readily measured and tracked for new and existing deepwater production facilities in the Gulf of Mexico.
- 2. The quality of existing data sets for the Gulf of Mexico should be improved so that they are of greater value in future risk analyses. First, the type and quality of data that are currently collected should be evaluated, and any changes recommended from this evaluation should be implemented in a timely manner. Second, single agencies should be responsible for tracking and compiling similar types of data. Third, all data records should be reviewed annually by the industry and regulators to improve the clarity, quality and usefulness of the information in these records. Finally, the data should be published annually in a clear and an easily accessible format.
- 3. Additional information about the populations of offshore facilities and operations in the Gulf of Mexico should be collected on an annual basis. Specifically, the following information from federal and state waters in the Gulf of Mexico would be valuable: the length of active pipelines operating per year, the number of tanker on-loading and offloading events in ports and lightering zones per year, and the number of man-hours in production-related activities, supply vessel operations and tanker operations per year.
- 4. Uncertainty in the predicted performance for these four study systems should be considered carefully in drawing conclusions from and applying the results from this study.
- 5. The process used on this project to assess risks has been effective in obtaining valuable technical information from industry and regulators, and should be considered in supporting other analyses of new technology in the Gulf of Mexico.

1. INTRODUCTION

1.1 Background

To date, deepwater (more than 3,000-foot water depth) reserves in the Gulf of Mexico have been developed primarily with the following types of production systems: Spars; Tension Leg Platforms (TLP's); and Subsea Well Systems tied back to these floating systems or to shallow water jackets that may also serve as hubs for other deepwater production systems (Hub/Host Jacket). All three of these types of systems rely on pipelines to transport oil to shore. A potentially attractive alternative to these systems is a tanker-based Floating Production Storage and Offloading (FPSO) system with oil transportation to shore via shuttle tankers. Floating Production Storage and Offloading systems have been used in many areas of the world, but not the Gulf of Mexico.

The Minerals Management Service (MMS) funded the Offshore Technology Research Center (a National Science Foundation engineering research center located at Texas A&M University and The University of Texas at Austin), with EQE International, Inc. as a subcontractor, to conduct a Comparative Risk Analysis (CRA). The purpose of this study was to assess and compare the system risks for FPSO's with those for existing deepwater production systems, specifically TLP's, Spars and Hub/Host Jackets. This study was conducted concurrently with an Environmental Impact Statement study for FPSO's in the Gulf of Mexico (MMS 2000c). Information from both the Comparative Risk Analysis and the Environmental Impact Statement will be used by the MMS in developing policies concerning the use of FPSO's in the Gulf of Mexico.

1.2 Objectives

The primary objectives of the Comparative Risk Analysis were the following:

- 1. Assess and compare the system risks for FPSO's with those for existing deepwater production systems, specifically Spars, TLP's and Hub/Host Jackets; and
- 2. Understand the contributions to system risk by subsystems and phases of operation.

1.3 Organization of Report

This report is divided into five sections. Following this introduction, the approach is described in Section 2. Results are presented in Section 3 and conclusions and recommendations are given in Section 4. Acknowledgments are made in Section 5. A bibliography that includes all references cited in this report is provided in Section 6. In addition, there are six appendices with information supporting the report. A glossary of major technical terms used in this study is provided in Appendix A. Information about technical experts who participated in this study is listed in Appendix B. Detailed descriptions for the four production systems assessed in this project are contained in Appendix C. A mathematical description of the framework used in the quantitative risk assessment is provided in Appendix D. Finally, the detailed information for the fatality and oil-spill risk assessments is contained in Appendices E and F, respectively.

2. APPROACH

The approach used to conduct the Comparative Risk Analysis was developed with the following goals in mind:

- 1. Provide the MMS with information that can be used for a consistent and objective comparison of the risks associated with the four production systems;
- Provide the MMS with a level of detail necessary to compare and understand overall system risks for typical production systems; and
- 3. Incorporate industry data, experience and expertise to the greatest extent possible into evaluating the risks.

The approach used to achieve these goals involved teams of experts and a series of workshops.

2.1 Participation of Technical Experts

The purpose of this study was to compare the risks of several deepwater production systems. Risk is a measure of failures and the consequences of those failures. Historical data on actual failures, particularly those very infrequent failures with large consequences that tend to drive overall risks, are scarce, and the risks must be estimated by other means. For this study, we chose to directly involve the expertise and experiences of engineers involved in the design and operation of these production systems. The Deepstar consortia facilitated and coordinated the participation of industry engineers in this project.

There was active participation by experienced engineers representing all segments of the industry, including oil companies, consultants, manufacturers, contractors, classification societies, as well as the regulatory agencies. They brought a detailed understanding of the nature of these risks as well as design and operational options to manage these risks. Many of the industry engineers who were involved in this study had also participated in risk studies within their companies, which are often undertaken either in the design of a specific system or to compare several systems in selecting the most appropriate system for a given project. The practical experience and perspective that these engineers brought to the study was deemed critical to the success of this study.

Separate teams were formed for each of the four production systems, the Spar, the TLP, the Hub/Host Jacket, and the FPSO. These teams were made up of invited participants from industry and representatives from the MMS and the U. S. Coast Guard (USCG), the government agencies responsible for regulating the deployment and operation of deepwater production systems. The teams were designed to include engineers with expertise and experience in the design, construction and operation of the overall systems as well as the subsystems and components that make up the systems. There was an average of about ten members per team. The companies that provided one or more participants to these system teams are listed in Table 2.1.

Oil Companies	Consultants & Contractors	Classification Societies
BP Amoco	EQE	ABS
Chevron	ABB	Lloyd's Register
Conoco	Atlantia	DNV
Elf	FMC	
ExxonMobil	Paragon	
Marathon	McDermott	
Oxy	Navion	
Shell		
Statoil		
Texaco		

 Table 2.1 Industry Sources for Workshop Participants

It is worth noting that these companies represent a large measure of the offshore industry's deepwater experience and expertise. They have been very active in the design, operation, and/or certification of deepwater production systems in the Gulf of Mexico and elsewhere. Of particular importance is their direct involvement and experience with the deepwater production systems used in this study: Spars, TLP's, Hub/Host Jackets, and FPSO's.

The teams were balanced to include members with overall systems expertise as well as those with expertise in various sub-systems, components, and operations, including:

- Platform and subsea well systems;
- Drilling and well intervention operations for both platform and subsea wells;
- Topsides (processing facilities, equipment);
- Production operations;

- Pipelines and flowlines;
- Tanker and FPSO design and operations;
- Structures (hulls, decks, mooring systems, riser systems);
- Helicopter operations (personnel transport);
- Supply boat operations (material & personnel transport); and
- Diving operations.

Thus the teams were able to focus on risks at the sub-system, component, and operational levels as well as to focus on overall system risks.

Additional contributions from industry included input on detailed hazard identifications through participation in formal specialty interview sessions, and various other interactions in which individuals provided data, input, or advice. Technical experts from the companies and organizations listed in Table 2.2 as well as from most of those listed previously in Table 2.1 contributed in these areas.

Skaugen Petrotrans	Association of Diving Contractors
SBM IMODCO	Oceaneering
Global Maritime	Cameron
Aker	Mentor
R&B Falcon	Bay Ltd.
Transocean SedcoForex	Spirit Energy
Edison Chouest	Horizon Engineering
Tidewater Marine	Kerr McGee
HSAC	Mathews Daniels
Air Logistics	LOOP
PHI	State of Louisiana
ERA Aviation	

Table 2.2 Additional Industry Sources for Technical Expertise

In all, over 100 of the industry's more experienced engineers directly participated in the study either through the system teams and workshops, or the specialty interview sessions. The names and affiliations of these participants are summarized in Appendix B. The average experience level for these experts was approximately 20 years.

The level of participation by the industry experts was substantial. Their direct involvement in the workshops (preparation, participation, and review) and the specialty interviews involved an

estimated 5,000 man-hours. Further, these experts often sought additional input and review from colleagues in their companies, and gathered additional relevant information for the study.

2.2 Workshop Process

A flowchart for the workshops is shown in Fig. 2.1. Individual, one-day workshops were conducted for each system during the first three phases (Workshops #1 to #3). The final workshop was held collectively over a two-day period. The activities conducted between workshops are also indicated on Fig. 2.1.

Fig. 2.1 Flowchart for Workshop Process

The objective of Workshop #1 was to develop conceptual system descriptions for the four production systems. This work included establishing study boundaries in space and time and describing the physical and operational features for each system. Draft system descriptions were distributed to the workshop participants ahead of the workshop and then used as the starting point in the workshop.

The objective of Workshop #2 was to perform hazard identifications for each system. A list of possible adverse events (or initiating events) that could contribute to risk was developed for each study system and organized by sub-system or activity. Detailed hazard identifications were developed through a series of specialty interviews with technical experts before Workshop #2. The participants and topics for these interview sessions are summarized in Appendix B. These detailed lists were then reviewed during Workshop #2 and used to develop a framework for the quantitative risk assessment.

The objective of Workshop #3 was to elicit quantitative information about frequencies and consequences for oil spills and fatalities. A preliminary quantitative risk assessment based entirely on raw data was distributed to the workshop participants before the workshop. This preliminary risk assessment was then refined during Workshop #3 and needs for additional information and studies were identified.

The objective of Workshop #4 was to review and refine the risk assessment. Information from additional studies conducted between Workshops #3 and #4 was incorporated into this review.

The general work processes used for the workshops was as follows. Preliminary information that had been distributed to the participants was reviewed and refined through an open forum process that included time for discussion and developing a consensus regarding the input on risks. The open forum approach encouraged an iterative and synergistic discussion of risks and information from different perspectives. The participation of both the industry and the regulatory agencies helped to provide balance and objectivity in the discussions and input. Consensus was generally readily achieved, but when significant disagreement occurred between participants, votes were taken to achieve a consensus and dissenters' opinions were recorded. The phased and progressive nature of the workshops provided the opportunity to seek and incorporate additional expertise and information as the study progressed and additional needs became apparent. Interim reports summarizing information from each of the first three workshops were distributed to participants after each workshop. These reports provided participants with opportunities for ongoing review and a means to ensure consistency in assumptions and approaches among the different systems. Finally, evaluations were conducted at the completion of the first three sets of workshops to continually improve the process.

2.3 Risk Measures

Risk measures for the study systems were developed using the following criteria:

- The measures of risk should provide relevant and useful input to MMS in their decision making process;
- The measures of risk should be tractable and quantifiable; and
- The measures of risk should be measures that are currently tracked and recorded so that (i) available data can be used to support the results of this risk analysis and (ii) future data can be used to validate and calibrate the results of this risk analysis.

From these criteria, the risk measures listed in Table 2.3 were adopted for this study. The total number of fatalities is intended to measure the human safety risk. The volume of oil spilled is intended to measure the environmental risk. The environmental effects of an oil spill are not considered directly in this study because (1) there is a correlation between the magnitude of environmental damage and the volume of oil spilled; (2) environmental effects are difficult to measure and quantify; and (3) the environmental impacts of oil spills from FPSO's are included in the scope of the Environmental Impact Statement (MMS 2000c). The total volume of oil spilled in the 20-year lifetime is intended to measure chronic environmental risks. The maximum volume of oil spilled in a single incident is intended to measure acute environmental risks. The risk measures in Table 2.3 are practical simplifications that are intended to approximately capture the multitude of risks present.

Risk	Measure of Risk	Unit	
Human Safaty	Total Fatalities over Production	Number of	
Thuman Safety	Lifetime	Fatalities	
Environmental Chronic	Total Volume of Oil Spilled	bbl of Oil	
	over Production Lifetime		
Environmental Agute	Maximum Single Spill Volume	hhl of Oil	
Environmentai – Acute	in Production Lifetime		

Table 2.3 Summary of Risk Measures

These measures of risk were not discounted with time. In addition, each measure was treated separately in comparisons and no attempt was made to combine them into a single measure, such as equivalent cost.

2.4 Descriptions of Study Systems

The following criteria, in order of decreasing importance, were used to develop conceptual descriptions for each of the representative study systems:

- The study systems for the Spar, TLP, and Hub/Host Jacket should be typical of existing systems and technologies that are currently being used in the Gulf of Mexico because these systems and technologies have been approved and therefore represent acceptable risks.
- The study system for the FPSO should be comparable to that already developed for the base case in the Environmental Impact Statement (MMS 2000c) study in order to capitalize on the substantial effort devoted to developing this study basis.
- 3. The study systems should be as comparable to one another as possible so that differences in risks among them represent realistic differences among these types of systems and are not an unintended artifact of the study system descriptions.

As an example of how these criteria were applied, consider a Spar. In order for the study Spar to be as comparable as possible to the study FPSO (criterion 3), which has oil transport via shuttle tankers consistent with the Environmental Impact Statement (criterion 2), the Spar would also have oil storage and oil transport via shuttle tankers. However, while this type of a Spar is possible, it is not typical of existing Spars in the Gulf of Mexico (criterion 1). Therefore, the description for the study Spar did not include oil storage and has oil transport via pipeline.

The first step in the system description process was to establish a time frame for the risk assessment. The intent was to assess risks covering all aspects of offshore production including oil and gas production and processing offshore; drilling and well intervention during production; export of the oil and gas to shore; and transport of personnel to and from shore. The "lifetime" for a study system was defined to start when oil flows through the first production riser and end when the last well is shut in (Fig. 2.2). For this study, a 20-year lifetime was used. Other phases in the actual lifetime for a system, such as construction, system installation, commissioning, decommissioning and system removal, were not included in this risk analysis.

Fig. 2.2 Timeline for Study Systems

The second step in the system description process was to establish physical boundaries for the risk assessment. The study boundaries included the production facility, the pipelines and shuttle tankers used to transport oil to a shore terminal, and the supply vessels and helicopters used to support the production operations. These physical boundaries are shown schematically on Figs. 2.3 through 2.5.

Fig. 2.3 Physical Layout for Study Systems (Plan View)

Fig. 2.4 Schematic of Production Systems for Study Systems (Flow Diagram)

Fig. 2.5 Schematic of Transportation Systems for Study Systems (Flow Diagram)

The third step in the system description process was to define the physical and operational attributes for each system. Detailed descriptions for these attributes are contained in Appendix C, and the major attributes are summarized in Table 2.4. For the Spar, TLP and Hub/Host Jacket, operating experience from the Gulf of Mexico was directly drawn upon in developing the system descriptions. For the FPSO, experience with tanker operations in the Gulf of Mexico was used together with operating experience for FPSO's in other parts of the world, such as the North Sea and the South China Sea. It is important to note that these study systems represent typical or generic systems. Therefore, the range of risks associated with possible variations in hardware and operating practices is not captured in the results of this project.

	Spar	TLP	Hub/Host Jacket	FPSO
Water Depth (ft)	4,000	4,000	600	5,000
Peak Production				
Oil (bopd)	150,000	150,000	50,000	150,000
Gas (scfpd)	200,000	200,000	50,000	200,000
Export				
Oil (bopd)	150,000	150,000	250,000	150,000
Gas (scfpd)	200,000	200,000	550,000	200,000
Wells				
Pre-Drill (MODU)	1	1	1	3
Platform	5	5	5	0
Subsea (MODU)	3	3	3	6
Manning				
Production	30-45	30-45	30-45	30-45
Marine	6	6	0	10
Drilling – Platform	65	65	50	0
Drilling MODU	65	65	65	65

Table 2.4 Summary of Attributes for Study Systems

2.5 Quantitative Risk Assessment

The objective of the quantitative risk assessment was to quantitatively assess the risk measures listed in Table 2.3. These risk measures were quantified by estimating *representative or average values* for each study system. As an example, consider the total volume of oil spilled during the operational lifetime. If a fleet of Spars similar to the one defined in this study were installed and operated for 20 years in the Gulf of Mexico, then the total oil spill risk associated with this type of system would be the average value for the total volume of oil spilled from each Spar (that is, the sum of all the oil spilled from each Spar in its 20 year lifetime divided by the total number of Spars). Likewise, the average values for the maximum volume of oil spilled in a single incident from each Spar and the total number of fatalities on each Spar would represent the other measures of risk.

Since there is an extremely limited experience base in the Gulf of Mexico for the types of production systems being analyzed in this study, it is not possible to obtain average values directly for the total number of fatalities, the total volume of oil spilled, and the maximum volume of oil spilled in a single incident. The goal of this study was to *predict* what the average

values would be (the expected value) if each study system were hypothetically installed and operated in the future in the Gulf of Mexico.

As with any prediction, there is uncertainty that the actual average value for each risk measure (obtained many years in the future) will be equal to the predicted value in this study. The range of possible values for the actual average was represented in this study by two quantities: the expected value and the standard deviation. The *expected value* represents the predicted value for the average, while the *standard deviation* represents the magnitude of uncertainty in the prediction. The expected value and standard deviation can be used to calculate confidence intervals for the prediction. For example, the 90-percent confidence intervals indicate that there is a ninety-percent probability that the actual average will be within this interval.

This section describes how the quantitative risk assessments were conducted through a process of developing preliminary assessments and then refining those assessments using the input of the technical experts (Section 2.1).

2.5.1 Preliminary Risk Assessments

Preliminary (or pre-workshop) quantitative risk assessments played a very important role in this project because they were used to elicit quantitative information from the technical experts during Workshops #3 and #4 (Fig. 2.1). These preliminary risk assessments were developed to be objective, consistent and complete in order to maximize the value of the information obtained from the technical experts during the workshops.

The philosophy adopted in developing the preliminary risk assessments was to extrapolate directly from historical experience in the Gulf of Mexico to predict future performance. The primary data sources were the MMS (MMS 2000a) and the USCG (USCG 1999). The methodology used to develop the preliminary risk assessments had the following steps:

 <u>Summarize Data for Sub-Systems</u>: The data sets were first divided into sub-systems based on the hazard identification work in Workshop #2. These sub-systems are listed in Table 2.5. The data for fatalities were then summarized as the total number of fatalities in the data record for each sub-system. The data for oil spills were further sub-divided into categories by the size of the spill, and then the number of incidents in the data record that had occurred for each spill-size category was compiled. The data for oil spills were divided into categories in order to facilitate the assessment since the range of spill volumes per incident covered five to six orders of magnitude and the frequency distribution for spill sizes was highly skewed.

- 2. <u>Select Exposure Factors for Sub-Systems</u>: The *exposure* for a risk is an indicator of the factors that influence the risk. In this way, the data can be extrapolated to each study system based on the exposure to the risk for that study system. The factors used to express the exposure for each sub-system category were selected based on the hazard identification information work in Workshop #2. These factors are listed in Table 2.5.
- 3. Estimate Frequencies of Occurrence for Sub-Systems: Estimates for the frequencies of occurrence for incidents (from Step 1) relative to the exposure factors (from Step 2) were developed using statistical methods that are described in Appendix D. Both the expected value and the standard deviation for these frequencies were calculated. For the oil spill frequencies, it was assumed that a spill could occur in the next largest spill-size category above the maximum spill size observed in the historical data set.
- 4. <u>Determine Sub-System Exposures for Study Systems</u>: The exposure for each sub-system was determined from the system descriptions in Appendix C.
- 5. <u>Assess Sub-System Risks for Study Systems</u>: The estimated frequencies from the historical data (from Step 3) were then combined with the exposures for the study systems (from Step 4) to assess the sub-system risks. Both an expected value and a standard deviation were calculated for each risk measure (see Appendix D for details).
- <u>Assess System Risks from Sub-System Risks</u>: The final step was to combine the information for the sub-system risks (from Step 5) to assess the total system risk (see Appendix D for details).

Risk Measure		Exposure Factor		
		Production	man-hours	
		man-hours		
Fatalities		Supply Vessels		
		passengers		
		Tanker Operations	docking calls	
		Major Accident	platform-years	
		Well Systems – Platform (or Surface)	bbl produced	
		Well Systems – Subsea	bbl produced	
	Dry Tree (or Production) Risers		riser-years	
	Production	Flowlines	mile-years	
	System Import Flowline Risers		riser-years	
Oil		Topsides	bbl processed	
Spills		Supply Vessels		
		Drilling and Intervention	man-hours	
		Pipelines	mile-years	
	Transportation	Export Pipeline Risers	riser-years	
	System	Shuttle Tanker (Offloading in Field and at Port)	docking calls	
		FPSO Cargo Tank	platform-years	

Table 2.5 Sub-System Categories Used in Risk Assessment

2.5.2 Final Risk Assessments

The preliminary risk assessments were then refined through the workshop process to develop final risk assessments. This process involved the following steps:

- 1. Start with data-based estimates that are as complete as possible (the preliminary risk assessments).
- 2. Evaluate the data sources and refine raw data sets as necessary so that they are relevant for predicting future performance of the study systems. As an example, the data set for oil spills from tankers in the Gulf of Mexico was limited to years after 1990 to account for the positive effects that the Oil Pollution Act of 1990 has had on recent performance and is anticipated to have on future performance.
- 3. Extrapolate predictions of future performance from the data set, applying corrections to the data-based estimates if necessary. As an example, the frequencies for small spills from subsea well systems were increased from the data-based estimates to account for differences between subsea well systems and the platform well systems that dominate the data set.

- 4. Account for all sources of uncertainty in the estimates, including the following:
 - the limited quality and quantity of relevant data records, especially for rare events;
 - the sometimes limited information available on the exposures corresponding to the data sets; and
 - the extrapolation of future performance from historical performance.
- 5. Document the whole process clearly and thoroughly. Appendix E contains the detailed quantitative risk assessments for fatalities and Appendix F contains the detailed quantitative risk assessments for oil spills.

3. RESULTS

The results from the quantitative risk assessment for fatalities (Appendix E) and oil spills (Appendix F) are presented, analyzed and discussed in this section.

3.1 Risks for Fatalities

Results for the average total number of fatalities are shown on Fig. 3.1 for each study system. The results indicate that the fatality risks are very similar among the four study systems (Fig. 3.1). The expected contributions to the total fatality risk are shown on Fig. 3.2.

Fig. 3.1 Average Total Number of Fatalities in Lifetime

Fig. 3.2 Expected Contributions to Average Total Fatalities versus Activity

Production and drilling and well intervention activities dominate the total fatality risk for all of the study systems. This result occurs because these activities require the bulk of the man-hours over a 20-year lifetime. The contribution of drilling and intervention activities to the total fatality risk for the FPSO is not as large as for the other systems because all of the wells on the FPSO are subsea wells that are subjected to less frequent well intervention compared to platform wells. To put the production and drilling and intervention fatality risks in context, 90-percent confidence intervals for the frequency of fatalities per man-hour worked are summarized in Table 3.1. The magnitudes of these rates are comparable to those reported for common industrial activities (AIChE 1989) and for the oil and gas industry throughout the world (OGP 1999b).

Activity	Fatal Accident Rate (fatalities	Fatal Incident Rate (fatalities per	
Acuvity	per 100 million man-hours)	200,000 man-hours)	
Production	4 to 13	0.0078 to 0.026	
Drilling and Intervention	11 to 18	0.022 to 0.035	

Table 3.1 Summary of Fatality Rates (90-Percent Confidence Intervals)

3.2 Risks for Oil Spills

The results for the oil spill risks are presented and discussed in this section. First, the frequencies for different spill sizes are addressed. Next, the average total volume of oil spilled and the maximum volume spilled in a single incident over the lifetime are addressed.

3.2.1 Frequencies of Spills

The frequencies of spills from production and transportation are first presented and discussed, and then the frequencies of spills from all sources are addressed.

3.2.1.1 Frequencies of Production Spills

The annual frequencies for spills from production (Table 2.3) are shown on Fig. 3.3 for each of the study systems. Note that the frequency of spills tends to decrease as the spill size increases. Also, note that the relative magnitude of uncertainty in the estimated frequency increases as the spill size increases. This relative increase in uncertainty occurs because large spills are rare events, so there are few occurrences available from which to estimate frequencies.

The information on Fig. 3.3 highlights the similarities and differences among the systems regarding oil spills from production. First, the Spar and the TLP are indistinguishable. This result is reasonable in that the elements of the designs on both systems that affect the potential for oil spills from production are nearly identical on these two study systems (Fig. 2.4).

Second, the Hub/Host Jacket tends to have smaller spill frequencies from production than the Spar, TLP and FPSO for spill sizes less than 1,000 bbl (Fig. 3.3). This difference is due to the

smaller indigenous production rate on the shallow-water Hub/Host Jacket versus the deepwater floating production systems (Table 2.2).

Fig. 3.3 Annual Frequency for Production Spills versus Spill Size

Third, the frequency of very small spills (less than 10 bbl) on the FPSO is less than that on the Spar and TLP, even though the production rates are similar on all of these study systems. This difference is due to the large deck area and the solid decking that exist on an FPSO; the deck would contain most small spills.

Fourth, the frequency of spills between 100 and 10,000 bbl is slightly larger for the FPSO versus the other systems. This relative difference is because the FPSO has more subsea wells than the

other systems; subsea wells were considered to have a higher leak frequency than platform wells because of a greater potential for sand erosion and cutouts due to high flow rates and detection difficulties for sand. In addition, the FPSO has a greater number of flowlines and flowline risers, which both contribute to the frequency of spills between 100 and 10,000 bbl.

Fifth, the Spar and the TLP have the potential for very large spills (greater than 10,000 bbl), although the frequency for these spills is very small (Fig. 3.3). The potential source for these very large spills on the Spar and TLP is the dry tree risers. This risk does not exist on the FPSO study system because the trees that control the reservoir pressure and flow are on the seafloor (wet trees) rather than at the surface (dry trees), and it is negligible for the Hub/Host Jacket study system because of the lack of movement for this non-floating system.

A comparison with published information for the frequency of large spills from production is shown on Fig. 3.4 (note that CRA denotes this Comparative Risk Analysis). Anderson and LaBelle (1994) report a frequency for spills greater than 1,000 bbl in size. Their frequency was estimated using spill data from offshore platforms operating in the United States between the years 1974 and 1992. They report their frequency on the basis of the volume produced. In order to develop Fig. 3.4, this frequency has been converted to an annual frequency for the study systems using the total volume of oil produced in the 20-year lifetime for each system.

The estimated frequencies for the study systems are less than the values obtained from Anderson and LaBelle (Fig. 3.4). There are two reasons for this result. First, two different data sets have been used. In the CRA project, data before 1990 were discarded due to the implementation of new regulations in 1990 (API RP14C 1998), which improved operating procedures on platforms (Appendix F). The Anderson and LaBelle data set extends back to 1974. Second, the CRA study systems are not representative of conventional, shallow-water platforms in the United States, which dominate the population of platforms in the Anderson and LaBelle data set. Note that the agreement between the CRA and Anderson and LaBelle is best for the Hub/Host Jacket study system (Fig. 3.4), which is most similar to the platforms in the Anderson and LaBelle data set.

Fig. 3.4 Comparison of Production Spill (>1,000 bbl) Frequencies with Published Data

3.2.1.2 Frequencies of Transportation Spills

The annual frequencies for spills from transportation (Table 2.3) are shown on Fig. 3.5 for each of the study systems. The results highlight the similarities and differences among the systems regarding oil spills from transportation.

First, compare the systems with pipelines. The Spar and the TLP are indistinguishable. This result is reasonable in that the elements of the designs on both systems that affect the potential for oil spills from transportation are nearly identical on these two study systems (Fig. 2.5).

Fig. 3.5 Annual Frequency for Transportation Spills versus Spill Size

The Hub/Host Jacket has slightly smaller spill frequencies from its pipeline than the Spar and TLP (Fig. 3.5). This difference is because there is a shorter length of pipeline exposed for the Hub/Host Jacket due to the shorter distance to the shore (Fig. 2.3). In addition, there is relatively less uncertainty in the estimated spill frequencies for the Hub/Host Jacket for spills less than 1,000 bbl (Fig. 3.5). The greater uncertainty for the Spar and TLP is due to the potential for spills from the more flexible steel catenary export pipeline risers versus the more rigid risers on fixed jackets. The uncertainty for the Spar and TLP reflects that there are limited data concerning the performance of these risers in deepwater applications.

Second, compare the two different types of transportation systems. There are notable differences between the pipelines for the Spar, TLP and Hub/Host Jacket and in-field storage and shuttle tanker system for the FPSO. For very small spill sizes (less than 10 bbl), the frequency of spills for the FPSO is greater than from pipelines due to the potential for spills during offloading from hoses and valves (Fig. 3.5). For spill sizes between 1,000 and 100,000 bbl, the annual frequencies of spills for the shuttle tanker are smaller than the annual frequencies for pipelines (Fig. 3.5). One reason for this difference is that the potential for spills from the pipeline remains a constant as long as there is oil in the pipeline, regardless of the production rate. However, the potential for spills from the shuttle tanker will go down as the production rate decreases since fewer offloading events are required. Lastly, very large spill sizes (greater than 100,000 bbl) are not considered possible for pipelines due to operational and physical constraints (Appendix F), while they are possible although infrequent for the FPSO. A spill between 100,000 and 500,000 bbl represents a major loss from the Shuttle tanker due to a collision or explosion.

A comparison with published information for the frequency of large spills from transportation is shown on Fig. 3.6. Anderson and LaBelle (1994) report frequencies for spills greater than 1,000 bbl in size from pipelines and tankers. Their frequencies were estimated using spill data from offshore operations in the United States between the years 1974 and 1992. They report their frequency on the basis of the volume produced. In order to develop Fig. 3.6, this frequency has been converted to an annual frequency for the study systems using the total volume of oil produced in the 20-year lifetime for each system.

The estimated frequency for the Hub/Host Jacket is comparable to that from Anderson and LaBelle (Fig. 3.6). This result is reasonable since the pipeline from the Hub/Host Jacket is representative of the conventional, shallow-water pipelines that are in the Anderson and LaBelle data set. However, the estimated frequencies for the Spar and TLP study systems are less than those obtained from Anderson and LaBelle (Fig. 3.6). The primary reason for this difference is explained with Fig. 3.7. The Anderson and LaBelle frequency for pipeline spills is proportional to the volume produced. However, the potential for spills from pipelines in the CRA study was related to the length of the pipeline and the time of exposure, not the volume of throughput.

Fig. 3.6 Comparison of Transportation Spill (>1,000 bbl) Frequencies with Published Data

The estimated frequency for the FPSO is lower than that from Anderson and LaBelle (Fig. 3.6). This result is due to the different data sets used to estimate the frequency. The Anderson and LaBelle data set extends back to 1974, and includes data from all U. S. coastal and offshore waters. In the CRA project, data before 1992 were discarded due to the implementation of the Oil Pollution Act of 1990 (OPA '90), which improved operating procedures on tankers and probably reduced the frequency of spills. Data for crude oil tankers in the Gulf of Mexico are summarized in Table 3.2 to support the hypothesis that data prior to the passage of OPA '90 are not representative of existing conditions. In addition, data from outside of the Gulf of Mexico were not applied directly in the CRA project to estimate the shuttle tanker risk in the Gulf of

Mexico. An analysis of tanker spills from 1992 to 1999 indicates that frequencies of spills between 50 and 5,000 bbl and of spills greater than 5,000 bbl in the Gulf of Mexico are approximately 40 percent of those for the rest of the world (Appendix F). Tanker spills are considered to be less likely on average in the Gulf of Mexico than in the rest of the world for the following reasons, in order of importance:

- 1. The regulatory environment in the Gulf of Mexico is more restrictive;
- 2. The environmental conditions in the Gulf of Mexico are less severe;
- The consequences of grounding are significantly less due to the lack of rocky coasts in the Gulf of Mexico;
- 4. Shuttle tankers used in the Gulf of Mexico have a smaller parcel size on average;
- 5. The Gulf of Mexico has less congested waterways on average; and
- 6. Newer vessels are used in the Gulf of Mexico due to recent federal regulations.

	Number of Spills ¹					Volume
Year	1-10	10-100	100-1,000	1,000-10,000	10,000-100,000	Spilled
	bbl	bbl	bbl	bbl	bbl	(bbl)
1985	0	1	0	0	0	30
1986	2	1	0	0	0	28
1987	4	0	0	0	0	5
1988	5	1	0	0	1	15,401
1989	3	1	2	0	0	1,146
1990	7	2	1	0	0	266
1991	5	0	0	0	0	17
Sub-Total	26	6	3	0	1	16,893
1992	0	0	0	0	0	0
1993	2	1	1	0	0	191
1994	2	0	0	0	0	8
1995	0	0	1	0	0	179
1996	0	0	0	0	0	0
1997	1	0	0	0	0	2
1998	1	1	0	0	0	22
1999	1	0	0	0	0	9
Sub-Total	7	2	2	0	0	411

Table 3.2 Summary of Oil Spills from Crude Tankers in Gulf of Mexico

¹Note: Data from USCG (1999).

Fig. 3.7 Comparison of Pipeline Spill Frequencies with Published Data

3.2.1.3 Frequencies of Spills from All Sources

The annual frequencies for spills from all sources, including production and transportation, are shown on Fig. 3.8 for each of the study systems. To help in interpreting this figure, the relative contributions of production and transportation to the total frequencies are shown on Figs. 3.9 and 3.10. The frequencies for spills are generally dominated by production-related spills for spill sizes up to 1,000 bbl and by transportation-related spills for spill sizes greater than 1,000 bbl. Therefore, the similarities and differences among the study systems are related to those for

production for spills less than 1,000 bbl (Fig. 3.3) and to those for transportation for spills greater than 1,000 bbl (Fig. 3.5). Note that the Spar and TLP are indistinguishable for all spill sizes.

Fig. 3.8 Annual Frequency for Spills from All Sources versus Spill Size

Fig. 3.9 Contribution of Production to Annual Frequency for Each Spill Size

Fig. 3.10 Contribution of Transportation to Annual Frequency for Each Spill Size

3.2.2 Total Volume of Oil Spilled over Lifetime

Results for the average total volume are shown on Fig. 3.11 for each study system. These results indicate that the systems provide very comparable risks. The risk for the Hub/Host Jacket is slightly smaller than the risks for the other systems because it has a smaller production rate and a shorter transportation distance to the shore. The risks for all of the deepwater systems (Spar, TLP and FPSO) are nearly identical even though the frequencies for different spill sizes are not identical (Fig. 3.8). This result occurs because the risk is a measure of both frequency and consequence (spill size). While very large spills (greater than 100,000 bbl) are more likely with

the FPSO than with the Spar or TLP, the annual frequencies are still small. Furthermore, the frequencies for spills less than 100,000 bbl for the FPSO are generally smaller than those for the TLP or Spar (Fig. 3.8). Therefore, the risks for the Spar, TLP and FPSO are comparable.

Fig. 3.11 Average Total Volume of Oil Spilled over Lifetime – All Sources

In order to facilitate interpretation of the results on Fig. 3.11, the relative contribution of each spill-category to the total volume spilled is shown on Fig. 3.12. Note that the chronic environmental risk is dominated by large spills (greater than 1,000 bbl), which are low frequency but high consequence events. Therefore, most of the systems in a fleet of study systems will have small volumes of oil spilled. Occasionally, one of the systems may have a large spill and this large spill will dominate the average for the fleet. To emphasize this point, Table 3.3 summarizes the expected time between spills of different sizes for each of the study systems. Note that most of the risk for the Spar and TLP study systems comes from spills between 10,000

and 100,000 bbl, which are only expected approximately once every 600 years of operation. Furthermore, most of the risk for the FPSO study system comes from spills between 100,000 and 500,000 bbl, which are only expected once every 4,500 years of operation. Table 3.3 and Fig. 3.12 show how the contributions to the risks for the Spar and TLP versus those for the FPSO are different even though the resulting risks are comparable (Fig. 3.11).

Fig. 3.12 Contribution to Average Total Spill Volume versus Spill Size

	Expected Return Period between Spills (years)						
System	1 – 10 bbl	10 – 100 bbl	100 - 1,000 bbl	1,000 - 10,000 bbl	10,000 - 100,000 bbl	100,000 - 500,000 bbl	500,000 - 1,000,000 bbl
Spar	0.8	3	15	60	580	Not Credible	Not Credible
TLP	0.8	3	15	60	580	Not Credible	Not Credible
Hub/Host Jacket	3	8	35	91	920	Not Credible	Not Credible
FPSO	3	3	12	110	2,500	4,700	300,000

Table 3.3 Expected Return Periods for Spills

One effect of the spill risk being dominated by rare, high consequence events is that the confidence intervals in the predicted average oil spill volumes range over nearly an order of magnitude (Fig. 3.11). This uncertainty reflects the typically limited quantity and quality of historical data available to estimate frequencies for rare events. Note that the confidence interval for the FPSO is wider than those for the other systems (Fig. 3.11) because there are relatively fewer data available for FPSO's in the Gulf of Mexico and because the FPSO risk is dominated by very rare events with expected return periods of approximately 4,500 years.

The contributions to the total oil spill risk from different sub-systems are shown on Figs. 3.13 through 3.15. Production, which dominates the smaller spill sizes (Fig. 3.3), does not contribute substantially to the total risk (Fig. 3.13). The main contributor to oil spills from production are related to the processing facilities (topsides on Fig. 3.15). Transportation, which dominates the larger spill sizes (Fig. 3.5), is the main contributor to the total oil spill risk (Fig. 3.14). The main contributors to oil spills from transportation are pipelines and shuttle tankers (Fig. 3.15).

Fig. 3.13 Average Total Volume of Oil Spilled over Lifetime – Production Sources

Fig. 3.14 Average Total Volume of Oil Spilled over Lifetime - Transportation Sources

Fig. 3.15 Contribution to Average Total Spill Volume versus Spill Source

3.2.3 Maximum Single Oil Spill in Lifetime

Results for the average single maximum spill are shown on Fig. 3.16 for each study system. The results indicate that the risks for the different study systems are comparable. Furthermore, these results emphasize that the maximum spill volume from a single incident dominates the average total spill volume. The relative contribution of the maximum spill to the total spill volume is shown on Fig. 3.17, indicating that more than 70 percent of the total is expected to come from a single incident. Finally, the confidence intervals on Fig. 3.16 reflect the uncertainty inherent in estimating frequencies for rare events.

Fig. 3.16 Average Maximum Volume Spilled from a Single Incident in the Lifetime

Fig. 3.17 Contribution of Maximum Spill Volume to Total Spill Volume

3.3 Summary

The quantitative risk results for oil spill and fatalities that were presented in this section lead to the following major conclusions:

- 1. There are no significant differences in the fatality risks among the four study systems.
- 2. There are no significant differences in the oil-spill risks among the four study systems.
- 3. The average total volume of oil spilled during the facility lifetime will be dominated by rare, large spills rather than frequent, small spills.
- 4. The major contribution to the oil spill risks for all systems is the transportation of oil

from the production facility to the shore terminal by either pipelines or shuttle tankers. Spill risks for pipelines and shuttle tankers are comparable, although the frequencies and sizes of possible spills are different for pipelines versus shuttle tankers. The spill risks for pipelines are dominated by the possibility of spills between 10,000 and 100,000 bbl in size that are expected to occur once every 600 years on average. The spill risks for shuttle tankers are dominated by the possibility of spills between 100,000 and 500,000 bbl in size that are expected to occur on average once every 4,500 years.

 The confidence intervals in predicted oil spill volumes range over about an order of magnitude, reflecting the limited quantity and quality of historical data available to estimate frequencies for rare events.

4. CONCLUSIONS AND RECOMMENDATIONS

A quantitative risk analysis was performed to assess and compare oil spill and fatality risks for four representative deepwater production systems in the Gulf of Mexico. Three of the study system types have already been operated successfully in the Gulf of Mexico: two floating production systems in deepwater with oil pipelines, a Spar and a Tension Leg Platform (TLP); and a shallow-water jacket serving as a hub and host to deepwater production. One of the study system types has not been used in the Gulf of Mexico: a tanker-based Floating Production Storage and Offloading (FPSO) system with oil transportation to shore via shuttle tankers. The objective of this analysis was to understand and compare the risks of the FPSO with those for currently acceptable alternatives for deepwater production.

Conceptual system descriptions that are representative of existing and typical technology in the Gulf of Mexico were developed for the four systems. The scope of these descriptions included the entire production systems and operations from the wells through the transport of product to the shore.

Three risk measures were assessed and analyzed for each system: the total number of fatalities in a 20-year production life as a measure of the human safety risk, the total volume of oil spilled in a 20-year production life as a measure of the chronic environmental risk, and the maximum volume spilled in a single incident in a 20-year production life as a measure of the acute environmental risk. The process of developing the conceptual descriptions for the systems and then evaluating the risks has drawn on expertise from all facets of oil and gas production, including operators, contractors, manufacturers, class societies and regulators.

4.1 Conclusions

The following major conclusions have been drawn from the results of this analysis:

- 1. There are no significant differences in the fatality risks among the four study systems.
- 2. There are no significant differences in the oil-spill risks among the four study systems.

- 3. The average total volume of oil spilled during the facility lifetime will be dominated by rare, large spills rather than frequent, small spills.
- 4. The major contribution to the oil spill risks for all systems is the transportation of oil from the production facility to the shore terminal by either pipelines or shuttle tankers. Spill risks for pipelines and shuttle tankers are comparable, although the frequencies and sizes of possible spills are different for pipelines versus shuttle tankers. The spill risks for pipelines are dominated by the possibility of spills between 10,000 and 100,000 bbl in size that are expected to occur once every 600 years on average. The spill risks for shuttle tankers are dominated by the possibility of spills between 100,000 and 500,000 bbl in size that are expected to occur on average once every 4,500 years.
- The confidence intervals in predicted oil spill volumes range over about an order of magnitude, reflecting the limited quantity and quality of historical data available to estimate frequencies for rare events.

Therefore, the expected risks associated with the FPSO are comparable to those for already accepted alternatives for deepwater production, including a Spar, a TLP and a shallow-water jacket serving as a hub and a host to deepwater production.

4.2 Recommendations

The following recommendations have been developed from this work:

- The results from this study should be periodically updated because they provide a valuable baseline for future analyses of risk in the Gulf of Mexico. The three measures of risk used in this study can all be readily measured and tracked for new and existing deepwater production facilities in the Gulf of Mexico.
- 2. The quality of existing data sets for the Gulf of Mexico should be improved so that they are of greater value in future risk analyses. First, the type and quality of data that are currently collected should be evaluated, and any changes recommended from this evaluation should be implemented in a timely manner. Second, single agencies should be responsible for tracking and compiling similar types of data. Third, all data records should be reviewed annually by the industry and regulators to improve the clarity, quality

and usefulness of the information in these records. Finally, the data should be published annually in a clear and an easily accessible format.

- 3. Additional information about the populations of offshore facilities and operations in the Gulf of Mexico should be collected on an annual basis. Specifically, the following information from federal and state waters in the Gulf of Mexico would be valuable: the length of active pipelines operating per year, the number of tanker on-loading and offloading events in ports and lightering zones per year, and the number of man-hours in production-related activities, supply vessel operations and tanker operations per year.
- 4. Uncertainty in the predicted performance for these four study systems should be considered carefully in drawing conclusions from and applying the results from this study.
- 5. The process used on this project to assess risks has been effective in obtaining valuable technical information from industry and regulators, and should be considered in supporting other analyses of new technology in the Gulf of Mexico.

5. ACKNOWLEDGMENTS

The authors wish to acknowledge the Minerals Management Service for funding this project. Specific individuals at MMS who have been instrumental in this study are Paul Martin, Charles Smith, James Regg and Cheryl Anderson. In addition, the following individuals have played key roles in the project: Professor Larry Lake and Research Assistant Jihad Jaber, The University of Texas at Austin; Joe Gebara, EQE International; Lieutenant Commander Bill Daughdrill and Joe Myers, United States Coast Guard; and Allen Verret, Private Consultant. Finally, the Deepstar Consortium has been instrumental in coordinating and facilitating the involvement of industry experts on workshop teams.

6. **BIBLIOGRAPHY**

- AIChE (1989), <u>Chemical Process Quantitative Risk Analysis</u>, Center for Chemical Process Safety, American Institute of Chemical Engineers, New York, New York.
- Anderson, C. M. and LaBelle, R. P. (1994), "Comparative Occurrence Rates for Offshore Oil Spills" Spill Science and Technology Bulletin, Vol. 1, No. 2, 131-141.
- Ang, A. H-S. and Tang, W. H. (1975), <u>Probability Concepts in Engineering Planning and Design:</u> <u>Volume I – Basic Concepts</u>, John Wiley & Sons, New York, New York, 1975.
- Ang, A. H-S. and Tang, W. H. (1984), <u>Probability Concepts in Engineering Planning and Design:</u> Volume II – Decision, Risk, and Reliability, John Wiley & Sons, New York, New York, 1984.
- API RP14C (1998), "Analysis, Design, Installation and Testing of Basic Surface Safety Systems on Offshore Production Platforms," Sixth Edition, American Petroleum Institute, Washington, D.C.
- DNV (1999), <u>Worldwide Offshore Accident Databank Statistical Report 1998</u>, Det Norske Veritas Eindom AS, Norway.
- EQE (1999), "Deepwater Pipeline Repair Failure Frequency Assessment," Draft Report, Prepared for Amoco Corporation by EQE International, Inc.
- Gilbert, R. B. and Ward, E. G. (2000), "Planned Approach for Comparative Risk Analysis of Deepwater Production Systems in the Gulf of Mexico," *Proceedings of OMAE 2000: 19th International Conference on Offshore Mechanics and Arctic Engineering*, New Orleans, Louisiana, in press.
- Gilbert, R. B., Ward, E. G. and Wolford, A. J. (2001), "Preliminary Results from Comparative Risk Analysis of Deepwater Production Systems," *Proceedings of International Conference on Safety and Risk in Engineering*, Malta, in press.
- Intec (1999), "FPSO Historical Record and Offshore Incident Study", CTRS 4102 and 4103, Prepared for Deepstar Phase IV, 4100 Regulatory Committee, Prepared by Intec Engineering, Inc.
- ITOPF (2000), "Historical Data Tanker Oil Spill Statistics," International Tanker Owners Pollution Federation Ltd., Available: www.itopf.com, Accessed: July, 2000.
- Jaber, J. F. (2000), "Comparative Risk Analysis of Four Deepwater oil Production Systems in the Gulf of Mexico," M. S. Thesis, Department of Civil Engineering, The University of Texas at Austin, Austin, Texas.
- Jordan, D. and Poblete, B. R. (1991), "Design Option Safety Assessment (DOSA): Method for the Assessment and Selection of Least Hazardous Design Option," *Proceedings*, First International Conference on Health, Safety and Environment, Society of Petroleum Engineers, The Hague, Netherlands, 579-592.
- Karsan, D. I., Aggarwal, R. K., Nesje, J. D., Bhattacharjee, S., Arney, C. E., Haire, B. M., and Ballesio, J. E. (1999), "Risk Assessment of a Tanker Based Floating Production Storage and Offloading (FPSO) System in Deepwater Gulf of Mexico," *Proceedings*, Offshore Technology Conference, Houston, Texas, OTC 11000.

- MacDonald, A., Cain, M., Aggarwal, R. K., Vivalda, C., and Lie, O. E. (1999), "Collision Risks Associated with FPSOs in Deep Water Gulf of Mexico," *Proceedings*, Offshore Technology Conference, Houston, Texas, OTC 10999.
- MMS (2000a), "MMS OCS Spill Database," Minerals Management Services, Available: cheryl.anderson@mms.gov, Accessed: January, 2000.
- MMS (2000b), "Production Summary Statistics," Minerals Management Service, Available: www.mms.gov, Accessed: January, 2000.
- MMS (2000c), "Proposed Use of Floating Production, Storage, and Offloading Systems On the Gulf of Mexico Outer Continental Shelf, Western and Central Planning Areas, Draft Environmental Impact Statement," Prepared Under MMS Contract 1435-01-99-CT-30962, Minerals Management Service, Gulf of Mexico OCS Region.
- Nesje, J. D., Aggarwal, R. K., Petrauskas, C., Vinnem, J. E., Keolanui, G. L., Hoffman, J., and McDonnell, R. (1999), "Risk Assessment Technology and its Application to Tanker Based Floating Production Storage and Offloading (FPSO) Systems," *Proceedings*, Offshore Technology Conference, Houston, Texas, OTC 10998.
- NRC (1994), <u>Improving the Safety of Marine Pipelines</u>, Marine Board, National Research Council, National Academy Press, Washington, D.C.
- NRC (1998), <u>Oil Spill Risks from Tanks Vessel Lightering</u>, Marine Board, National Research Council, National Academy Press, Washington, D.C.
- NRC (1999), "Query NRC Data Incident Statistics," National Response Center, Available: www.nrc.uscg.mil, Accessed: May, 1999.
- NTSB (1999), "Aviation Accident Statistics," National Transportation Safety Board, Available: www.ntsb.gov/aviation, Accessed: 10/1999.
- OGP (1999a), "Safety Performance of Helicopter Operations in the Oil & Gas Industry, 1998," Report No. 6.83/300, International Association of Oil and Gas Producers, London, England.
- OGP (1999b), "Safety Performance of the Global E&P Industry, 1998," Report No. 6.80/295, International Association of Oil and Gas Producers, London, England.
- Oil Pollution Act of 1990 (OPA '90), 33 USCA Sec. 2701-2761.
- PARLOC 93 (1995), The Update of Loss of Containment Data for Offshore Pipelines, Advanced Mechanics and Engineering Limited.
- Rice, J. A. (1995), Mathematical Statistics and Data Analysis, Second Edition, Duxbury Press.
- Spires, J. B. and McDonnell, R. (2000), "Shuttle Tanker Risk," *Proceedings of the 9th Offshore Symposium*, Texas Section of the Society of Naval Architects and Marine Engineers, Houston, Texas.
- Stahl, B., Shoup, G. J., Geyer, J. F., Vinnem, J. E., Cornell, C. A., and Bea, R. G. (1992), "Methodology for Comparison of Alternative Production Systems (MCAPS)," *Proceedings*, Offshore Technology Conference, Houston, Texas, 389-398.

- Wolford, A. J., Perryman, S. R., Deegan, F. J., Gosch, S. W. and Stahl, B., 1997, "Marlin Deepwater Riser Alternatives Risk Assessment," *Proceedings*, Offshore Technology Conference, Houston, Texas, 231-245.
- USCG (1999), "Marine Casualty and Pollution Database," *CD-ROM*, Subscription Order No. 5441INC, Available: National Technical Information Services, Springfield, Virginia.
- USCG (2000), "Oil Spill Compendium," United States Coast Guard, Available: www.uscg.mil/hq/g-m/nmc/response/stats/map.htm, Accessed: February, 2000.
- Wolford, A. J., et al., "Marlin Deepwater Riser Alternatives Risk Assessment" *Proceedings of Offshore Technology Conference*, Houston, TX, 1997, pp. 231-245.

Appendix A

Glossary of Major Technical Terms Used in System Descriptions

Table A.1 Glossary of Major Technical Terms Used in System DescriptionsA.2

Table A.1 Glossary of Major Terms Used in System Descriptions

Word	Definition		
Docking Call	A call by a tanker or a supply vessel at a port or a production facility to transfer cargo either to or from the vessel.		
Flowline	Piping transporting oil and gas from a subsea tree to a host platform.		
Host	A facility that processes production from a subsea well system.		
Hub	A facility that passes, lifts and/or processes throughput from other platforms to the shore terminal.		
Import/Export Riser	Riser taking import flow from a flowline at the mudline to the floating production system at the surface or export flow from the floating production system to a pipeline at the mudline.		
Jumper	Flexible or fixed piping used to connect subsea well system components (manifolds, trees, flowlines).		
Pipeline	Piping transporting oil or gas from platform to the shore terminal.		
Platform Well System	Well casings and perforations connected to surface trees, manifold and control system.		
Process Equipment	The equipment used to separate oil and gas, de-water oil and gas, treat water, and meter oil and gas, pump oil and compress gas.		
Product Swivel	A coupling between a geo-stationary flowline and rotating flowline on the FPSO that allows fluids to be transferred to or from the subsea wells. A number of these fluid couplings may be vertically stacked to accommodate multiple flowlines.		
Dry Tree Riser	Riser surrounding and protecting production tubing from mudline to surface tree on a floating production system. Production tubing is exposed to reservoir pressure.		
Shuttle Tanker	A tanker used to offload oil from an offshore production facility, transport the oil to the shore terminal, and discharge the oil to the shore terminal.		
Subsea Manifold	Arrangement of valves, pipes and fittings to gather production fluids from multiple subsea trees and direct it into a fewer number of flowlines.		
Subsea Tree	Arrangement of valves, pipes, sensors, fittings and connections to monitor and control production flow and pressure on top of a well at the mudline. Tree is exposed to reservoir pressure.		
Subsea Well System	Well casings and perforations connected to subsea trees, and subsea manifold and control system.		
Surface Tree	Arrangement of valves, pipes, sensors, fittings and connections to monitor and control production flow and pressure at the top of the production tubing on the platform deck. Tree is exposed to reservoir pressure.		
Turret	A two-part, generally circular structure that allows the vessel to weathervane in response to winds, waves and currents. The earth-fixed part is connected to the mooring lines, and the vessel-fixed part is attached to the hull of the FPSO. The two parts are then allowed to rotate with respect to each other by means of one or more sets of lubricated bearings.		
Umbilical	Bundled arrangement of tubing, piping and electrical conductors to transmit control fluid and electrical signals to a subsea well system.		

Appendix B

List of Workshop and Interview Participants

Table B.1.1 Participants in Workshop #1 – Hub/Host Jacket, November 11, 1999	B.2
Table B.1.2 Participants in Workshop #1 - FPSO, November 15, 1999	B.3
Table B.1.3 Participants in Workshop #1 - TLP, November 16, 1999	B.4
Table B.1.4 Participants in Workshop #1 - Spar, November 17, 1999	B.5
Table B.2.1 Participants in Workshop #2 – TLP, March 27, 2000	B.6
Table B.2.2 Participants in Workshop #2 - FPSO, March 27, 2000	B.7
Table B.2.3 Participants in Workshop #2 – Spar, March 29, 2000	B.8
Table B.2.4 Participants in Workshop #2 – Hub/Host Jacket, March 30, 2000	B.9
Table B.3.1 Participants in Workshop #3 – Spar, May 15, 2000	B.10
Table B.3.2 Participants in Workshop #3 – Hub/Host Jacket, May 16, 2000	B.11
Table B.3.3 Participants in Workshop #3 – FPSO, May 17, 2000	B.12
Table B.3.4 Participants in Workshop #3 – TLP, May 18, 2000	B.13
Table B.4.1 Participants in Workshop #4 – FPSO, September 26, 2000	B.14
Table B.4.2 Participants in Workshop #4 – All Systems, September 27, 2000	B.15
Table B.5 Participants in Technical Interview Sessions	B.16

Participant	Affiliation
Malcolm Sharples	ABS
Dirceu Botelho	Chevron
Allen Verrett	Deepstar
Andy Wolford	EQE
Joe Gebara	EQE
Tracy Johnson	EQE
Marty Krafft	FMC/SOFEC
Cyril Arney	Marathon Oil
Charles Smith	MMS
Jim Regg	MMS
Skip Ward	OTRC/TAMU
Bob Gilbert	OTRC/UT
Jim Seery	Oxy USA
Ken Arnold	Paragon
Sandeep Khurana	Paragon
Bob Andring	SIEP/Shell
Chuck White	Statoil
Dave Wisch	Texaco

 Table B.1.1 Participants in Workshop #1 - Hub, November 11, 1999

Participant	Affiliation
Kent Dangtran	ABS
Malcolm Sharples	ABS
Dick Ingels	Chevron
Chuck Steube	Conoco
Allen Verrett	Deepstar
Chris Harper	DNV
Andy Wolford	EQE
Joe Gebara	EQE
Tracy Johnson	EQE
Brett Wilson	Exxon
David Jones	FMC/SOFEC
Marty Krafft	FMC/SOFEC
Andrew Johnstone	Lloyd's Register
Charles Smith	MMS
Paul Martin	MMS
Tor Tangvald	NAVION
Skip Ward	OTRC/TAMU
Bob Gilbert	OTRC/UT
Jim Seery	Oxy USA
Richard Hill	Paragon
Sandeep Khurana	Paragon
Jerry Young	SOFEC
Chuck White	Statoil
Alan Clarke	Texaco
Larry Lake	UT

 Table B.1.2 Participants in Workshop #1 - FPSO, November 15, 1999

Participant	Affiliation
Craig Lee	ABS
Kent Dangtran	ABS
Steve Leverette	Atlantia
Oriol Rijken	Atlantia
Allen Verrett	Deepstar
Chris Harper	DNV
Andy Wolford	EQE
Joe Gebara	EQE
Tracy Johnson	EQE
Brett Wilson	Exxon
Jack Mercier	Global Maritime
Andrew Johnstone	Lloyd's Register
Charles Smith	MMS
Paul Martin	MMS
Tommy Laurendine	MMS
Kay Choate	OTRC/TAMU
Skip Ward	OTRC/TAMU
Bob Gilbert	OTRC/UT
Jim Seery	Oxy USA
Demir Karsan	Paragon
Sandeep Khurana	Paragon
Mike Curole	Shell/SIEP
Chuck White	Statoil
Jihad Jaber	UT

 Table B.1.3 Participants in Workshop #1 - TLP, November 16, 1999

Participant	Affiliation
Bob Bowie	ABS
Kent Dangtran	ABS
Steve Perryman	BPAmoco
Irv Brooks	Chevron
Allen Verrett	Deepstar
Remi Eriksen	DNV
Andy Wolford	EQE
Joe Gebara	EQE
Tracy Johnson	EQE
Brett Wilson	Exxon
Ben Poblete	Lloyd's Register
Felix Dyhrkopp	MMS
Paul Martin	MMS
Kay Choate	OTRC/TAMU
Skip Ward	OTRC/TAMU
Bob Gilbert	OTRC/UT
Jim Seery	Oxy USA
Sandeep Khurana	Paragon
Phil Bohlmann	Shell
Chuck White	Statoil
Jihad Jaber	UT

 Table B.1.4 Participants in Workshop #1 - Spar, November 17, 1999

Participant	Affiliation
Steve Leverette	Atlantia
Hugh Banon	BP
A. J. Verret	Deepstar
Andy Wolford	EQE
Tracy Johnson	EQE
Andrew Johnstone	Lloyd's Register
Tommy Laurendine	MMS
Charles Smith	MMS/TMR
Skip Ward	OTRC/TAMU
Bob Gilbert	OTRC/UT
Mike Curole	Shell
Chuck White	Statoil
Joe Myers	USCG - HQ
Bill Daughdrill	USCG D8
Larry Lake	UT

 Table B.2.1 Participants in Workshop #2 - TLP, March 27, 2000

Participant	Affiliation
Malcolm Sharples	ABS
Dick Ingels	Chevron
Chuck Steube	Conoco
Harry Sharkis	Conoco
A. J. Verret	Deepstar
Andy Wolford	EQE
Tracy Johnson	EQE
Brian Grundmeier	Exxon/Mobil
W. Brett Wilson	Exxon/Mobil
Eric Ringle	FMC
David A. Jones	FMC/SOFEC
Andrew Johnstone	Lloyd's Register
David Eggers	Mentor Subsea
Jim Regg	MMS
Tommy Laurendine	MMS
Charles Smith	MMS/TMR
Tor B. Tangrald	Navion ASA
Skip Ward	OTRC/TAMU
Bob Gilbert	OTRC/UT
Jim Seery	Оху
Rick Meyer	Shell
Chuck White	Statoil
Joe Myers	USCG – HQ
Bill Daughdrill	USCG D8
Jihad Jaber	UT
Larry Lake	UT

 Table B.2.2 Participants in Workshop #2 - FPSO, March 28, 2000

Participant	Affiliation
Matt Tremblay	ABS
Steve Perryman	BP Amoco
Irv Brooks	Chevron
A. J. Verret	Deepstar
Andy Wolford	EQE
Tracy Johnson	EQE
W. Brett Wilson	Exxon/Mobil
Benjamin Poblete	Lloyd's Register
Felix Dyhrkopp	MMS
Charles Smith	MMS/TMR
Skip Ward	OTRC/TAMU
Bob Gilbert	OTRC/UT
Phil Bohlmann	Shell
Francisco Noyola	SparTEC, Inc.
Chuck White	Statoil
Joe Myers	USCG - HQ
Bill Daughdrill	USCG D8

Table B.2.3 Participants in Workshop #2 – Spar, March 29, 2000

Participant	Affiliation
Matt Tremblay	ABS
Andy Wolford	EQE
Tracy Johnson	EQE
Felix Dyhrkopp	MMS
Charles Smith	MMS/TMR
Skip Ward	OTRC/TAMU
Bob Gilbert	OTRC/UT
Bob Andring	Shell
Chuck White	Statoil
Joe Myers	USCG - HQ
Bill Daughdrill	USCG D8

 Table B.2.4 Participants in Workshop #2 – Hub/Host Jacket, March 30, 2000

Participant	Affiliation
Yong Bai	ABS
Irv Brooks	Chevron
Allen Verret	Deepstar
Andy Wolford	EQE
Brett Wilson	Exxon
Ben Poblete	Lloyd's Register
Tommy Laurendine	MMS
Skip Ward	OTRC/TAMU
Bob Gilbert	OTRC/UT
James Seery	Oxy USA
Phil Bohlmann	Shell

Table B.3.1 Participants in Workshop #3 – Spar, May 15, 2000

Participant	Affiliation
Jack Chen	ABS
Allen Verret	Deepstar
Andy Wolford	EQE
Tommy Laurendine	MMS
Skip Ward	OTRC/TAMU
Bob Gilbert	OTRC/UT
Bob Andring	Shell
Dave Wisch	Техасо
Bill Daughdrill	USCG D8
Joe Myers	USCG HQ

Table B.3.2 Participants in Workshop #3 – Hub/Host Jacket, May 16, 2000

Participant	Affiliation
Craig Lee	ABS
Mark Wang	ABS
Dick Ingels	Chevron
Tony Fantauzzi	Chevron
Harry Sharkis	Conoco
Allen Verret	Deepstar
Jerry Spires	DNV
Andy Wolford	EQE
Brett Wilson	Exxon
Brian Grundmeier	Exxon
David Jones	FMC/SOFEC
Andrew Johnstone	Lloyd's Register
David Eggers	McDermott
Charles Smith	MMS
Felix Dyhrkopp	MMS
Jim Regg	MMS
Tor Tangvald	Navion
Skip Ward	OTRC/TAMU
Bob Gilbert	OTRC/UT
Rick Meyer	Shell
Chuck White	Statoil
Alan Clarke	Техасо
Bill Daughdrill	USCG D8
Joe Myers	USCG HQ
Jihad Jaber	UT

Table B.3.3 Participants in Workshop #3 – FPSO, May 17, 2000

Participant	Affiliation
Yong Bai	ABS
Steve Leverette	Atlantia
Allen Verret	Deepstar
Jerry Spires	DNV
Andy Wolford	EQE
Jack Mercier	Global Maritime
Charles Smith	MMS
Felix Dyhrkopp	MMS
Jim Regg	MMS
Skip Ward	OTRC/TAMU
Bob Gilbert	OTRC/UT
Mike Curole	Shell
Chuck White	Statoil
Jihad Jaber	UT

Table B.3.4 Participants in Workshop #3 – TLP, May 18, 2000

Participant	Affiliation	
Mark Wang	ABS	
Bill Scaife	BP	
Dick Ingels	Chevron	
Harry Sharkis	Conoco	
Chuck Steube	Conoco Shipping	
Chuck White	Consultant	
Allen Verret	Deepstar	
Andy Wolford	EQE	
Brett Wilson	Exxon	
David Jones	FMC/SOFEC	
Marty Krafft	FMC/SOFEC	
Andrew Johnstone	Lloyd's Register	
Chris Desmnd	LOOP LLC	
David Eggers	Mentor Subsea	
D. Martin	MMS	
Felix Dyrkopy	MMS	
Jim Regg	MMS	
Tommy Laurendine	MMS	
Skip Ward	OTRC/TAMU	
Bob Gilbert	OTRC/UT	
Jim Seery	OXY	
Rick Meyer	Shell	
Bill Daughdrill	USCG	
Joe Meyers	USCG	
John Cushing	USCG	
Jihad Jaber	UT	
Larry Lake	UT	

 Table B.4.1 Participants in Workshop #4 – FPSO, September 26, 2000

Participant	Affiliation
Steve Leverette	Atlantia
Bill Scaik	BP
Chuck White	Consultant
Allen Verret	Deepstar
J.P. Hurel	Elf Exploration
Brett Wilson	Exxon
Ben Poblete	Lloyd's Register
Charles Smith	MMS
Felix Dyhrkopy	MMS
Jim Regg	MMS
TT Laurendine	MMS
Skip Ward	OTRC/TAMU
Bob Gilbert	OTRC/UT
Jim Seery	OXY
Bob Andring	Shell
Phill Bohlmann	Shell
Rick Meyer	Shell
Dave Wisch	Texaco
Bill Daughdrill	USCG D8
Joe Myers	USCG HQ

 Table B.4.2 Participants in Workshop #4 – All Systems, September 27, 2000

Subject	Participant	Affiliation
Diving and Remotely Operated Vehicles	Ross Saxon	Association of Diving Contractors
	Skipper Strong	Cal Dive
	Charles Royce	Oceaneering
	Jerry Gauthier	Oceaneering
Subsea Production	Grayum Davis	Aker Engineering
	Kerry Kirkland	Aker Engineering
	Tom Kelly	Cameron
	Eric Ringle	FMC
Supply Vessels	Jim Gray	Aker Marine Contractors
	Roger White	Edison Chouest Offshore
	Alan Clarke	Texaco
	Peter Fortier	Tidewater Marine
Helicopters	Carl Brown	Air Logistics
	Ted Winslow	BP Amoco
	Frank Draves	ERA Aviation
	Jacob Hansen	ERA Aviation
	Dick Landrum	Marathon
	Tom Carter	Marathon
	Ken Townsen	PHI
	Virgil Russell	PHI
	Chuck White	Statoil
	Ken Develle	Texaco
Construction	Wayne French	Bay Ltd.
	Jerry Methvin	BP Amoco
	Pat Campbell	McDermott Engineering
	Michael Hessel	Oceaneering International
	Demir Karsan	Paragon Engineering
	Robert Gamble	Spirit Energy
Mobile Offshore Drilling Unit Operations	Lee Nirider	Marathon Oil Co.
	David Eggers	Mentor Subsea Technology Services
	Klaus Backstrom	R&B Falcon
	Earl Shanks	Transocean SedcoForex
Pipelines	Jack Vernon	EOE
	Mariano Hinoiosa	LDEQ
	Alex Alvarado	MMS
	Frans Kopp	Shell
Platform Drilling Rig Operations	Moss Bannerman	Chevron
	Burt Simon	Shell

 Table B.5 Participants in Technical Interview Sessions

Subject	Participant	Affiliation
Well Intervention	John Allen	ABB
	Brian Taylor	Horizon Engineering
	Dennis McDaniel	Kerr McGee
	Doug Devoy	Matthews Daniels
Shuttle Tanker Operations	John Stiff	ABS
	Capt. Ramos	Chevron
	Dick Inglis	Chevron
	Chuck Steube	Conoco
	Bob Wolfram	ExxonMobil
	Chris Jenman	Global Maritime
	John Mercier	Global Maritime
	Peter Lunde	SBM-IMODCO
	Tricia Clark	Skaugen Petrotrans
	Chuck White	Statoil
	Richard Kaser	USCG
	Jeff Ramos	USCG
Structures	Malcolm Sharples	ABS
	Ron De Jong	Aker Maritime
	Yves Delepine	Aker Maritime
	Steve Leverette	Atlantia
	Steve Perryman	BP Amoco
	Frank Puskar	EQE
	Andrew Johnstone	Lloyd's Register
	David Wisch	Texaco
Surface Production	Grayum Davis	Aker Engineering
	Tom Kelly	Cameron
	Jack Vernon	EQE
	Eric Ringle	FMC
	Barry Brasher	Mentor
	Brian Taylor	Texaco
Appendix C

Conceptual Descriptions for Study Systems

Table C.1 Location	C.2
Table C.2 Well Systems	C.3
Table C.3 Risers	C.4
Table C.4 Station Keeping (Off-Vessel Mooring)	C.5
Table C.5 On-Vessel Mooring	C.6
Table C.6 Fluid Transfer System (Riser to Process Manifold)	C.7
Table C.7 Hull	C.8
Table C.8 Production	C.9
Table C.9 Oil Offloading System	C.10
Table C.10 Shuttle Tanker	C.11
Table C.11 Pipelines	C.12
Table C.12 General Layout	C.13
Table C.13 System Operations	C.14
Appendix C.1 Spar General Arrangement Drawings and Operation Schedule	C.15
Appendix C.2 TLP General Arrangement Drawings and Operation Schedule	C.23
Appendix C.3 Hub/Host General Arrangement Drawings and Operation Schedule	C.31
Appendix C.4 FPSO General Arrangement Drawings and Operation Schedule	C.38

Table C.1
Location

Number	Variable	FPSO	SPAR	TLP	HUB
1.1	Water Depth	5,000 feet	4,000 feet	4,000 feet	600 feet
1.2	Distance to Shore Terminals	125 miles	125 miles	125 miles	80 miles

Table C.2 Well Systems

Number	Component	FPSO	SPAR	TLP	HUB
2.1	Well Count and Drill Center	9 Production wells (3 sets of 3 subsea tie- back wells with a single manifold each)	9 Production wells (6 platform wells and 3 subsea tie-back wells with a single manifold)	9 Production wells (6 platform wells and 3 subsea tie-back wells with a single manifold)	9 Production wells (6 platform wells and 3 subsea tie-back wells with a single manifold)
2.2	Trees	Wet	Combination (3 wet trees and 6 dry trees)	Combination (3 wet trees and 6 dry trees)	Combination (3 wet trees and 15 dry trees)
2.3	Gas Lift	No	No	No	No
2.4	Subsea Trees	Horizontal	Horizontal	Horizontal	Horizontal
2.5	Jumpers from Subsea Wells to Manifold	Insulated Steel	Insulated Steel	Insulated Steel	Insulated Steel
2.6	Subsea Manifold	Active	Active	Active	Active
2.7	Distance between Subsea Field and Production Facility	5-15 miles	5-15 miles	5-15 miles	5-15 miles
2.8	Umbilicals to Subsea Trees (hydraulic, chemical, power)	Single multiplex (with annulus vent) for each manifold	Single multiplex (with annulus vent) for each manifold	Single multiplex (with annulus vent) for each manifold	Single multiplex (with annulus vent) for each manifold

Table C.3 Risers

Number	Component	FPSO	SPAR	TLP	HUB
3.1	Dry Tree Risers	Not applicable	6 Top-tension risers (buoyancy cans), dual casing, Vortex Induced Vibration (VIV) suppression as needed	6 Top-tension risers (tensioners), dual casing, VIV suppression as needed	Steel pipe conductors
3.2	Export Pipeline Risers	Steel catenary risers, piggable, VIV suppression as needed	Steel catenary risers, piggable, VIV suppression as needed	Steel catenary risers, piggable, VIV suppression as needed	Steel pipe risers, installed inside framing
3.3	Import Flowline Risers	6 Insulated steel catenary risers, piggable loop, VIV suppression as needed	2 Insulated steel catenary risers, piggable loop, VIV suppression as needed	2 Insulated steel catenary risers, piggable loop, VIV suppression as needed	2 Steel pipe risers, installed inside framing, piggable loop
3.4	Platform Drilling Risers	Not applicable	Top tension risers (buoyancy tanks)	Top tension risers (tensioners)	Steel pipe conductors
3.5	Import Risers from DeepwaterProduction Facilities	Not applicable	Not applicable	Not applicable	Steel pipe risers, installed inside framing

 Table C.4

 Station Keeping (Off-Vessel Mooring)

Number	Component	FPSO	SPAR	TLP	HUB
4.1	Number of Legs/Lines	9 mooring lines in 3 groups of 3 each	16 clustered mooring lines in 4 groups of 4 each	12 tendons with 3 located on each column	4 legs, 8 piles
4.2	Configuration	Catenary	Taut	Vertical Tendons	Leg and skirt piles
4.3	Material	Wire rope/chain	Wire rope/chain	Tubular steel	Steel
4.4	Foundation Type	Suction piles	Suction piles	Driven piles	Driven piles
4.5	Replacement of Mooring Lines	None planned in 20- year life	None planned in 20- year life	None planned in 20- year life	Not Applicable

Table C.5
On-Vessel Mooring

Number	Component	FPSO	SPAR	TLP	HUB
5.1	Positioning for drilling	Not Applicable	Active	None (drill rig skid)	Not Applicable
5.2	Туре	Permanent	Permanent	Permanent	Not Applicable
5.3	Location	Internal turret	External	External (tendon porches)	Not Applicable
5.4	Weather-vaning	Passive	Not Applicable	Not Applicable	Not Applicable
5.5	Bearing System	Roller	Not Applicable	Not Applicable	Not Applicable
5.6	Chain jacks	Removed after installation	Fixed, one per mooring line	Not Applicable	Not Applicable

Number	Component	FPSO	SPAR	TLP	HUB
6.1	Production Fluid Transfer System	Multipass swivel	Flexible jumpers	Flexible jumpers	Steel piping
6.2	Turret to Process System on Hull	Hardened jumper hose from turret	Not Applicable	Not Applicable	Not Applicable
6.3	Export Fluid Transfer System	High pressure, multipass swivel	Rigid piping with flex joint	Rigid piping with flex joint	Steel piping

 Table C.6

 Fluid Transfer System (Riser to Process Manifold)

Table C.7 Hull

Number	Component	FPSO	SPAR	TLP	HUB
7.1	Cargo Storage	1,000,000 barrels	No cargo storage	Not Applicable	Not Applicable
7.2	Ballast capacity	Segregated	Combination (solid ballast in soft tanks and water ballast in hard tanks)	Water ballast	Not Applicable
7.3	Ballast control	Active	Active	Active	Not Applicable
7.4	Туре	Ship-shape	Classic (full cylinder hull)	4 columns with pontoons	Jacket
7.5	Configuration	Double hull	Multiple vertical bulkheads, multiple horizontal decks, cofferdam bulkheads in ship impact zone	Pontoons and columns subdivided into separate water-tight compartments	Space frame
7.6	Marine systems	Marine systems included inside hull	Marine systems included inside hull	Marine systems included inside hull	Not Applicable
7.7	Bilge system	Included	Included	Included	Not Applicable
7.8	Propulsion	No propulsion	Not Applicable	Not Applicable	Not Applicable
7.9	FPSO Thruster Assist	No thrusters	Not Applicable	Not Applicable	Not Applicable
7.10	Tank Inspection Access	Designed to provide safe inspection access to all compartments	Designed to provide safe inspection access to all hard tanks	Designed to provide safe inspection access to all compartments	Not Applicable
7.11	Green water protection	Adequate freeboard and bulwarks as required	Freeboard	Air gap designed to prevent wave in deck	Air gap designed to prevent wave in deck
7.12	Moonpool configuration	Circular turret	Square, central moonpool	Not Applicable	Not Applicable

Table C.8
Production

Number	Component	FPSO	SPAR	TLP	HUB
8.1	Peak Oil Production/ Transshipment	150,000 bopd	150,000 bopd	150,000 bopd	50,000 bopd/ 200,000 bopd transshipment
8.2	Peak Gas Production/ Transshipment	200 MMscfd	200 MMscfd	200 MMscfd	50 MMscfd/ 500 MMscfd transshipment
8.3	Peak Water Production	150,000 bwpd	150,000 bwpd	150,000 bwpd	50,000 bwpd
8.4	Pig launcher/ receivers	Each import/export line	Each import/export line	Each import/export line	Each import/export line
8.5	Trains	Dual train	Dual train	Dual train	Single train
8.6	Separation	3-stage	3-stage	3-stage	3-stage
8.7	Gas Export	Pipeline export	Pipeline export	Pipeline export	Pipeline export
8.8	Oil Export	Shuttle tanker	Pipeline export	Pipeline export	Pipeline export
8.9	Flare	Emergency and maintenance flare	Emergency and maintenance flare	Emergency and maintenance flare	Emergency and maintenance flare
8.10	Water Injection	Not Included	Not Included	Not Included	Not Included
8.11	Gas Lift	Not Included	Not Included	Not Included	Not Included
8.12	Produced Water Disposal	Discharged (EPA NPDES Permit)	Discharged (EPA NPDES Permit)	Discharged (EPA NPDES Permit)	Discharged (EPA NPDES Permit)
8.13	Slug Catcher	Not Applicable	Not Applicable	Not Applicable	Each gas import line
8.14	Metering	Export lines	Export lines	Export lines	Export and import lines
8.15	Compression	3-stage compression	3-stage compression	3-stage compression	3-stage compression

Number	Component	FPSO	SPAR	TLP	HUB
9.1	Offloading configuration.	Tandem	Not Applicable	Not Applicable	Not Applicable
9.2	Cargo Pumps	Conventional pump room	Not Applicable	Not Applicable	Not Applicable
9.3	Offloading Rate	50,000 bph	Not Applicable	Not Applicable	Not Applicable
9.4	Inert gas system	Individual tank isolation capability	Not Applicable	Not Applicable	Not Applicable
9.5	Offloading Hoses	Floating hose	Not Applicable	Not Applicable	Not Applicable

Table C.9 Oil Offloading System

Table C.10 Shuttle Tanker

Number	Component	FPSO	SPAR	TLP	HUB
10.1	Hull Configuration	Double hull	Not Applicable	Not Applicable	Not Applicable
10.2	Capacity	500,000 bbls	Not Applicable	Not Applicable	Not Applicable
10.3	Berthing	Hawser with thruster assist and/or tug	Not Applicable	Not Applicable	Not Applicable
10.4	Shuttle Tanker Destination	St. James-like terminal	Not Applicable	Not Applicable	Not Applicable

Table	C.11
Pipeli	ines

Number	Component	FPSO	SPAR	TLP	Jacket
11.1	Gas Export Pipeline	New pipeline to Hub and existing pipeline to shore	New pipeline to Hub and existing pipeline to shore	New pipeline to Hub and existing pipeline to shore	Existing pipeline to shore
11.2	Gas Pipeline Destination	Empire-like gas terminal	Empire-like gas terminal	Empire-like gas terminal	Empire-like gas terminal
11.3	Oil Export Pipeline	Not Applicable	New pipeline to Hub and existing pipeline to shore	New pipeline to Hub and existing pipeline to shore	Existing pipeline to shore
11.4	Oil Pipeline Destination	Not Applicable	St. James-like terminal	St. James-like terminal	St. James-like terminal

Table C.12General Layout

Number	Component	FPSO	SPAR	TLP	HUB
12.1	Quarters/Flare Location	Quarters stern/flare bow	Quarters upwind/flare downwind	Quarters upwind/flare downwind	Quarters upwind/flare downwind
12.2	Manning Level	30 – 45 process 10 marine	30 – 45 process 6 marine 65 drilling	30 – 45 process 6 marine 65 drilling	30 – 45 process 50 drilling
12.3	Life Boat Arrangement	As per MMS/USCG requirements	Permanent safety craft with 100% of capacity on each of two corners	Permanent safety craft with 100% of capacity on each of two corners	As per MMS/USCG requirements
12.4	Collision Avoidance Warning System	Monitor/Alarm	Non-continuously manned radar	Non-continuously manned radar	Beacon system
12.5	Helicopter Pad	Two helicopters and refueling capability	Two helicopters and refueling capability	Two helicopters and refueling capability	Two helicopters and refueling capability
12.6	Marine Crew	Dedicated Marine Crew	Trained marine crew part of production and operations crew	Trained marine crew part of production and operations crew.	Not Applicable

Number	Component	FPSO	SPAR	TLP	HUB
13.1	Hurricane Abandonment	Yes, except for skeleton marine crew	Yes	Yes	Yes
13.2	Non-Hurricane Evacuation	Primary TEMPSC	Primary TEMPSC	Primary TEMPSC	Primary TEMPSC
13.3	Drilling during Production	Yes from MODU	Yes for both platform rig and MODU	Yes for both platform rig and MODU	Yes for both platform rig and MODU
13.4	Ballast Movement	Yes	Yes	Yes	Not Applicable
13.5	Supply Boat and Service Boat Anchoring Operations	Dynamically positioned supply vessels	Dynamically positioned supply vessels	Dynamically positioned supply vessels	Boat landing/barge bumpers
13.6	Workover Rig	Workover via MODU for all wells	Drill rig replaced by workover rig after drilling program completion; Workover via MODU for subsea wells	Drill rig replaced by workover rig after drilling program completion; Workover via MODU for subsea wells	Drill rig replaced by workover rig after drilling program completion; Workover via MODU for subsea wells
13.7	FPS Relocation for MODU Drilling	Not required	Not required	Not required	Not Applicable
13.8	Diving Operations	Hull inspections	Hull inspections down to 200 feet below water line	Hull inspections	Jacket inspections down to 200 feet below water line
13.9	ROV Operations	Inspections	Inspections and drilling operations	Inspections and drilling operations	Inspections

Table C.13System Operations

Appendix C.1

Spar General Arrangement Drawings and Operation Schedule

Figure C.1.1 General Arrangement for Top of Hull of Spar	C.16
Figure C.1.2 General Arrangement for Lower Deck of Spar	C.17
Figure C.1.3 General Arrangement for Intermediate Deck of Spar	C.18
Figure C.1.4 General Arrangement for Top Deck of Spar	C.19
Figure C.1.5 Schedule of Operations for Spar (First Ten Years)	C.20
Figure C.1.6 Schedule of Operations for Spar (Second Ten Years)	C.21
Table C.1.1 Well Intervention Schedule for Spar	C.22

Figure C.1.1 General Arrangement for Top of Hull of Spar

Figure C.1.2 General Arrangement for Lower Deck of Spar

Figure C.1.3 General Arrangement for Intermediate Deck of Spar

Figure C.1.4 General Arrangement for Top Deck of Spar

Figure C.1.5 Schedule of Operations for Spar (First Ten Years)

Figure C.1.6 Schedule of Operations for Spar (Second Ten Years)

	days	crew	man-days
6 Platform Wells (20 years)	-		_
Slickline (3 per well-year @ 5 days)	1800	4	7200
Coiled Tubing (3/4 per well-yr @ 20 days)	1800	8	14400
Hydraulic (3/4 per well-yr @ 20 days)	1800	8	14400
Change out (1/3 per well-yr @ 50 days)	2000	40	80000
Recompletion (1/5 per well-yr @ 50 days)	1200	40	48000
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520	40	20800
Average Platform Crew Size (20 years)			25
3 Subsea Wells (12 years)			
Coiled Tubing (1/4 per well-yr @ 20 days)	180	4	720
Hydraulic (1/5 per well-yr @ 20 days)	144	8	1152
Change out (1/8 per well-yr @ 50 days)	225	8	1800
Recompletion (1/10 per well-yr @ 50 days)	180	40	7200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156	40	6240
Replace Wellhead (1/12 per well-yr @ 65 days)	195	40	7800
Average MODU Crew Size (12 years)			6

Table C.1.1 Well Intervention Schedule for Spar

Appendix C.2

TLP General Arrangement Drawings and Operation Schedule

. C.24
. C.25
. C.26
. C.27
. C.28
. C.29
. C.30

Figure C.2.1 General Arrangement for Top of Hull of TLP

Figure C.2.2 General Arrangement for Lower Deck of TLP

Figure C.2.3 General Arrangement for Intermediate Deck of TLP

Figure C.2.4 General Arrangement for Upper Deck of TLP

Figure C.2.5 Schedule of Operations for TLP (First Ten Years)

C.28 – TLP Description

TLP Schedule of Operations - Second Ten Years

Figure C.2.6 Schedule of Operations for TLP (Second Ten Years)

C.29 – TLP Description

	days	crew	man-days
6 Platform Wells (20 years)	-		-
Slickline (3 per well-year @ 5 days)	1800	4	7200
Coiled Tubing (3/4 per well-yr @ 20 days)	1800	8	14400
Hydraulic (3/4 per well-yr @ 20 days)	1800	8	14400
Change out (1/3 per well-yr @ 50 days)	2000	40	80000
Recompletion (1/5 per well-yr @ 50 days)	1200	40	48000
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520	40	20800
Average Platform Crew Size (20 years)			25
3 Subsea Wells (12 years)			
Coiled Tubing (1/4 per well-yr @ 20 days)	180	4	720
Hydraulic (1/5 per well-yr @ 20 days)	144	8	1152
Change out (1/8 per well-yr @ 50 days)	225	8	1800
Recompletion (1/10 per well-yr @ 50 days)	180	40	7200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156	40	6240
Replace Wellhead (1/12 per well-yr @ 65 days)	195	40	7800
Average MODU Crew Size (12 years)			6

Table C.2.1 Well Intervention Schedule for TLP

Appendix C.3

Hub/Host Jacket General Arrangement Drawings and Operation Schedule

Figure C.3.1 General Arrangement for Cellar Deck of Hub/Host Jacket	C.32
Figure C.3.2 General Arrangement for Production Deck of Hub/Host Jacket	C.33
Figure C.3.3 General Arrangement for Drilling Deck of Hub/Host Jacket	C.34
Figure C.3.4 Schedule of Operations for Hub/Host Jacket (First Ten Years)	C.35
Figure C.3.5 Schedule of Operations for Hub/Host Jacket (Second Ten Years)	C.36
Table C.3.1 Well Intervention Schedule for Hub/Host Jacket	C.37

Figure C.3.1 General Arrangement for Cellar Deck of Hub/Host Jacket

.

C.32 – Hub/Host Jacket Description

Figure C.3.2 General Arrangement for Production Deck of Hub/Host Jacket

.

C.33 – Hub/Host Jacket Description

Figure C.3.3 General Arrangement for Drilling Deck of Hub/Host Jacket

C.34 – Hub/Host Jacket Description

Hub/Host Schedule of Operations - First Ten Years

Figure C.3.4 Schedule of Operations for Hub/Host Jacket (First Ten Years)

C.35 - Hub/Host Jacket Description

Hub/Host Schedule of Operations - Second Ten Years

Figure C.3.5 Schedule of Operations for Hub/Host Jacket (Second Ten Years)

C.36 - Hub/Host Jacket Description
	days	crew	man-days
6 Platform Wells (20 years)			
Slickline (3 per well-year @ 5 days)	1800	4	7200
Coiled Tubing (3/4 per well-yr @ 20 days)	1800	8	14400
Hydraulic (3/4 per well-yr @ 20 days)	1800	8	14400
Change out (1/3 per well-yr @ 50 days)	2000	40	80000
Recompletion (1/5 per well-yr @ 50 days)	1200	40	48000
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520	40	20800
Average Platform Crew Size (20 years)			25
3 Subsea Wells (12 years)			
Coiled Tubing (1/4 per well-yr @ 20 days)	180	4	720
Hydraulic (1/5 per well-yr @ 20 days)	144	8	1152
Change out (1/8 per well-yr @ 50 days)	225	8	1800
Recompletion (1/10 per well-yr @ 50 days)	180	40	7200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156	40	6240
Replace Wellhead (1/12 per well-yr @ 65 days)	195	40	7800
Average MODU Crew Size (12 years)			6

Table C.3.1 Well Intervention Schedule for Hub/Host Jacket

Appendix C.4

FPSO General Arrangement Drawings and Operation Schedule

Figure C.4.1 General Arrangement for FPSO – Cross Section	C.39
Figure C.4.2 General Arrangement for FPSO – Plan View	C.40
Figure C.4.3 Schedule of Operations for FPSO (First Ten Years)	C.41
Figure C.4.4 Schedule of Operations for FPSO (Second Ten Years)	C.42
Table C.4.1 Well Intervention Schedule for FPSO	C.43

Figure C.4.1 General Arrangement for FPSO - Cross Section

Figure C.4.2 General Arrangement for FPSO – Plan View

FPSO Schedule of Operations - First Ten Years

Figure C.4.3 Schedule of Operations for FPSO (First Ten Years)

FPSO Schedule of Operations - Second Ten Years

Figure C.4.4 Schedule of Operations for FPSO (Second Ten Years)

C.42 – FPSO Description

	days	crew	man-days
6 Subsea Wells (20 years)	-		-
Coiled Tubing (1/4 per well-yr @ 20 days)	600	4	2400
Hydraulic (1/5 per well-yr @ 20 days)	480	8	3840
Change out (1/8 per well-yr @ 50 days)	750	8	6000
Recompletion (1/10 per well-yr @ 50 days)	600	40	24000
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520	40	20800
Replace Wellhead (1/12 per well-yr @ 65 days)	650	40	26000
Average MODU Crew Size (20 years)			11
3 Subsea Wells (12 years)			
Coiled Tubing (1/4 per well-yr @ 20 days)	180	4	720
Hydraulic (1/5 per well-yr @ 20 days)	144	8	1152
Change out (1/8 per well-yr @ 50 days)	225	8	1800
Recompletion (1/10 per well-yr @ 50 days)	180	40	7200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156	40	6240
Replace Wellhead (1/12 per well-yr @ 65 days)	195	40	7800
Average MODU Crew Size (20 years)			6

Table C.4.1 Well Intervention Schedule for FPSO

Appendix D

Methodology for Risk Calculations

D.1. Basic Models Describing Risk Measures	D.2
D.2. Calibration of Risk Models with Historical Data	D.5
D.2.1 Step One – Summarize Data for Sub-Systems	D.5
D.2.2 Step Two – Select Exposure Factors for Sub-Systems	D.7
D.2.3 Step Three – Estimate Frequencies of Occurrence for Sub-Systems from Da	ta D.8
D.2.3.1 Known Exposure in Data Set	D.8
D.2.3.2 Estimated Exposure in Data Set	D.9
D.2.3.3 Multiple Data Sets	D.12
D.3. Application of Calibrated Risk Models to Assess Study System Risks	D.16
D.3.1 Step Four – Determine Sub-System Exposures for Study Systems	D.16
D.3.2 Step Five – Assess Sub-System Risks for Study Systems	D.16
D.3.2.1 Sub-System Risks for Fatalities	D.18
D.3.2.2 Sub-System Risks for Oil Spills	D.19
D.3.3 Step Six – Assess System Risk from Sub-System Risks	D.23
D.3.3.1 System Risks for Fatalities	D.24
D.3.3.2 System Risks for Oil Spills	D.24

List of Tables

Table D.1 Example Record for Production System Showing Risk Measures for Oil Spills	D.4
Table D.2 Sub-System Categories and Exposure Factors Used in Risk Assessment	D.5
Table D.3 Summary of Fatality Data for Gulf of Mexico Production Crews	D.6
Table D.4 Summary of Oil Spill Data for Gulf of Mexico Tankers	D.6
Table D.5 Coefficient of Uncertainty Values to Reflect Uncertainty in Estimates	D.8
Table D.6 Calculations to Estimate Mean Occurrence Rate for Production Fatalities	.D.10
Table D.7 Calculations to Estimate Mean Occurrence Rates for Oil Spills from	
Shuttle Tankers – Data from the Gulf of Mexico	. D.11
Table D.8 Calculations to Estimate Mean Occurrence Rates for Oil Spills from	
Shuttle Tankers – Data from Rest of the World (Outside the Gulf of Mexico).	. D.15
Table D.9 Calculations to Adjust World-Based Estimates for Mean Occurrence Rates for	
Spills from Shuttle Tankers	D 15
Spins nom shuttle Tankers	. D.15
Table D.10 Calculations to Combine Data Sets for World and Gulf of Mexico to	. D.15
Table D.10 Calculations to Combine Data Sets for World and Gulf of Mexico to Estimate Mean Occurrence Rates for Oil Spills from Shuttle Tankers	. D.15 . D.15
Table D.10 Calculations to Combine Data Sets for World and Gulf of Mexico to Estimate Mean Occurrence Rates for Oil Spills from Shuttle Tankers Table D.11 Adjusted Mean Occurrence Rate for Production Crew Fatalities	. D.15 . D.15 . D.17
Table D.10 Calculations to Combine Data Sets for World and Gulf of Mexico to Estimate Mean Occurrence Rates for Oil Spills from Shuttle Tankers Table D.11 Adjusted Mean Occurrence Rate for Production Crew Fatalities Table D.12 Adjusted Mean Occurrence Rates for Shuttle Tanker Spills	. D.15 . D.15 . D.17 . D.18
 Table D.10 Calculations to Combine Data Sets for World and Gulf of Mexico to Estimate Mean Occurrence Rates for Oil Spills from Shuttle Tankers Table D.11 Adjusted Mean Occurrence Rate for Production Crew Fatalities Table D.12 Adjusted Mean Occurrence Rates for Shuttle Tanker Spills Table D.13 Expected Value and Standard Deviation for FPSO Production Crew Fatalities 	. D.15 . D.15 . D.17 . D.18 . D.19
 Table D.10 Calculations to Combine Data Sets for World and Gulf of Mexico to Estimate Mean Occurrence Rates for Oil Spills from Shuttle Tankers Table D.11 Adjusted Mean Occurrence Rate for Production Crew Fatalities Table D.12 Adjusted Mean Occurrence Rates for Shuttle Tanker Spills Table D.13 Expected Value and Standard Deviation for FPSO Production Crew Fatalities Table D.14 Expected Spill Sizes for Spill Size Categories 	. D.15 . D.15 . D.17 . D.18 . D.19 . D.21
 Table D.10 Calculations to Combine Data Sets for World and Gulf of Mexico to Estimate Mean Occurrence Rates for Oil Spills from Shuttle Tankers Table D.11 Adjusted Mean Occurrence Rate for Production Crew Fatalities	. D.15 . D.15 . D.17 . D.18 . D.19 . D.21 . D.22
 Table D.10 Calculations to Combine Data Sets for World and Gulf of Mexico to Estimate Mean Occurrence Rates for Oil Spills from Shuttle Tankers Table D.11 Adjusted Mean Occurrence Rate for Production Crew Fatalities	. D.15 . D.15 . D.17 . D.18 . D.19 . D.21 . D.22 . D.22
 Table D.10 Calculations to Combine Data Sets for World and Gulf of Mexico to Estimate Mean Occurrence Rates for Oil Spills from Shuttle Tankers	. D.15 . D.15 . D.17 . D.18 . D.19 . D.21 . D.22 . D.22 . D.23

List of Figures

Fig. D.1 Example Probability Distributions for Estimated Mean	Occurrence Rates D.11
Fig. D.2 Representative Spill Sizes for Spill Size Categories	D.20

D.1. BASIC MODELS DESCRIBING RISK MEASURES

The models used to assess the risk measures are described in this section. The measures of risk are the total number of fatalities in the lifetime, the total volume of oil spilled in the lifetime, and the maximum volume of oil spilled in a single incident.

The total number of fatalities and the total volume of oil spilled are expressed mathematically by the following equation

$$\text{TOTAL}_{\text{C}} = \sum_{i=0}^{X_{\text{occur}}} \text{Consequence}_i$$
 (D-1)

where $TOTAL_C$ is the total consequence over the lifetime (that is, the the total number of fatalities or the total volume of oil spilled), X_{occur} is the number of occurrences or incidents with a consequence in the lifetime (that is, the number of incidents with a fatality or the number of incidents with an oil spill), and Consequence_i is the individual consequence in each occurrence (that is, the number of fatalities in an incident or the volume of oil spilled in an incident). Table D.1 shows an example of oil spills over the lifetime of a production system to illustrate how Eq. (D-1) is used. Both the number of incidents and the consequence in each incident are random variables because they will not be known for a given production system until it is operated for its lifetime and they will vary from system to system. The risk for a future system is quantified by the expected value (or average) of TOTAL_c, which is obtained by evaluating all of the possible values for X_{occur} and Consequence_i and weighting them by their respective probabilities

$$\mu_{\text{TOTAL}_{C}} = \sum_{x=0}^{\infty} \left[\sum_{i=0}^{x} \left(\int_{0}^{\infty} c_{i} f_{C}(c) dc \right) \right] p_{X}(x) = \mu_{X_{\text{occur}}} \mu_{\text{Consequence}_{i}}$$
(D-2)

where $f_c(c)$ is the probability density function for the consequence in an individual incident, $p_x(x)$ is the probability mass function for the number of occurrences, and μ dentoes the mean or expected value. The average total represents the average value that would be obtained if the totals were averaged for a fleet of systems with the same attributes as the study system (e.g., the

D.2 - Methodology for Risk Calculations

sum of all the oil spilled from each Spar in its 20 year lifetime divided by the total number of Spars in the fleet).

The maximum volume of oil spilled in a single incident is expressed mathematically by the following equation

$$MAX_{c} = max (Consequence_{1}, Consequence_{2}, ..., Consequence_{X_{max}})$$
 (D-3)

Table D.1 shows an example of oil spills over the lifetime of a production facility to illustrate Eq. (D-3). As with the total consequence, the risk for a future system is quantified by the expected value (or average) of MAX_C , which is obtained as follows

$$\mu_{\text{MAX}_{\text{C}}} = \sum_{x=0}^{\infty} \left[\int_{0}^{\infty} c_{\max,x} f_{C_{\max}|x} \left(c_{\max} | x \right) dc_{\max} \right] p_{X} \left(x \right) = \sum_{x=0}^{\infty} \left(\mu_{C_{\max}|x} \right) p_{X} \left(x \right)$$
(D-4)

where $c_{max,x}$ is the maximum consequence in a single incident from a total of x incidents in the lifetime, $f_{C_{max}|x}(c_{max}|x)$ is the probability density function for the maximum consequence in x incidents, and $\mu_{C_{max}|x}$ is the mean or expected value for the maximum consequence if there are x incidents. The average maximum represents the average value that would be obtained if the maximum spill volumes were averaged for a fleet of systems with the same attributes as the study system (e.g., the sum of the maximum spill volumes for each Spar in its 20 year lifetime divided by the total number of Spars in the fleet).

The next two sections describe how the risk measures for the average total consequence and the average maximum consequence in a single incident are estimated using historical data and input from technical experts. These estimates include the expected value for the average, the standard deviation in the average (because there is a finite amount of data available to estimate the average value), confidence intervals for the average.

Date	Volume Spilled
(facility operated from 2005 to 2025)	(bbl)
2/2/2005	1
7/31/2006	2
1/4/2010	1
3/16/2017	10
4/23/2019	1
6/1/2019	1
11/19/2024	5
	TOTAL = 21 bbl
	MAX = 10 bbl

Table D.1 Example Record for Production System Showing Risk Measures for Oil Spills

D.2. CALIBRATION OF RISK MODELS WITH HISTORICAL DATA

This section describes the steps used to calibrate the risk models with historical data. The historical data are divided into the various sub-system categories listed in Table D.2. These sub-system categories were chosen to facilitate understanding, comparing and analyzing the historical data.

Risk Measure	Sub-System Category		Exposure Factor
	Production		man-hours
	Drilling		man-hours
Fatalities	Supply Vessels		docking calls
	Helicopter Transport		passengers
	Tanker Operations		docking calls
	Major Accident		platform-years
		Well Systems – Platform (or Surface)	bbl produced
		Well Systems – Subsea	bbl produced
		Dry Tree (or Production) Risers	riser-years
	Production	Flowlines	mile-years
	System	Import Flowline Risers	riser-years
Oil		Topsides	bbl processed
Spills		Supply Vessels	docking calls
		Drilling and Intervention	man-hours
		Pipelines	mile-years
	Transportation	Export Pipeline Risers	riser-years
	System	Shuttle Tanker (Offloading in Field and at Port)	docking calls
		FPSO Cargo Tank	platform-years

D.2.1 Step One – Summarize Data for Sub-Systems

The first step is to summarize the data for each sub-system category. A detailed description of the data sets used is provided in Jaber (2000).

Since individual fatalities are generally isolated events, each fatality is treated as an individual incident with an expected consequence equal to one (that is, $\mu_{Consequence} = 1.0$ in Eq. D-2).

Therefore, the fatality records are summarized as the total number of fatalities over the data

period, as shown in Table D.3 for production crews. The one exception to this approach is for the sub-system category of a "Major Accident," which by definition involves multiple fatalities. In this case, the expected consequence was estimated to be 30 fatalities.

Table D.3 Summary of Fatality Data for Gulf of Mexico Production Crews

Total Number of Fatalities from 1992-1999	
27	

Unlike fatalities, the range of possible spill volumes per incident spans orders of magnitude, and the frequency distribution for oil spills is highly skewed in that small oil spills are substantially more likely than large oil spills. This highly skewed distribution of spills causes difficulty in estimating the mean spill volume per incident, $\mu_{Consequence_i}$ in Eq. (D-2), and the mean value for the maximum spill volume if there are x incidents, $\mu_{C_{max}|x}$ in Eq. (D-4). In order to overcome this difficulty, a technique known as stratified sampling is used. The range of possible oil spill volumes in an incident is sub-divided into a set of categories, and then the data are binned by category as shown in Table D.4 for oil spills from shuttle tankers. There are two advantages to this approach. First, different causes are generally associated with small spills versus large spills. By sub-dividing the spill sizes, these different causes are treated separately. Second, more precise estimates for $\mu_{Consequence_i}$ and $\mu_{C_{max}|x}$ are possible using stratified sampling (e.g., Rice 1995). The categories of sub-division adopted for this study are the same categories used in the Environmental Impact Statement for FPSOs in the Gulf of Mexico (MMS 2000): 1 – 10 bbl; 10 – 100 bbl; 100 – 1,000 bbl; 1,000 – 10,000 bbl; 10,000 – 100,000 bbl; 100,000 – 500,000 bbl and 500,000 – 1,000,000 bbl.

Spill Size Range (bbl)	Number of Incidents from 1992-1999
1 – 10	15
10 - 100	5
100 - 1,000	3
1,000 - 10,000	0
10,000 - 100,000	0
100,000 - 500,000	0
500,000 - 1,000,000	0

Table D.4 Summary of Oil Spill Data for Gulf of Mexico Tankers

D.2.2 Step Two – Select Exposure Factors for Sub-Systems

The second step is to select exposure factors for fatalities and oil spills for each sub-system so that the historical data can be applied or extrapolated to the study systems. The *exposure* for a risk is an indicator of the factors that influence the risk. In this way, the data can be extrapolated to each study system based on the exposure to the risk for that study system. The factors used to express the exposure for each sub-system category are summarized above in Table D.2. These factors were selected based on precedence and on input from the technical experts.

As an example, the exposure adopted for production crew fatalities is the number of man-hours worked. Based on available information (Appendix E), there were estimated to be 391,000,000 man-hours worked in the Gulf of Mexico between 1992 and 1999 for the data summarized in Table D.3. This estimate is an approximation because it is based on an extrapolation of two-years worth of data and because the available data required an adjustment due to under-reporting (see Appendix E). In order to account for this uncertainty in the exposure associated with the historical data, a coefficient of uncertainty (the standard deviation divided by the mean) is assigned to each estimated exposure factor. Three categories of uncertainty are defined and the coefficient of uncertainty in the estimated exposure, a coefficient of uncertainty of 0.33 is used.

As another example, the exposure adopted for oil spills from shuttle tankers is the number of docking calls in the field and at the shore terminal. Based on available information (Appendix F), there were estimated to be 32,800 docking calls for tankers in lightering zones and at ports between 1992 and 1999 in the Gulf of Mexico. A coefficient of uncertainty of 0.33 is also assigned to this estimate to reflect moderate uncertainty.

Magnitude of Uncertainty	Assigned Coefficient of Uncertainty
None	0.0
Moderate (tens of percent)	0.33
Severe (orders of magnitude)	1.0

Table D.5 Coefficient of Uncertainty Values to Reflect Uncertainty in Estimates

D.2.3 Step Three – Estimate Frequencies of Occurrence for Sub-Systems from Data

The third step is to estimate the frequencies of occurrence for different types of incidents relative to the exposure factors. Occurrences are assumed to follow a Poisson process, which means that occurrences can happen at any point in time and that occurrences are independent of one another. Both of these features are reasonable in modeling fatalities and oil spills over long time periods, and Poisson models are very commonly used for these purposes (e.g., Anderson and LaBelle 1994). There is one parameter that describes a Poisson process: the mean frequency or rate of occurrence, v. This section describes how the mean occurrence rate is estimated from data sets in the following situations: (1) a single data set with a given number of incidents over a known exposure; (2) a single data set with a given number of incidents over an unknown and estimated exposure; and (3) multiple data sets with different exposures.

D.2.3.1 Known Exposure in Data Set

In the case where the exposure in the data set is known with certainty, analytical solutions are available to estimate the mean occurrence rate from the number of incidents (e.g., Ang and Tang 1975). A statistically unbiased estimate (the expected value) for the mean occurrence rate is obtained with the following equation

Expected Value for Mean Occurrence Rate =
$$E(v) = k/n$$
 (D-5)

where k is the effective number of occurrences which is the number of occurrences plus one (k = x + 1 where x is the number of occurrences in the data record) and n is the exposure for the data set. Note that the expected value for the mean occurrence rate is non-zero even if no incidents have occurred in the data record since the effective number of occurrences is the number of

D.8 - Methodology for Risk Calculations

occurrences in the data record plus one. Therefore, input from the technical experts is used to evaluate whether a specific event is possible if it has not occurred in the data record.

There is uncertainty in the estimated mean occurrence rate due to having a limited amount of data (that is, a limited length of exposure in the data set used to estimate the rate). The uncertainty in the estimated rate is expressed as a standard deviation as follows

Standard Deviation in Mean Occurrence Rate = StdDev(v) =
$$\sqrt{\frac{k}{n^2}}$$
 (D-6)

The coefficient of uncertainty for the mean occurrence rate is the standard deviation divided by the expected value. The standard deviation increases as the length of exposure, n, decreases (fewer data are available).

Finally, the distribution for the mean occurrence rate has a gamma distribution described by the mean value from Eq. (D-5) and the standard deviation from Eq. (D-6). This gamma distribution can be used to establish confidence bounds in the estimated value for the mean occurrence rate.

D.2.3.2 Estimated Exposure in Data Set

In the case where the exposure in the data set is uncertain and estimated, approximate solutions have been developed to estimate the mean occurrence rate from the number of incidents (Gilbert et al. 2001). The expected value is approximated as follows

Expected Value for Mean Occurrence Rate =
$$E(v) \simeq (k/\mu_n)(1+\Omega_n^2)$$
 (D-7)

where k is the effective number of occurrences (k = x + 1 where x is the number of occurrences in the data record), μ_n is the estimated exposure for the data set and Ω_n is the coefficient of uncertainty in the estimated exposure. The expected mean occurrence rate reduces to the effective number of occurrences divided by the mean exposure (Eq. D-5) when the exposure is known with certainty ($\Omega_n = 0$). Increasing uncertainty in the exposure increases the expected value for the mean occurrence rate. This result occurs because the estimated rate is more sensitive to a potential decrease in the exposure below the mean exposure than it is to a potential increase in the exposure above the mean exposure.

There is additional uncertainty in the estimated mean occurrence rate due to uncertainty in the exposure. The uncertainty in the estimated rate, expressed as a standard deviation, is obtained from the following approximation

Standard Deviation in Mean Occurrence Rate = StdDev
$$(v) \approx \sqrt{\frac{k}{\mu_n^2} + \left(\frac{k^2}{\mu_n^2} + 3\frac{k}{\mu_n^2}\right)}\Omega_n^2$$
 (D-8)

The standard deviation increases as (1) the length of exposure, μ_n , decreases (fewer data are available) and (2) the uncertainty in the exposure, Ω_n , increases.

Example calculations to estimate the mean occurrence rates for fatalities from production and for oil spills from shuttle tankers are presented in Tables D.6 and D.7, respectively. Notice that the magnitude of uncertainty in the estimated mean rate (the coefficient of uncertainty) increases as the number of incidents in the data set available to estimate the rate decreases. Example probability distributions for the mean occurrence rates for two oil spill categories are shown on Fig. D.1. These distributions, which are gamma distributions with the respective means and standard deviations from Table D.7, can be used to calculate 90-percent confidence bounds for the estimated rates (the 5th and 95th percentiles in Fig. D.1).

Input Information:	
Mean Exposure for 1992-1999, μ_n (man-hr)	3.91E+08
Coefficient of Uncertainty in Exposure, Ω_n	0.33
Number of Fatalities from 1992-1999, x	27
Effective Number of Occurrences, k	28
Statistical Analysis:	
Expected Rate (per man-hr)	7.93E-08
Std. Dev. in Rate (per man-hr)	2.83E-08
Coefficient of Uncertainty in Rate	0.36

Table D.6 Calculations to Estimate Mean Occurrence Rate for Production Fatalities

D.10 - Methodology for Risk Calculations

Table D.7 Calculations to Estimate Mean Occurrence Rates for Oil Spills from Shuttle Tankers – Data from the Gulf of Mexico

Total Exposure (docking calls) in Gulf of Mexico:								
Expected Total Docking Calls 32,800								
Coefficient of Uncert	ainty	0.33						
	5							
Statistical Analysis:								
		Stati	stically-Bas	ed Estimates	for Frequencie	es Based on Raw		
				Γ	Data			
			Expected	Expected	Std. Dev.	Coefficient		
Spill Size Range	Number of		n _{GOM}	Rate	in Rate	of Uncertainty		
(bbl)	Spills	k _{GOM}	(calls)	(per call)	(per call)	in Rate		
1 - 10	15	16	32,800	5.4E-04	2.1E-04	0.39		
10 - 100	5	6	32,800	2.0E-04	1.1E-04	0.52		
100 - 1,000	3	4	32,800	1.4E-04	8.1E-05	0.60		
1,000 - 10,000	0	1	32,800	3.4E-05	3.7E-05	1.08		
10,000 - 100,000	0	GOM Data Combined with World Data to Develop Estimate						
100,000 - 500,000	0	GOM Data Combined with World Data to Develop Estimate						
500,000 - 1,000,000				Not C	Credible			

Fig. D.1 Example Probability Distributions for Estimated Mean Occurrence Rates

D.2.3.3 Multiple Data Sets

In the case of oil spills from shuttle tankers, there are no occurrences of spills greater than 1,000 bbl in the Gulf of Mexico between 1992 and 1999 (Table D.7), yet spills greater than 10,000 bbl and 100,000 bbl are possible. In order to estimate mean occurrence rates for spill sizes greater than 10,000 bbl, the data from the Gulf of Mexico are combined with tanker data from the rest of the world over the period from 1992 to 1999. First, the expected value and coefficient of uncertainty are estimated from the raw world data using Eqs. (D-5) and (D-6), as shown in Table D.8. Note that uncertainties in the estimated exposures for each data set are accounted for when the data sets are combined.

The advantage to including the world-wide data is the longer data record (720,000 docking calls versus 32,800 docking calls), which allows for more precise estimates of the mean occurrence rates for large spills (n is larger in Eq. D-6). The disadvantage to including these data is that the conditions in the rest of the world are not necessarily representative of those in the Gulf of Mexico. Specifically, tanker spills are considered to be more likely on average in the rest of the world than in the Gulf of Mexico for the following reasons, in order of importance:

- the regulatory environment in the Gulf of Mexico is more restrictive than that world wide on average;
- the environmental conditions in the Gulf of Mexico are less severe than those world wide on average;
- the consequences of grounding are significantly less in the Gulf of Mexico compared to those world wide on average due to the lack of rocky coasts in the Gulf of Mexico;
- the shuttle tankers to be used in the Gulf of Mexico will have a smaller parcel size than those used world wide on average;
- the Gulf of Mexico has less congested waterways than those in other ports world wide on average; and
- newer vessels will be used in the Gulf of Mexico (due to requirements for double hulls and other regulations) compared to those used world wide on average.

Before combining the data sets, the data from the rest of the world are adjusted so that they are statistically representative of conditions in the Gulf of Mexico. In order to account for the

D.12 - Methodology for Risk Calculations

differences in tanker operations between the Gulf of Mexico and the world, the statisticallyestimated frequencies for the rest-of-world are reduced by a factor of 1/3 based on input from technical experts. The primary basis for this factor of 1/3 is that the frequencies of spills in the Gulf of Mexico in smaller spill-size categories (50-5,000 bbls and >5,000 bbls) are both approximately 40 percent of the world-wide frequencies between 1992 and 1999. A coefficient of uncertainty of 1.0 is applied to this reduction factor to account for the considerable uncertainty in estimating this reduction factor from data for smaller spill sizes and expert judgement (values as small as 1/10 and even smaller are considered possible for this factor). The adjusted statistics for the data from the rest of the world are presented in Table D.9. The adjusted value for the expected rate is obtained by multiplying the expected values for the adjustment factor and the rate from the raw data. The adjusted value for the coefficient of uncertainty is obtained by taking the square root of the sum of the squared coefficient of uncertainty values for the adjustment factor and for the rate from the raw data.

Finally, the data sets for the Gulf of Mexico and for the rest of the world are combined now that they have the same basis (that is, both are representative of the conditions in the Gulf of Mexico). An equivalent exposure and an equivalent effective number of occurrences for the world data are calculated from the expected value and the coefficient of uncertainty as follows

$$\mu_{n^*} = \frac{\text{Expected Rate}}{\left(\text{Coefficient of Uncertainty x Expected Rate}\right)^2}$$
(D-9)

and

$$k^* = (\text{Expected Rate})\mu_{n^*}$$
 (D-10)

where the asterik indicates an equivalent value. These equations follow from the gamma distribution for the mean occurrence rate. The information from the Gulf of Mexico (no occurrences in the data record) is then combined with the world data as follows using a technique known as Bayesian updating (e.g., Ang and Tang 1975)

$$\mathbf{k}_{\text{total}} = \mathbf{k}_{\text{world}}^* + \mathbf{x}_{\text{GOM}}$$
(D-11)

and

$$\mu_{n_{\text{total}}} = \mu_{n_{\text{world}}^*} + \mu_{n_{\text{GOM}}}$$
(D-12)

where x_{GOM} is the number of occurrences in the data record for the Gulf of Mexico. The coefficient of variation for the total exposure is calculated as follows by assuming that the uncertainties in the exposures for the world and for the Gulf of Mexico are statistically independent

$$\Omega_{n_{\text{total}}} = \frac{\sqrt{\left(\mu_{n_{\text{world}}}^*}\Omega_{n_{\text{world}}}\right)^2 + \left(\mu_{n_{\text{GOM}}}\Omega_{n_{\text{GOM}}}\right)^2}}{\mu_{n_{\text{total}}}}$$
(D-13)

Finally, the combined estimate for the expected value and coefficient of uncertainty in the mean occurrence rate are obtained by plugging k_{total} , $\mu_{n_{total}}$ and $\Omega_{n_{total}}$ into Eqs. (D-7) and (D-8). These calculations are shown in Table D.10.

Table D.8 Calculations to Estimate Mean Occurrence Rates for Oil Spills from Shuttle Tankers – Data from Rest of the World (Outside the Gulf of Mexico)

Total Exposure (docking calls) in Rest of World:								
Expected Total Docking Calls	Expected Total Docking Calls 720,000							
Statistical Analysis:								
			Statistically-Based Estimates for Frequencies based on Raw Data					
			Expected	Expected	Std. Dev.	Coefficient		
Spill Size Range	Number of		n _{world}	Rate	in Rate	of Uncertainty		
(bbl)	Spills	kworld	(calls)	(per call)	(per call)	in Rate		
10,000 - 100,000	10	11	720,000	1.5E-05	4.6E-06	0.30		
100,000 - 500,000	6	7	720,000	9.7E-06	3.7E-06	0.38		

Table D.9 Calculations to Adjust World-Based Estimates for Mean Occurrence Rates for Oil Spills from Shuttle Tankers

	Estimates from Raw Data		Expert-Based Ad	justment Factor	Adjusted Estimates from Data		
	Expected	Coefficient	Expected Value for	Coefficient	Expected	Coefficient	
Spill Size Range	Rate	of Uncertainty	Factor	of Uncertainty	Rate	of Uncertainty	
(bbl)	(per call)	in Rate		in Factor	(per call)	in Rate	
10,000 - 100,000	1.5E-05	0.30	0.33	1.0	5.1E-06	1.04	
100,000 - 500,000	9.7E-06	0.38	0.33	1.0	3.2E-06	1.07	

Table D.10 Calculations to Combine Data Sets for World and Gulf of Mexico to Estimate Mean Occurrence Rates for Oil Spills from Shuttle Tankers

	World Data			Gulf of Mexico Data			Combined Data				
Spill Size Range (bbl)	k^{*}_{world}	$\begin{array}{c} \mu_{n^*_{world}} \\ (calls) \end{array}$	$\Omega_{\mathrm{n}_{\mathrm{world}}}$	X _{GOM}	$\mu_{n_{GOM}}$	$\Omega_{\mathrm{n_{GOM}}}$	k _{total}	$\mu_{n_{total}}$ (calls)	$\Omega_{\mathrm{n_{total}}}$	Expected Rate (per call)	Coefficient of Uncertainty in Rate
10,000 - 100,000	0.93	1.8E+05	0.33	0	3.3E+04	0.33	0.93	2.1E+05	0.28	4.7E-06	1.11
100,000 - 500,000	0.87	2.7E+05	0.33	0	3.3E+04	0.33	0.87	3.0E+05	0.30	3.1E-06	1.15

D.3. APPLICATION OF CALIBRATED RISK MODELS TO ASSESS STUDY SYSTEM RISKS

This section describes the steps used to apply the calibrated risk models in order to assess the risk measures for each study system. First the sub-system risks are assessed, and then these sub-system risks are combined to assess the system risks.

D.3.1 Step Four – Determine Sub-System Exposures for Study Systems

The fourth step is to determine the exposure for each sub-system category in each study system. As an example for the production crew fatality risk, there is an average crew of 40 workers (including production and construction activities) on the FPSO working 24 hours per day and 365 days per year over the 20 year operational life, giving 70,080,000 man-hours of exposure. For the shuttle tanker spill risk, there are 3,196 docking calls that will be required over the 20-year life to offload the FPSO and shuttle the oil to the shore.

D.3.2 Step Five – Assess Sub-System Risks for Study Systems

The fifth step is to assess the sub-system risk for each study system based on the frequency of incidents from the data set and the exposure for the study system. The estimated mean occurrence rates are applied to the study systems in accordance with their exposures to assess risks. However, the estimated mean occurrence rates are not necessarily equal to the mean occurrence rates estimated from the historical data (Step Three above) because the production systems that constitute the historical data are not necessarily representative of the study systems. The effect of extrapolating from historical occurrence rates to predict future performance is accounted for by applying an adjustment (or bias) factor to the data-based estimates as follows (Gilbert et al. 2001)

$$E(v^*) = \mu_B E(v) \tag{D-14}$$

where $E(v^*)$ is the expected value for the adjusted mean occurrence rate, E(v) is the expected value for the mean occurrence rate estimated from the historical data (the result of Step Three above), and μ_B is the estimated (or expected value) for the adjustment. The estimated value for the adjustment is based on input from the technical experts. This adjustment may introduce additional uncertainty into the estimated mean occurrence rate, which is reflected as follows (Gilbert et al. 2001)

StdDev(v*) =
$$\sqrt{\text{StdDev}(v)^2 \mu_B^2 + (\Omega_B \mu_B)^2 E(v)^2}$$
 (D-15)

where $\Omega_{\rm B}$ is the coefficient of uncertainty in the adjustment factor, which is assigned using Table D.5. The expected value and the standard deviation for the adjusted mean occurrence are then used to assess the sub-system risks for fatalities and oil spills.

Example calculations for the mean occurrence rate of production crew fatailities are summarized in Table D.11. The expected value estimated from the data set is not adjusted ($\mu_B = 1.0$); however, there was uncertainty in extrapolating directly from the historical data which is more representative of smaller, fixed jacket production systems versus larger, floating production systems. Therefore, a coefficient of uncertainty representing a moderate amount of uncertainty (Table D.5) is used, $\Omega_B = 0.33$.

Estimated Mean Occurrence Rate from Data	
E(v) (per man-hr)	7.9E-08
StdDev(ν) (per man-hr)	2.8E-08
Coefficient of Uncertainty in Mean Rate	0.36
Expert-Based Extrapolation Factor	
Expected Value for Bias Factor, μ_B	1.0
Coefficient of Uncertainty in Bias Factor, Ω_B	0.33
Combined Estimate for Mean Occurrence Rate	
$E(v^*)$ (per man-hr)	7.9E-08
StdDev(v^*) (per man-hr)	3.9E-08
Coefficient of Uncertainty in Mean Rate	0.49

Table D.11 Adjusted Mean Occurrence Rate for Production Crew Fatalities

D.17 - Methodology for Risk Calculations

Example calculations for the mean occurrence rates of shuttle tanker spills are summarized in Table D.12. A bias is not imposed on the mean occurrence rates ($\mu_B = 1.0$), but uncertainties in the extrapolations are considered to be moderate ($\Omega_B = 0.33$).

	Data Pagad Estimata		Exper	t-Based	Combined	
	Data-Das	eu Estimate	Extrapol	ation Bias	(Expert+Data) Estimate	
	Expected	Coefficient	Expected	Coefficient	Expected	Coefficient
	Value for	of	Value for	of	Value for	of
Spill Size	Mean	Uncertainty	Value IOI Bias	Uncertainty	Mean	Uncertainty
Range	Rate	for Mean	Dias Eastan II	for Bias	Rate	for Mean
(bbl)	(per call)	Rate	Factor, $\mu_{\rm B}$	Factor	(per call)	Rate
1 - 10	5.4E-04	0.39	1.0E+00	0.33	5.4E-04	0.51
10 - 100	2.0E-04	0.52	1.0E+00	0.33	2.0E-04	0.61
100 -	1.4E-04	0.60	1.0E+00	0.33	1.4E-04	0.68
1,000						
1,000 -	3.4E-05	1.08	1.0E+00	0.33	3.4E-05	1.13
10,000			1.02.00		01.2.00	
10,000 -	4 7E-06	1 1 1	1.0E+00	0.33	4 7E-06	1 16
100,000	1.7 1 00	1.11	1.02+00	0.55	1.7 £ 00	1.10
100,000 -	3 1E-06	1 15	1.0F±00	0.33	3 1E-06	1 10
500,000	5.1E-00	1.15	1.012+00	0.33	5.12-00	1.17
500,000 -	$0.0E \pm 0.0$	0.00	$0.0E \pm 0.0$	0.00	$0.0E \pm 0.0$	0.00
1,000,000	0.01 ± 00	0.00	0.012+00	0.00	0.01 ± 00	0.00

Table D.12 Adjusted Mean Occurrence Rates for Shuttle Tanker Spills

D.3.2.1 Sub-System Risks for Fatalities

The expected value for the average total number of fatalities per sub-system category is given by the following equation

$$E(\text{Average Total Number of Fatalities}) = E(v^*)t$$
 (D-16)

where t is exposure for the study system. Also, the coefficient of variation in the average total number of fatalities is equal to the coefficient of uncertainty in the mean occurrence rate, StdDev(v*)/E(v*). Example calculations for the production crew on the FPSO are summarized in Table D.13, giving an expected value of 0.56 fatalities in 20 years with a coefficient of uncertainty of 0.49.

Combined Estimate for Mean Occurrence Rate	
$E(v^*)$ (per man-hr)	7.9E-08
StdDev(v^*) (per man-hr)	3.9E-08
Coefficient of Uncertainty in Mean Rate	0.49
Study System Exposure for FPSO (man-hr)	7.0E+06
Average Total Number of Fatalities	
Expected Value	0.56
Coefficient of Uncertainty	0.49

Table D.13 Expected Value and Standard Deviation for FPSO Production Crew Fatalities

D.3.2.2 Sub-System Risks for Oil Spills

Evaluating the sub-system risks for oil spills is more complicated than for fatalities because (1) the oil spills are divided into multiple spill size categories and (2) the expected maximum spill size in a single incident needs to be calculated as well as the expected total spill volume.

The expected value for the average total oil spilled in the exposure is calculated from Eq. (D-2) by summing the product of the expected number of incidents multiplied by the expected size of a spill for all of the spill size categories as follows

$$E(\text{Average Total Oil Spill Volume}) = \sum_{i=1}^{m} E(N_i)E(\text{Spill Size }i)$$
 (D-17)

where E(Total Oil Spill Volume) is the expected value for the total oil spill volume, $E(N_i)$ is the the expected number of occurrences for incidents in spill size category i, and E(Spill Size i) is the expected spill volume in spill size category i. The expected number of occurrences is calculated by multiplying the expected frequency of occurrence by the study system exposure

$$E(N_i) = E(v_i^*)t \qquad (D-18)$$

where $E(N_i)$ is the expected number of incidents in spill size category i and t is the exposure.

D.19 - Methodology for Risk Calculations

The expected or representative spill size in a category, E(Spill Size i) in Eq. (D-17), is calculated by assuming that the spill size is uniformly distributed over the range of spill sizes for that category, as shown on Fig. D.2. The expected value is then approximated by the antilog of the midpoint on a logarithmic scale. These representative spill sizes are summarized in Table D.14. In modeling the tail of the probability distribution for large spill sizes, a lower triangular distribution instead of a uniform distribution is used for some sub-systems (Fig. D.2), specifically pipelines and shuttle tankers, based on input from the technical experts. In these cases, the expected value is approximated by the antilog of the lower-third point on a logarithmic scale (Table D.14). Also, the expected spill size for a spill from the FPSO cargo tank in the 100,000 to 500,000 bbl range is chosen to reflect the most typical operating condition, which is a cargo of 350,000 bbl.

Fig. D.2 Representative Spill Sizes for Spill Size Categories

The expected value for the average maximum volume spilled in a single incident is obtained from Eq. (D-4) by summing the product of the probability that the maximum spill size is in category i multiplied by the expected spill size in that category as follows

$$E(\text{Average Maximum Spill Volume in an Incident}) \simeq \sum_{i=1}^{m} P(\text{spill size i is maximum}) E(\text{Spill Size i})$$
(D-19)

D.20 - Methodology for Risk Calculations

where E(Average Maximum Spill Volume in an Incident) is the expected value for the average maximum oil spill volume in a single incident and P(spill size i is maximum in t) is the probability that a particular spill size is the maximum spill size in the exposure and calculated as follows

P(spill size i is maximum in t) = P(at least one incident in i) P(no spills in larger categories)

$$= \left(1 - e^{-E\left(v_{i}^{*}\right)t}\right) \left[\prod_{j=m}^{i+1} e^{-E\left(v_{j}^{*}\right)t}\right]$$
(D-20)

where m is the total number of spill size categories. Equation (D-19) is an approximation because the expected spill size for category i, E(Spill Size i) from Table D.14, is being used to approximate the expected maximum spill size in category i, which would be greater than the expected spill size if multiple incidents occur. However, this approximation is reasonable because the expected maximum spill size is governed by the largest spill size categories where the possibility of multiple spills is remote.

	-	
Spill Size Dange	Expected Spill Size for	Expected Spill Size for Lower
(hbl)	Uniform Distribution	Triangular Distribution
(001)	(bbl)	(bbl)
1 - 10	3	Not Used
10 - 100	32	Not Used
100 - 1,000	320	Not Used
1,000 - 10,000	3,200	Not Used
10,000 - 100,000	32,000	21,000
100,000 - 500,000	225,000	171,000
500,000 - 1,000,000	707,000	Not Used

Table D.14 Expected Spill Sizes for Spill Size Categories

Example calculations are summarized in Tables D.15 and D.16 for the FPSO shuttle tanker, giving 2,700 bbl for the expected total volume of oil spilled from the shuttle tanker and 2,600 bbl for the expected maximum volume spilled in a single incident. Note that the expected maximum volume in a single incident is nearly equal to the expected total volume, meaning that the total is dominated by the worst single incident.

Spill Size Range (bbl)	Expected Frequency, E(v*) (per call)	Exposure in Life, t (calls)	Expected Number of Occurrences	Probability of Zero Spill Size i's in Life	Probability Spill Size i is Maximum Spill in Life
1 - 10	5.4E-04	3196	1.7E+00	1.8E-01	2.4E-01
10 - 100	2.0E-04	3196	6.5E-01	5.2E-01	2.7E-01
100 - 1,000	1.4E-04	3196	4.3E-01	6.5E-01	3.1E-01
1,000 - 10,000	3.4E-05	3196	1.1E-01	9.0E-01	1.0E-01
10,000 - 100,000	4.7E-06	3196	1.5E-02	9.9E-01	1.5E-02
100,000 - 500,000	3.1E-06	3196	1.0E-02	9.9E-01	9.9E-03
500,000 - 1,000,000	0.0E+00	3196	0.0E+00	1.0E+00	0.0E+00

Table D.15 Occurrence Information for Oil Spills from FPSO Shuttle Tanker

Table D.16 Expected Values of Oil Spill Volumes for Oil Spills from FPSO Shuttle Tanker

Spill Size Range (bbl)	Expected Spill Size (bbl)	Expected Number of Occurrences	Expected Total Spill Volume (bbl)	Probability Spill Size i is Maximum Spill in Life	Expected Average Maximum Spill Volume (bbl)
1 – 10	3	1.7E+00	5.2E+00	2.4E-01	7.3E-01
10 - 100	32	6.5E-01	2.1E+01	2.7E-01	8.7E+00
100 - 1,000	320	4.3E-01	1.4E+02	3.1E-01	9.8E+01
1,000 - 10,000	3,200	1.1E-01	3.5E+02	1.0E-01	3.2E+02
10,000 - 100,000	32,000	1.5E-02	4.8E+02	1.5E-02	4.7E+02
100,000 - 500,000	171,000	1.0E-02	1.7E+03	9.9E-03	1.7E+03
500,000 - 1,000,000	707,000	0.0E+00	0.0E+00	0.0E+00	0.0E+00
		Σ	2.7E+03		2.6E+03

The standard deviations for the average total volume spilled and the average maximum volume spilled in a single incident are calculated as follows. The variance (or the square of the standard deviation) for the total volume spilled is obtained from the following equation

Var (Average Total Oil Spill Volume) =
$$\sum_{i=1}^{m} Var(N_i)E(Spill Size i)^2$$
 (D-21)

where Var(Total Oil Spill Volume) is the variance in the total oil spill volume due to uncertainty in the frequency of occurrence, and $Var(N_i)$ is the variance in the number of occurrences in spill size category i, which is given by the following

$$Var(N_i) = t^2 StdDev(V_i)^2$$
(D-22)

D.22 - Methodology for Risk Calculations

Therefore, the variance in the total oil spill volume increases as the uncertainty in the estimated value for the mean occurrence rate increases. Also, the variance for the maximum volume spilled in a single incident is obtained from the following first-order approximation

Var (Average Maximum Spill Volume in a Single Incident) \approx $\sum_{i=1}^{m} E(\text{Spill Size } i)^{2} \left(\prod_{j=i+1}^{m} e^{-E(v_{j})t} \right)^{2} \left\{ \left(e^{-E(v_{i})t} \right)^{2} \operatorname{Var}(N_{i}) + \left(1 - e^{-E(v_{i})t} \right)^{2} \sum_{k=i+1}^{m} \operatorname{Var}(N_{k}) \right\}^{(D-23)}$

Example calculations for the FPSO shuttle tanker are summarized in Table D.17, giving a standard deviation for the total volume spilled of $\sqrt{4.6 \times 10^6 \text{ bbl}^2} = 2,100 \text{ bbl}$ and a standard deviation for the maximum volume spilled in a single incident of $\sqrt{4.5 \times 10^6 \text{ bbl}^2} = 2,100 \text{ bbl}$.

Spill Size Range (bbl)	Expected Spill Size (bbl)	Exposure in Life, t (call)	StdDev(v) (per call)	Variance for Number of Occurrences, Var(N)	Variance for Average Total Spill Volume (bbl ²)	Variance for Average Maximum Spill Volume (bbl ²)
1 – 10	3	3,196	2.8E-04	7.9E-01	7.1E+00	1.6E-01
10 - 100	32	3,196	1.2E-04	1.6E-01	1.6E+02	2.2E+01
100 - 1,000	320	3,196	9.2E-05	8.7E-02	8.9E+03	3.0E+03
1,000 - 10,000	3,200	3,196	3.8E-05	1.5E-02	1.5E+05	1.2E+05
10,000 - 100,000	32,000	3,196	5.4E-06	3.0E-04	3.0E+05	2.9E+05
100,000 - 500,000	171,000	3,196	3.7E-06	1.4E-04	4.1E+06	4.1E+06
500,000 - 1,000,000	707,000	3,196	0.0E+00	0.0E+00	0.0E+00	0.0E+00
				Σ	4.6E+06	4.5E+06

Table D.17 Variances of Oil Spill Volumes for FPSO Shuttle Tanker

D.3.3 Step Six – Assess System Risks from Sub-System Risks

The sixth and final step is to combine the information for the sub-system risks to obtain the total system risk.

D.3.3.1 System Risks for Fatalities

The expected value for the average total number of fatalities for the system is obtained by summing the expected values for each sub-system as follows

$$E(\text{Average Total Number of Fatalities}) = \sum_{j=1}^{p} E(\text{Average Total Number of Fatalities})_{j} (D-24)$$

where p is the total number of sub-systems. Also, the standard deviation in the total number of fatalities for the system is obtained from the following equation

StdDev(Average Total Number of Fatalities)
=
$$\sqrt{\sum_{j=1}^{p} Var(Average Total Number of Fatalities)_{j}}$$
 (D-25)

Finally, the distribution for the average total number of fatalities is assumed to be a gamma distribution. This assumption is reasonable if the standard deviation for the average total number of fatalities is small, which is the case for fatalities, or if a single sub-system dominates the total.

D.3.3.2 System Risks for Oil Spills

For oil spills, the sub-system information is combined by first normalizing all of the sub-system frequencies by the same denominator – years. Specifically, the number of occurrences is divided by the operational life of 20 years as follows

$$E(v_{20,i})_{j} = \frac{E(N_{i})_{j}}{20 \text{ years}}$$
(D-26)

and

$$StdDev(v_{20,i})_{j} = \frac{StdDev(N_{i})_{j}}{20 \text{ years}}$$
(D-27)

D.24 - Methodology for Risk Calculations

where $v_{20,i}$ is the normalized frequency of occurrence per year, i is the spill size category, and j is the sub-system (for example, shuttle tankers). The expected value and standard deviation for the total frequency for spill size category i is then obtained as follows

$$E(v_{20,i}) = \sum_{j=1}^{p} E(v_{20,i})_{j}$$
(D-28)

and

$$StdDev(v_{20,i}) = \sqrt{\sum_{j=1}^{p} \left[StdDev(v_{20,i})_{j} \right]^{2}}$$
(D-29)

where p is the total number of sub-systems. Given the expected value and the standard deviation of the total normalized frequency for each spill size category and an exposure period of 20 years, Equations (D-17) through (D-24) can be applied to find the expected values and standard deviations for the total volume of oil spilled and the maximum volume of oil spilled in a single incident for the system. Note that the average maximum volume of oil spilled is not simply the sum of the average maximum volumes for individual sub-systems (instead, Eqs. D-19 and D-23 must be applied using the expected value and standard deviation for $v_{20,i}$). The distributions for the average total volume of oil spilled and the average maximum volume spilled in a single incident are assumed to be gamma distributions. This assumption is reasonable if the standard deviation for the quantity is small or if a single sub-system dominates the total, which is the case for both oil spill measures.

Appendix E

Fatality Risk Assessments

Table E.1 Fatality Data: Summary of Raw Data and Refinements for this Study	E.2
Appendix E.1 Fatality Risk Assessment for Spar	E.4
Appendix E.2 Fatality Risk Assessment for TLP	E.13
Appendix E.3 Fatality Risk Assessment for Hub/Host Jacket	E.22
Appendix E.4 Fatality Risk Assessment for FPSO	E.31

		Refinements to Raw Data			
Sub-system	Data Source	Spar	TLP	Hub/Host Jacket	FPSO
Production Crew	Total number of fatalities for Gulf of Mexico taken from USCG Casualty Database for the years 1992-1999 and for the category "Platform," which includes fatalities from process and construction activities. Drilling-related fatalities on platforms excluded. Frequencies normalized by total man- hours worked in process and construction activities, which was estimated from MMS data for 1998 and 1999.	No Changes	No Changes	No Changes	No Changes
Drilling Crews	Total number of offshore Gulf of Mexico drilling fatalities taken from IADC database on driller safety for the years 1989-1998. Frequencies normalized by total man-hours worked, which was also taken from the same data source. Data not distinguished between exploratory versus production drilling, and platform versus MODU drilling.	No Changes	No Changes	No Changes	No Changes
Supply Vessel Crews	Total number of fatalities for Gulf of Mexico taken from USCG Casualty Database for the years 1985-1999 and for the category "Offshore Supply Vessel." Frequencies normalized by the number of port or docking calls. The total number of docking calls in the Gulf of Mexico for the years 1985- 1999 roughly estimated from discussions with Edison Chouest.	No Changes	No Changes	No Changes	No Changes

Table E.1 Fatality Data: Summary of Raw Data and Refinements for this Study

		Refinements to Raw Data			
Sub-system	Data Source	Spar	TLP	Hub/Host Jacket	FPSO
Helicopter Transport	Total number of fatalities for Gulf of Mexico taken from Oil and Gas Producers 1999 report on Worldwide Helicopter Safety. Data summarized for the years 1994 to 1998 in terms of number of fatalities and total number of occupants in the Gulf of Mexico.	No Changes	No Changes	No Changes	No Changes
Tanker Operations	Total number of fatalities for Gulf of Mexico taken from USCG Casualty Database for the years 1985-1999 and for the category "Tank Ship." Vessels not carrying crude oil and vessels less than 50,000 dead weight tons not included. Frequencies normalized by the number of port or docking calls for oil import operations in the Gulf of Mexico. The total number of tanker docking calls in the Gulf of Mexico for the years 1985-1999 estimated from oil import information in the NRC Marine Board lightering study and assuming average sizes for tankers. Estimates checked with Skaugen Petrotrans.	Not Applicable	Not Applicable	Not Applicable	No Changes
Major Accident	The frequency of a major (tens of fatalities) accident is estimated from the following information: no major accidents in the Gulf of Mexico between 1965 and 1999 with approximately 500 manned platforms in operation per year. The expected number of fatalities in a catastrophic accident is assumed to be 30.	No Changes (Note that estimate is considered to be conservative since no such accidents have occurred in the Gulf of Mexico.)	No Changes (Note that estimate is considered to be conservative since no such accidents have occurred in the Gulf of Mexico.)	No Changes (Note that estimate is considered to be conservative since no such accidents have occurred in the Gulf of Mexico.)	No Changes (Note that estimate is considered to be conservative since no such accidents have occurred in the Gulf of Mexico.)

Table E.1 Fatality Data: Summary of Raw Data and Refinements for this Study

Appendix E.1

Fatality Risk Assessment for Spar

Spar - Summary for Fatality Risk	E.5
Spar – Production Crew	E.6
Spar – Drilling Crew	E.7
Spar – Supply Vessel Crews	E.9
Spar - Helicopter Transport	E.11
Spar – Major Accident	E.12
Spar - Summary for Fatality Risk

Expected Total Fatalities1.8Standard Deviation in Total Fatalities0.3

		Data-Based Estimate		Expert-Based Extrapolation		Combined (Expert+Data)		
Activity	Exposure Units	Exposure	Expected Fatality Rate	Coefficient of Uncertainty	Expected	Coefficient of	Expected Value for	Coefficient of Uncertainty in
		(exposure units)	(per exposure unit)	in Fatality Rate	Value for Bias	Uncertainty in Bias	Number of Fatalities	Number of Fatalities
Production	man-hours	7.0E+06	7.9E-08	0.36	1.00	0.33	0.56	0.49
Drilling	man-hours	6.5E+06	1.4E-07	0.14	1.00	0.00	0.92	0.14
Supply Vessels	docking calls	1.2E+04	1.4E-05	0.34	1.00	0.33	0.17	0.47
Helicopter Transport	passengers	8.0E+04	1.2E-06	0.18	1.00	0.00	0.10	0.18
Major Accident	platform years	2.0E+01	1.7E-03	1.00	1.00	1.00	0.03	1.41

Spar - Production Crew

Exposure (man-hours)	7.0E+06
Expected Fatality Rate (per man-hour)	7.9E-08
Coefficient of Uncertainty in Fatality Rate	0.36

Note: "Production Crew" includes product processing and construction activities.

Basis:

USCG Gulf of Mexico "Platform" Fatalities (Drilling-Related Fatalities Excluded)

Year	Fatalities
1992	4
1993	1
1994	4
1995	6
1996	2
1997	2
1998	8
1999	0

Total Exposure (man-hrs) for Gulf of Mexico (1992-1999):

Annual 1998-1999 Avg. (MMS Production/Construction)	4.16E+07
Increase to account for 85% reporting	4.89E+07
Total 92-99 Man-hours (assume 98-99 avg. applies)	3.91E+08
Coefficient of Uncertainty in Exposure	3.30E-01

Statistical Analysis:

Exposure (man-hr)	391,321,755
Fatalities	27
k"	28
n" (man-hr)	391,321,755
Expected Rate (per man-hr)	7.93E-08
Std. Dev. in Rate (per man-hr)	2.82865E-08
Coefficient of Uncertainty in Rate	3.57E-01

Production Crew Exposure for Study System

Crew Size	40
Hours in 20 years	175200

Total man-hours	7008000

Spar - Drilling Crew

Exposure (man-hours)	6.5E+06
Expected Fatality Rate (per man-hour)	1.4E-07
Coefficient of Uncertainty in Fatality Rate	0.14

Basis:

IADC Gulf of Mexico Statistics (1989-1999):

IAD	C Gulf of Mexico Stat	Fatalities Reported to	
Year	Hours Worked	Fatalities	USCG*
1989	33,211,815	11	15
1990	34,624,227	8	4
1991	28,210,398	2	0
1992	20,024,172	0	1
1993	23,603,277	3	3
1994	29,733,657	5	6
1995	32,386,695	3	3
1996	32,827,738	3	4
1997	41,222,488	8	6
1998	43,437,749	6	2
1999	33,011,864	0	3

*USCG Reported: Fatalities on MODUs and Drilling-Related Fatalities on Fixed Platforms

Exposure (man-hr)	352,294,080
Coefficient of Uncertainty in Exposure	0
Fatalities	49
k"	50
n" (man-hr)	352,294,080
Expected Rate (per man-hr)	1.42E-07
Std. Dev. in Rate (per man-hr)	2.00715E-08
Coefficient of Uncertainty in Rate	1.41E-01

Driller Exposure for Study System

6 Platform Wells (20 years)		crew	man-days
Drilling & Completion $(5*90 + 6*20 \text{ days})$	570	65	37050
Slickline (3 per well-year @ 5 days)	1800	4	7200
Coiled Tubing (3/4 per well-yr @ 20 days)	1800	8	14400
Hydraulic (3/4 per well-yr @ 20 days)	1800	8	14400
Change out (1/3 per well-yr @ 50 days)	2000	40	80000
Recompletion (1/5 per well-yr @ 50 days)	1200	40	48000
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520	40	20800

3 Subsea Wells (12 years)	days	crew	man-days
Drilling & Completion (3*90 + 90 days)	360	65	23400
Coiled Tubing (1/4 per well-yr @ 20 days)	180	4	720
Hydraulic (1/5 per well-yr @ 20 days)	144	8	1152
Change out (1/8 per well-yr @ 50 days)	225	8	1800
Recompletion (1/10 per well-yr @ 50 days)	180	40	7200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156	40	6240
Replace Wellhead (1/12 per well-yr @ 65 days)	195	40	7800

Total (man-days):	270162
Total man-hours	6483888

Spar - Supply Vessel Crews

Exposure (docking calls)	1.2E+04
Expected Fatality Rate (per call)	1.4E-05
Coefficient of Uncertainty in Fatality Rate	0.34

Basis:

USCG Gulf of Mexico "Offshore Supply Vessel" Fatalities

Year	Fatalities
1985	2
1986	1
1987	1
1988	0
1989	3
1990	0
1991	3
1992	3
1993	4
1994	4
1995	3
1996	3
1997	8
1998	3
1999	3

Total Exposure for Gulf of Mexico (1985-1999):

Annual Dock Calls (300 boats x 2 calls/day x 365 d)	2.19E+05
Est. 85-99 Supply Vessel Activity in GOM (calls)	3.29E+06
Coefficient of Uncertainty in Exposure	0.33

······································	
Exposure (calls)	3,285,000
Fatalities	41
k"	42
n" (calls)	3,285,000
Expected Rate (per call)	1.42E-05
Std. Dev. in Rate (per call)	4.79219E-06
Coefficient of Uncertainty in Rate	3.38E-01

Supply Vessel Crew Exposure for Study System

1 trip per 3 days during production	0.333333333
Days of Production (20 years)	7300
Trips	2433.333333

1 trip per 3 days during drilling/workover	0.333333333
6 Platform Wells (20 years)	
Drilling & Completion (5*90 + 6*20 days)	570
Slickline (3 per well-year @ 5 days)	1800
Coiled Tubing (3/4 per well-yr @ 20 days)	1800
Hydraulic (3/4 per well-yr @ 20 days)	1800
Change out (1/3 per well-yr @ 50 days)	2000
Recompletion (1/5 per well-yr @ 50 days)	1200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520
Trips	3230

3 Subsea Wells (12 years)	
Drilling & Completion (3*90 + 90 days)	360
Coiled Tubing (1/4 per well-yr @ 20 days)	180
Hydraulic (1/5 per well-yr @ 20 days)	144
Change out (1/8 per well-yr @ 50 days)	225
Recompletion (1/10 per well-yr @ 50 days)	180
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156
Replace Wellhead (1/12 per well-yr @ 65 days)	195
Trips	480

12287

Spar - Helicopter Transport

Exposure (passengers)	8.03E+04
Expected Fatality Rate (per passenger)	1.2E-06
Coefficient of Uncertainty in Fatality Rate	0.18

Basis:

OGP Helicopter Safety Report (1999) (Gulf of Mexico Fatalities)

Year	Fatalities	Passengers
1994	10	4.8E+06
1995	8	5.7E+06
1996	11	5.8E+06
1997	1	5.0E+06
1998	1	5.0E+06

Statistical Analysis:

Exposure (passengers)	26,265,664
Fatalities	31
k"	32
n" (passengers)	26,265,664
Expected Rate (per passenger)	1.21832E-06
Coefficient of Uncertainty in Rate	0.176776695

Helicopter Transport Exposure for Study System

Platform Crew	40
Number of Crew Changes in 20 years (14 days)	521
Number of Passengers (round trip)	41714

Drilling Crew (man-hours)	6483888
Man-hours per shift (14 days)	336
Man shift changes	19297
Number of Passengers (round trip)	38595

|--|

Spar - Major Accident

Exposure (platform years)	2.0E+01
Expected Fatality Rate (per platform year)	1.7E-03
Coefficient of Uncertainty in Fatality Rate	1.00

Basis:

Number of Major Offshore Accidents in GOM in 35 years = 0

Total Offshore Exposure in GOM (35 years)

Manned Platforms per Year	500
Number of Years	35
Manned Platform Years	17500

Statistical Analysis:

Exposure (manned platform years)	17,500
Major Accidents	0
k"	1
n" (platform years)	17,500
Expected Incident Rate (per platform year)	5.71429E-05
Coefficient of Uncertainty in Incident Rate	1
Number of Fatalities per Major Accident	30
Expected Fatality Rate (per platform year)	0.001714286
Coefficient of Uncertainty in Incident Rate	1

Exposure for Study System

Manned Years	20

Appendix E.2

Fatality Risk Assessment for TLP

E.14
E.15
E.16
E.18
E.20
E.21

TLP - Summary for Fatality Risk

Expected Total Fatalities	1.8
Standard Deviation in Total Fatalities	0.3

			Data-Based Estimate		Expert-Based Extrapolation		Combined (Expert+Data)	
			Expected	Coefficient of			Expected	Coefficient of
Activity	Exposure Units	Exposure	Fatality Rate	Uncertainty	Expected	Coefficient of	Value for	Uncertainty in
		(exposure	(per exposure	in Fatality	Value for	Uncertainty in	Number of	Number of
		units)	unit)	Rate	Bias	Bias	Fatalities	Fatalities
Production	man-hours	7.0E+06	7.9E-08	0.36	1.00	0.33	0.56	0.49
Drilling	man-hours	6.5E+06	1.4E-07	0.14	1.00	0.00	0.92	0.14
Supply Vessels	docking calls	1.2E+04	1.4E-05	0.34	1.00	0.33	0.17	0.47
Helicopter Transport	passengers	8.0E+04	1.2E-06	0.18	1.00	0.00	0.10	0.18
Major Accident	platform years	2.0E+01	1.7E-03	1.00	1.00	1.00	0.03	1.41

TLP - Production Crew

Exposure (man-hours)	7.0E+06
Expected Fatality Rate (per man-hour)	7.9E-08
Coefficient of Uncertainty in Fatality Rate	0.36

Note: "Production Crew" includes product processing and construction activities.

Basis:

USCG Gulf of Mexico "Platform" Fatalities (Drilling-Related Fatalities Excluded)

Year	Fatalities
1992	4
1993	1
1994	4
1995	6
1996	2
1997	2
1998	8
1999	0

Total Exposure (man-hrs) for Gulf of Mexico (1992-1999):

Annual 1998-1999 Avg. (MMS Production/Construction)	4.16E+07
Increase to account for 85% reporting	4.89E+07
Total 92-99 Man-hours (assume 98-99 avg. applies)	3.91E+08
Coefficient of Uncertainty in Exposure	3.30E-01

Statistical Analysis:

Exposure (man-hr)	391,321,755
Fatalities	27
k''	28
n" (man-hr)	391,321,755
Expected Rate (per man-hr)	7.93E-08
Std. Dev. in Rate (per man-hr)	2.82865E-08
Coefficient of Uncertainty in Rate	3.57E-01

Production Crew Exposure for Study System

Crew Size	40
Hours in 20 years	175200

Total man hours	7008000
i otar man-nours	/00000

TLP - Drilling Crew

Exposure (man-hours)	6.5E+06
Expected Fatality Rate (per man-hour)	1.4E-07
Coefficient of Uncertainty in Fatality Rate	0.14

Basis:

IADC Gulf of Mexico Statistics (1989-1999):

IADC Gulf of Mexico Statistics		Fatalities Reported to	
Year	Hours Worked	Fatalities	USCG*
1989	33,211,815	11	15
1990	34,624,227	8	4
1991	28,210,398	2	0
1992	20,024,172	0	1
1993	23,603,277	3	3
1994	29,733,657	5	6
1995	32,386,695	3	3
1996	32,827,738	3	4
1997	41,222,488	8	6
1998	43,437,749	6	2
1999	33,011,864	0	3

*USCG Reported: Fatalities on MODUs and Drilling-Related Fatalities on Fixed Platforms

Exposure (man-hr)	352,294,080
Coefficient of Uncertainty in Exposure	0
Fatalities	49
k"	50
n" (man-hr)	352,294,080
Expected Rate (per man-hr)	1.42E-07
Std. Dev. in Rate (per man-hr)	2.00715E-08
Coefficient of Uncertainty in Rate	1.41E-01

Driller Exposure for Study System

6 Platform Wells (20 years)	days	crew	man-days
Drilling & Completion $(5*90 + 6*20 \text{ days})$	570	65	37050
Slickline (3 per well-year @ 5 days)	1800	4	7200
Coiled Tubing (3/4 per well-yr @ 20 days)	1800	8	14400
Hydraulic (3/4 per well-yr @ 20 days)	1800	8	14400
Change out (1/3 per well-yr @ 50 days)	2000	40	80000
Recompletion (1/5 per well-yr @ 50 days)	1200	40	48000
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520	40	20800

3 Subsea Wells (12 years)	days	crew	man-days
Drilling & Completion (3*90 + 90 days)	360	65	23400
Coiled Tubing (1/4 per well-yr @ 20 days)	180	4	720
Hydraulic (1/5 per well-yr @ 20 days)	144	8	1152
Change out (1/8 per well-yr @ 50 days)	225	8	1800
Recompletion (1/10 per well-yr @ 50 days)	180	40	7200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156	40	6240
Replace Wellhead (1/12 per well-yr @ 65 days)	195	40	7800

Total (man-days):	270162
Total man-hours	6483888

TLP - Supply Vessel Crews

Exposure (docking calls)	1.2E+04
Expected Fatality Rate (per call)	1.4E-05
Coefficient of Uncertainty in Fatality Rate	0.34

Basis:

USCG Gulf of Mexico "Offshore Supply Vessel" Fatalities

Year	Fatalities
1985	2
1986	1
1987	1
1988	0
1989	3
1990	0
1991	3
1992	3
1993	4
1994	4
1995	3
1996	3
1997	8
1998	3
1999	3

Total Exposure for Gulf of Mexico (1985-1999):

Annual Dock Calls (300 boats x 2 calls/day x 365 d)	2.19E+05
Est. 85-99 Supply Vessel Activity in GOM (calls)	3.29E+06
Coefficient of Uncertainty in Exposure	0.33

······································	
Exposure (calls)	3,285,000
Fatalities	41
k"	42
n" (calls)	3,285,000
Expected Rate (per call)	1.42E-05
Std. Dev. in Rate (per call)	4.79219E-06
Coefficient of Uncertainty in Rate	3.38E-01

Supply Vessel Crew Exposure for Study System

1 trip per 3 days during production	0.333333333
Days of Production (20 years)	7300
Trips	2433.333333

1 trip per 3 days during drilling/workover	0.333333333
6 Platform Wells (20 years)	
Drilling & Completion (5*90 + 6*20 days)	570
Slickline (3 per well-year @ 5 days)	1800
Coiled Tubing (3/4 per well-yr @ 20 days)	1800
Hydraulic (3/4 per well-yr @ 20 days)	1800
Change out (1/3 per well-yr @ 50 days)	2000
Recompletion (1/5 per well-yr @ 50 days)	1200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520
Trips	3230

3 Subsea Wells (12 years)	
Drilling & Completion (3*90 + 90 days)	360
Coiled Tubing (1/4 per well-yr @ 20 days)	180
Hydraulic (1/5 per well-yr @ 20 days)	144
Change out (1/8 per well-yr @ 50 days)	225
Recompletion (1/10 per well-yr @ 50 days)	180
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156
Replace Wellhead (1/12 per well-yr @ 65 days)	195
Trips	480

12287

TLP - Helicopter Transport

Exposure (passengers)	8.03E+04
Expected Fatality Rate (per passenger)	1.2E-06
Coefficient of Uncertainty in Fatality Rate	0.18

Basis:

OGP Helicopter Safety Report (1999) (Gulf of Mexico Fatalities)

Year	Fatalities	Passengers
1994	10	4.8E+06
1995	8	5.7E+06
1996	11	5.8E+06
1997	1	5.0E+06
1998	1	5.0E+06

Statistical Analysis:

Exposure (passengers)	26,265,664
Fatalities	31
k"	32
n" (passengers)	26,265,664
Expected Rate (per passenger)	1.21832E-06
Coefficient of Uncertainty in Rate	0.176776695

Helicopter Transport Exposure for Study System

Platform Crew	40
Number of Crew Changes in 20 years (14 days)	521
Number of Passengers (round trip)	41714

Drilling Crew (man-hours)	6483888
Man-hours per shift (14 days)	336
Man shift changes	19297
Number of Passengers (round trip)	38595

Total Number of Passengers	80309

TLP - Major Accident

Exposure (platform years)	2.0E+01
Expected Fatality Rate (per platform year)	1.7E-03
Coefficient of Uncertainty in Fatality Rate	1.00

Basis:

Number of Major Offshore Accidents in GOM in 35 years = 0

Total Offshore Exposure in GOM (35 years)

Manned Platforms per Year	500
Number of Years	35
Manned Platform Years	17500

Statistical Analysis:

Exposure (manned platform years)	17,500
Major Accidents	0
k"	1
n" (platform years)	17,500
Expected Incident Rate (per platform year)	5.71429E-05
Coefficient of Uncertainty in Incident Rate	1
Number of Fatalities per Major Accident	30
Expected Fatality Rate (per platform year)	0.001714286
Coefficient of Uncertainty in Incident Rate	1

Exposure for Study System

Appendix E.3

Fatality Risk Assessment for Hub/Host Jacket

Jacket - Summary for Fatality Risk	E.23
Jacket – Production Crew	E.24
Jacket – Drilling Crew	E.25
Jacket – Supply Vessel Crews	E.27
Jacket - Helicopter Transport	E.29
Jacket – Major Accident	E.30

Jacket - Summary for Fatality Risk

Expected Total Fatalities1.8Standard Deviation in Total Fatalities0.3

			Data-Based	Estimate	Expert-Based	Extrapolation	Combined	(Expert+Data)
							Expected	Coefficient of
Activity	Exposure Units	Exposure	Expected Fatality	Coefficient of	Expected	Coefficient of	Value for	Uncertainty
Authy		(exposure	Rate (per	Uncertainty in	Value for	Uncertainty in	Number of	in Number of
		units)	exposure unit)	Fatality Rate	Bias	Bias	Fatalities	Fatalities
Production	man-hours	7.0E+06	7.9E-08	0.36	1.00	0.33	0.56	0.49
Drilling	man-hours	6.3E+06	1.4E-07	0.14	1.00	0.00	0.89	0.14
Supply Vessels	docking calls	1.2E+04	1.4E-05	0.34	1.00	0.33	0.17	0.47
Helicopter Transport	passengers	7.9E+04	1.2E-06	0.18	1.00	0.00	0.10	0.18
Major Accident	platform years	2.0E+01	1.7E-03	1.00	1.00	1.00	0.03	1.41

Jacket - Production Crew

Exposure (man-hours)	7.0E+06
Expected Fatality Rate (per man-hour)	7.9E-08
Coefficient of Uncertainty in Fatality Rate	0.36

Note: "Production Crew" includes product processing and construction activities.

Basis:

USCG Gulf of Mexico "Platform" Fatalities (Drilling-Related Fatalities Excluded)

Year	Fatalities
1992	4
1993	1
1994	4
1995	6
1996	2
1997	2
1998	8
1999	0

Total Exposure (man-hrs) for Gulf of Mexico (1992-1999):

Annual 1998-1999 Avg. (MMS Production/Construction)	4.16E+07
Increase to account for 85% reporting	4.89E+07
Total 92-99 Man-hours (assume 98-99 avg. applies)	3.91E+08
Coefficient of Uncertainty in Exposure	3.30E-01

Statistical Analysis:

Exposure (man-hr)	391,321,755
Fatalities	27
k"	28
n" (man-hr)	391,321,755
Expected Rate (per man-hr)	7.93E-08
Std. Dev. in Rate (per man-hr)	2.82865E-08
Coefficient of Uncertainty in Rate	3.57E-01

Production Crew Exposure for Study System

Crew Size40Hours in 20 years175200	· · ·	
Hours in 20 years 175200	Crew Size	40
	Hours in 20 years	175200

Total man-hours 7008000

Jacket - Drilling Crew

Exposure (man-hours)	6.3E+06
Expected Fatality Rate (per man-hour)	1.4E-07
Coefficient of Uncertainty in Fatality Rate	0.14

Basis:

IADC Gulf of Mexico Statistics (1989-1999):

IAD	IADC Gulf of Mexico Statistics		Fatalities Reported to
Year	Hours Worked	Fatalities	USCG*
1989	33,211,815	11	15
1990	34,624,227	8	4
1991	28,210,398	2	0
1992	20,024,172	0	1
1993	23,603,277	3	3
1994	29,733,657	5	6
1995	32,386,695	3	3
1996	32,827,738	3	4
1997	41,222,488	8	6
1998	43,437,749	6	2
1999	33,011,864	0	3

*USCG Reported: Fatalities on MODUs and Drilling-Related Fatalities on Fixed Platforms

Exposure (man-hr)	352,294,080
Coefficient of Uncertainty in Exposure	0
Fatalities	49
k"	50
n" (man-hr)	352,294,080
Expected Rate (per man-hr)	1.42E-07
Std. Dev. in Rate (per man-hr)	2.00715E-08
Coefficient of Uncertainty in Rate	1.41E-01

Driller Exposure for Study System

6 Platform Wells (20 years)	days	crew	man-days
Drilling & Completion $(5*90 + 6*20 \text{ days})$	570	50	28500
Slickline (3 per well-year @ 5 days)	1800	4	7200
Coiled Tubing (3/4 per well-yr @ 20 days)	1800	8	14400
Hydraulic (3/4 per well-yr @ 20 days)	1800	8	14400
Change out (1/3 per well-yr @ 50 days)	2000	40	80000
Recompletion (1/5 per well-yr @ 50 days)	1200	40	48000
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520	40	20800

3 Subsea Wells (12 years)	days	crew	man-days
Drilling & Completion (3*90 + 90 days)	360	65	23400
Coiled Tubing (1/4 per well-yr @ 20 days)	180	4	720
Hydraulic (1/5 per well-yr @ 20 days)	144	8	1152
Change out (1/8 per well-yr @ 50 days)	225	8	1800
Recompletion (1/10 per well-yr @ 50 days)	180	40	7200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156	40	6240
Replace Wellhead (1/12 per well-yr @ 65 days)	195	40	7800

Total (man-days):	261612
Total man-hours	6278688

Jacket - Supply Vessel Crews

Exposure (docking calls)	1.2E+04
Expected Fatality Rate (per call)	1.4E-05
Coefficient of Uncertainty in Fatality Rate	0.34

Basis:

USCG Gulf of Mexico "Offshore Supply Vessel" Fatalities

Year	Fatalities
1985	2
1986	1
1987	1
1988	0
1989	3
1990	0
1991	3
1992	3
1993	4
1994	4
1995	3
1996	3
1997	8
1998	3
1999	3

Total Exposure for Gulf of Mexico (1985-1999):

Annual Dock Calls (300 boats x 2 calls/day x 365 d)	2.19E+05
Est. 85-99 Supply Vessel Activity in GOM (calls)	3.29E+06
Coefficient of Uncertainty in Exposure	0.33

Exposure (calls)	3,285,000
Fatalities	41
k"	42
n" (calls)	3,285,000
Expected Rate (per call)	1.42E-05
Std. Dev. in Rate (per call)	4.79219E-06
Coefficient of Uncertainty in Rate	3.38E-01

Supply Vessel Crew Exposure for Study System

1 trip per 3 days during production	0.333333333
Days of Production (20 years)	7300
Trips	2433.333333

1 trip per 3 days during drilling/workover	0.333333333
6 Platform Wells (20 years)	
Drilling & Completion (5*90 + 6*20 days)	570
Slickline (3 per well-year @ 5 days)	1800
Coiled Tubing (3/4 per well-yr @ 20 days)	1800
Hydraulic (3/4 per well-yr @ 20 days)	1800
Change out (1/3 per well-yr @ 50 days)	2000
Recompletion (1/5 per well-yr @ 50 days)	1200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520
Trips	3230

3 Subsea Wells (12 years)	
Drilling & Completion (3*90 + 90 days)	360
Coiled Tubing (1/4 per well-yr @ 20 days)	180
Hydraulic (1/5 per well-yr @ 20 days)	144
Change out (1/8 per well-yr @ 50 days)	225
Recompletion (1/10 per well-yr @ 50 days)	180
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156
Replace Wellhead (1/12 per well-yr @ 65 days)	195
Trips	480

12287

Jacket - Helicopter Transport

Exposure (passengers)	7.9E+04
Expected Fatality Rate (per passenger)	1.2E-06
Coefficient of Uncertainty in Fatality Rate	0.18

Basis:

OGP Helicopter Safety Report (1999) (Gulf of Mexico Fatalities)

Year	Fatalities	Passengers
1994	10	4.8E+06
1995	8	5.7E+06
1996	11	5.8E+06
1997	1	5.0E+06
1998	1	5.0E+06

Statistical Analysis:

Exposure (passengers)	26,265,664
Fatalities	31
k"	32
n" (passengers)	26,265,664
Expected Rate (per passenger)	1.21832E-06
Coefficient of Uncertainty in Rate	0.176776695

Helicopter Transport Exposure for Study System

Platform Crew	40
Number of Crew Changes in 20 years (14 days)	521
Number of Passengers (round trip)	41714

Drilling Crew (man-hours)	6278688
Man-hours per shift (14 days)	336
Man shift changes	18687
Number of Passengers (round trip)	37373

Total Number of Passengers 7908'

Jacket - Major Accident

Exposure (platform years)	2.0E+01
Expected Fatality Rate (per platform year)	1.7E-03
Coefficient of Uncertainty in Fatality Rate	1.00

Basis:

Number of Major Offshore Accidents in GOM in 35 years = 0

Total Offshore Exposure in GOM (35 years)

Manned Platforms per Year	500
Number of Years	35
Manned Platform Years	17500

Statistical Analysis:

Exposure (manned platform years)	17,500
Major Accidents	0
k"	1
n" (platform years)	17,500
Expected Incident Rate (per platform year)	5.71429E-05
Coefficient of Uncertainty in Incident Rate	1
Number of Fatalities per Major Accident	30
Expected Fatality Rate (per platform year)	0.001714286
Coefficient of Uncertainty in Incident Rate	1

Exposure for Study System

Appendix E.4

Fatality Risk Assessment for FPSO

FPSO - Summary for Fatality Risk	E.32
FPSO – Production Crew	E.33
FPSO – Drilling Crew	E.34
FPSO – Supply Vessel Crews	E.36
FPSO - Helicopter Transport	E.38
FPSO – Tanker Operations	E.39
FPSO – Major Accident	E.40

FPSO - Summary for Fatality Risk

Expected Total Fatalities1.8Standard Deviation in Total Fatalities0.4

			Data-Based Estimate		Expert-Based Extrapolation		Combined (Expert+Data	
				Coefficient				
			Expected	of			Expected	Coefficient of
Activity	Exposure Units	Exposure	Fatality Rate	Uncertainty	Expected	Coefficient of	Value for	Uncertainty in
		(exposure	(per exposure	in Fatality	Value for	Uncertainty in	Number of	Number of
		units)	unit)	Rate	Bias	Bias	Fatalities	Fatalities
Production	Man-hours	7.0E+06	7.9E-08	0.36	1.00	0.33	0.56	0.49
Drilling and Intervention	Man-hours	3.8E+06	1.4E-07	0.14	1.00	0.00	0.53	0.14
Supply Vessels	docking calls	1.2E+04	1.4E-05	0.34	1.00	0.33	0.17	0.47
Helicopter Transport	passengers	7.8E+04	1.2E-06	0.18	1.00	0.00	0.10	0.18
Shuttle Tankers	docking calls	3.2E+03	1.2E-04	0.49	1.00	0.33	0.38	0.59
Major Accident	platform years	2.0E+01	1.7E-03	1.00	1.00	1.00	0.03	1.41

FPSO - Production Crew

Exposure (man-hours)	7.0E+06
Expected Fatality Rate (per man-hour)	7.9E-08
Coefficient of Uncertainty in Fatality Rate	0.36

Note: "Production Crew" includes product processing and construction activities.

Basis:

USCG Gulf of Mexico "Platform" Fatalities (Drilling-Related Fatalities Excluded)

Year	Fatalities
1992	4
1993	1
1994	4
1995	6
1996	2
1997	2
1998	8
1999	0

Total Exposure (man-hrs) for Gulf of Mexico (1992-1999):

Annual 1998-1999 Avg. (MMS Production/Construction)	4.16E+07
Increase to account for 85% reporting	4.89E+07
Total 92-99 Man-hours (assume 98-99 avg. applies)	3.91E+08
Coefficient of Uncertainty in Exposure	3.30E-01

Statistical Analysis:

Exposure (man-hr)	391,321,755
Fatalities	27
k"	28
n" (man-hr)	391,321,755
Expected Rate (per man-hr)	7.93E-08
Std. Dev. in Rate (per man-hr)	2.82865E-08
Coefficient of Uncertainty in Rate	3.57E-01

Production Crew Exposure for Study System

1 5 7	
Crew Size	40
Hours in 20 years	175200

Total man-hours	7008000

FPSO - Drilling Crew

Exposure (man-hours)	3.8E+06
Expected Fatality Rate (per man-hour)	1.4E-07
Coefficient of Uncertainty in Fatality Rate	0.14

Basis:

IADC Gulf of Mexico Statistics (1989-1999):

IADC Gulf of Mexico Statistics		Fatalities Reported to	
Year	Hours Worked	Fatalities	USCG*
1989	33,211,815	11	15
1990	34,624,227	8	4
1991	28,210,398	2	0
1992	20,024,172	0	1
1993	23,603,277	3	3
1994	29,733,657	5	6
1995	32,386,695	3	3
1996	32,827,738	3	4
1997	41,222,488	8	6
1998	43,437,749	6	2
1999	33,011,864	0	3

*USCG Reported: Fatalities on MODUs and Drilling-Related Fatalities on Fixed Platforms

Exposure (man-hr)	352,294,080
Coefficient of Uncertainty in Exposure	0
Fatalities	49
k"	50
n" (man-hr)	352,294,080
Expected Rate (per man-hr)	1.42E-07
Std. Dev. in Rate (per man-hr)	2.00715E-08
Coefficient of Uncertainty in Rate	1.41E-01

Driller Exposure for Study System

6 Subsea Wells (20 years)	days	crew	man-days
Drilling & Completion (3*90 + 120 days)	390	65	25350
Coiled Tubing (1/4 per well-yr @ 20 days)	600	4	2400
Hydraulic (1/5 per well-yr @ 20 days)	480	8	3840
Change out (1/8 per well-yr @ 50 days)	750	8	6000
Recompletion (1/10 per well-yr @ 50 days)	600	40	24000
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520	40	20800
Replace Wellhead (1/12 per well-yr @ 65 days)	650	40	26000

3 Subsea Wells (12 years)	days	crew	man-days
Drilling & Completion $(3*90 + 90 \text{ days})$	360	65	23400
Coiled Tubing (1/4 per well-yr @ 20 days)	180	4	720
Hydraulic (1/5 per well-yr @ 20 days)	144	8	1152
Change out (1/8 per well-yr @ 50 days)	225	8	1800
Recompletion (1/10 per well-yr @ 50 days)	180	40	7200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156	40	6240
Replace Wellhead (1/12 per well-yr @ 65 days)	195	40	7800

Total (man-days):	156702
Total man-hours	3.76E+6

FPSO - Supply Vessel Crews

Exposure (docking calls)	1.2E+04
Expected Fatality Rate (per call)	1.4E-05
Coefficient of Uncertainty in Fatality Rate	0.34

Basis:

USCG Gulf of Mexico "Offshore Supply Vessel" Fatalities

Year	Fatalities
1985	2
1986	1
1987	1
1988	0
1989	3
1990	0
1991	3
1992	3
1993	4
1994	4
1995	3
1996	3
1997	8
1998	3
1999	3

Total Exposure for Gulf of Mexico (1985-1999):

Annual Dock Calls (300 boats x 2 calls/day x 365 d)	2.19E+05
Est. 85-99 Supply Vessel Activity in GOM (calls)	3.29E+06
Coefficient of Uncertainty in Exposure	0.33

······································	
Exposure (calls)	3,285,000
Fatalities	41
k"	42
n" (calls)	3,285,000
Expected Rate (per call)	1.42E-05
Std. Dev. in Rate (per call)	4.79219E-06
Coefficient of Uncertainty in Rate	3.38E-01

Supply Vessel Crew Exposure for Study System

1 trip per 3 days during production	0.333333333
Days of Production (20 years)	7300
Trips	2433.333333

1 trip per 3 days during drilling/workover	0.333333333
6 Platform Wells (20 years)	
Drilling & Completion (5*90 + 6*20 days)	570
Slickline (3 per well-year @ 5 days)	1800
Coiled Tubing (3/4 per well-yr @ 20 days)	1800
Hydraulic (3/4 per well-yr @ 20 days)	1800
Change out (1/3 per well-yr @ 50 days)	2000
Recompletion (1/5 per well-yr @ 50 days)	1200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520
Trips	3230

3 Subsea Wells (12 years)	
Drilling & Completion (3*90 + 90 days)	360
Coiled Tubing (1/4 per well-yr @ 20 days)	180
Hydraulic (1/5 per well-yr @ 20 days)	144
Change out (1/8 per well-yr @ 50 days)	225
Recompletion (1/10 per well-yr @ 50 days)	180
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156
Replace Wellhead (1/12 per well-yr @ 65 days)	195
Trips	480

12287

FPSO - Helicopter Transport

Exposure (passengers)	7.8E+04
Expected Fatality Rate (per passenger)	1.2E-06
Coefficient of Uncertainty in Fatality Rate	0.18

Basis:

OGP Helicopter Safety Report (1999) (Gulf of Mexico Fatalities)

Year	Fatalities	Passengers
1994	10	4.8E+06
1995	8	5.7E+06
1996	11	5.8E+06
1997	1	5.0E+06
1998	1	5.0E+06

Statistical Analysis:

Exposure (passengers)	26,265,664
Fatalities	31
k"	32
n" (passengers)	26,265,664
Expected Rate (per passenger)	1.21832E-06
Coefficient of Uncertainty in Rate	0.176776695

Helicopter Transport Exposure for Study System

Platform Crew	40
Number of Crew Changes in 20 years (14 days)	521
Number of Passengers (round trip)	41714

Marine Crew	20
Number of Crew Changes in 20 years (21 days)	348
Number of Passengers (round trip)	13905

Drilling Crew (man-hours)	3760848
Man-hours per shift (14 days)	336
Man shift changes	11193
Number of Passengers (round trip)	22386

Total Number of Passengers	78005
----------------------------	-------

FPSO - Tanker Operations

Exposure (docking calls)	3.2E+03
Expected Fatality Rate (per call)	1.2E-04
Coefficient of Uncertainty in Fatality Rate	0.49

Basis:

USCG Gulf of Mexico "Tank Ship" Fatalities (Tank Ships < 50k dead weight tons excluded)

Year	Fatalities
1985	0
1986	0
1987	0
1988	0
1989	0
1990	0
1991	0
1992	0
1993	0
1994	3
1995	1
1996	0
1997	0
1998	2
1999	0

Total Exposure for Gulf of Mexico (1985-1999):

Annual Dock Calls	4.40E+03
Est. 85-99 Tanker Activity in GOM (calls)	6.60E+04
Coefficient of Uncertainty in Exposure	0.33

Statistical Analysis:

Exposure (calls)	66,000
Fatalities	6
k"	7
n" (calls)	66,000
Expected Rate (per call)	1.18E-04
Std. Dev. in Rate (per call)	5.79394E-05
Coefficient of Uncertainty in Rate	4.93E-01

Shuttle Tanker Docking Calls

Shuttle Tanker Cargo (bbl)	450000
Total Production (bbl)	719000000
Total Docking Calls (2 per trip)	3196
FPSO - Major Accident

Exposure (platform years)	2.0E+01
Expected Fatality Rate (per platform year)	1.7E-03
Coefficient of Uncertainty in Fatality Rate	1.00

Basis:

Number of Major Offshore Accidents in GOM in 35 years = 0

Total Offshore Exposure in GOM (35 years)

Manned Platforms per Year	500
Number of Years	35
Manned Platform Years	17500

Statistical Analysis:

Exposure (manned platform years)	17,500
Major Accidents	0
k"	1
n" (platform years)	17,500
Expected Incident Rate (per platform year)	5.71429E-05
Coefficient of Uncertainty in Incident Rate	1
Number of Fatalities per Major Accident	30
Expected Fatality Rate (per platform year)	0.001714286
Coefficient of Uncertainty in Incident Rate	1

Exposure for Study System

Manned Years	20

Appendix F

Oil Spill Risk Assessments

Table F.1 Oil Spill Data: Summary of Raw Data and Refinements for this Study	F.2
Appendix F.1 Oil Spill Risk Assessment for Spar	F.9
Appendix F.2 Oil Spill Risk Assessment for TLP	F.56
Appendix F.3 Oil Spill Risk Assessment for Hub/Host Jacket	F.103
Appendix F.4 Oil Spill Risk Assessment for FPSO	F.141

		Refinements to Raw Data			
Sub-System	Data Source	Spar	TLP	Hub/Host Jacket	FPSO
Well Systems – Platform	Frequencies for different spill sizes from MMS Database of "Well and Header System" spills in the Gulf of Mexico for the years 1985-1998. Frequencies normalized by the total volume of oil produced.	Exclude data prior to 1990 to account for changes in operating procedures due to implementation of API RP14C.	Exclude data prior to 1990 to account for changes in operating procedures due to implementation of API RP14C.	Exclude data prior to 1990 to account for changes in operating procedures due to implementation of API RP14C.	Not Applicable
Well Systems – Subsea	Frequencies for different spill sizes from MMS Database of "Well and Header System" spills in the Gulf of Mexico for the years 1985-1998. Frequencies normalized by the total volume of oil produced.	Exclude data prior to 1990 to account for changes in operating procedures due to implementation of API RP14C. Double expected frequency for leaks to account for greater potential for sand erosion and cutouts due to high flow rates and detection difficulties for	Exclude data prior to 1990 to account for changes in operating procedures due to implementation of API RP14C. Double expected frequency for leaks to account for greater potential for sand erosion and cutouts due to high flow rates and detection difficulties for	Exclude data prior to 1990 to account for changes in operating procedures due to implementation of API RP14C. Double expected frequency for leaks to account for greater potential for sand erosion and cutouts due to high flow rates and detection difficulties for	Exclude data prior to 1990 to account for changes in operating procedures due to implementation of API RP14C. Double expected frequency for leaks to account for greater potential for sand erosion and cutouts due to high flow rates and detection difficulties for
Dry Tree Risers	Leak frequency for dry tree risers during production taken from OTC Paper (Wolford et al. 1997). Distribution of spill sizes taken from MMS Database of "Pipeline" spills in the Gulf of Mexico for the years 1992-1998. Frequencies normalized by riser-years (or well-years).	No Changes (Note that the possibility of spills larger than 100,000 bbl was evaluated even though none have occurred in the data record. The estimated frequency for this type of an event was negligibly small because it requires a combined failure of the dual risers and the subsea safety valve.)	No Changes (Note that the possibility of spills larger than 100,000 bbl was evaluated even though none have occurred in the data record. The estimated frequency for this type of an event was negligibly small because it requires a combined failure of the dual risers and the subsea safety valve.)	Not Applicable	Not Applicable

Table F.1 Oil Spill Data: Summary of Raw Data and Refinements for this Study

		Refinements to Raw Data			
Sub-System	Data Source	Spar	TLP	Hub/Host Jacket	FPSO
Flowlines	Frequencies for different spill sizes from USCG Database of spills from "Pipelines" for the years 1992-1998. Frequencies normalized by the length of pipeline and by time (mile- years). The total miles of oil/condensate pipeline in the Gulf of Mexico estimated from MMS and State of Louisiana information.	Limit maximum possible spill size per incident to 10,000 bbl because (1) flowline inventory is small (< 10,000 bbl total in parallel lines) and (2) safety systems should shut production in within 45 minutes of a leak occurring (5 hours at 2,000 bbl/hr total in both lines gives 10,000 bbl).	Limit maximum possible spill size per incident to 10,000 bbl because (1) flowline inventory is small (< 10,000 bbl total in parallel lines) and (2) safety systems should shut production in within 45 minutes of a leak occurring (5 hours at 2,000 bbl/hr total in both lines gives 10,000 bbl).	Limit maximum possible spill size per incident to 10,000 bbl because (1) flowline inventory is small (< 10,000 bbl total in parallel lines) and (2) safety systems should shut production in within 45 minutes of a leak occurring (5 hours at 2,000 bbl/hr total in both lines gives 10,000 bbl).	Limit maximum possible spill size per incident to 10,000 bbl because (1) flowline inventory is small (< 10,000 bbl total in parallel lines) and (2) safety systems should shut production in within 45 minutes of a leak occurring (5 hours at 2,000 bbl/hr total in both lines gives 10,000 bbl).
Import Flowline Risers	Leak frequency from PARLOC (1993) pipeline database, filtered for flexible pipelines and then for risers. Data are for static versus dynamic risers. Distribution of spill sizes taken from MMS Database of "Pipeline" spills in the Gulf of Mexico for the years 1992-1998. Frequencies normalized by riser-years.	Limit maximum possible spill size to 10,000 bbl using same rationale as for flowlines.	Limit maximum possible spill size to 10,000 bbl using same rationale as for flowlines.	Not Applicable	Limit maximum possible spill size to 10,000 bbl using same rationale as for flowlines.

Table F.1 Oil Spill Data: Summary of Raw Data and Refinements for this Study

		Refinements to Raw Data			
Sub-System	Data Source	Spar	TLP	Hub/Host Jacket	FPSO
Topsides	Frequencies for different spill sizes from MMS Database of "Platform" spills in the Gulf of Mexico for the years 1985- 1998. Frequencies normalized by the total oil production reported by MMS. Spills include both process and non- process spills from the topsides. Spills involving supply vessels not included (information about these obtained from USCG database, as described below) and spills involving drilling/workover activities not included (information accounted for in drilling and intervention category).	Exclude data prior to 1990 to account for changes in operating procedures due to implementation of API RP14C. Reduce spill frequency for the 1,000 to 10,000 bbl category to 1.0x10 ⁻⁴ per year to account for the inventory spilled in a total structural failure.	Exclude data prior to 1990 to account for changes in operating procedures due to implementation of API RP14C. Reduce spill frequency for the 1,000 to 10,000 bbl category to 1.0x10 ⁻⁴ per year to account for the inventory spilled in a total structural failure.	Exclude data prior to 1990 to account for changes in operating procedures due to implementation of API RP14C. Reduce spill frequency for the 1,000 to 10,000 bbl category to 1.0x10 ⁻⁴ per year to account for the inventory spilled in a total structural failure. Increase the processed volume by 2.5% of transshipped volume (or 10% of maximum produced volume) to account for additional spill risk from handling the transshipped product.	Exclude data prior to 1990 to account for changes in operating procedures due to implementation of API RP14C. Limit maximum possible spill size per incident to 1,000 bbl because there is limited inventory of product and other fluids in the topsides that can be spilled at any one time. Reduce spill frequency for the 1 to 10 bbl category by ten due to (1) capability to contain spills on deck due to the solid decking and combing and (2) location of fuel tanks in hull.
Export Pipeline Risers	<u>Oil</u> : Leak frequency from PARLOC (1993) pipeline database, filtered for flexible pipelines and then for risers. Data are for static versus dynamic risers. Distribution of spill sizes taken from MMS Database of "Pipeline" spills in the Gulf of Mexico for the years 1992-1998. Frequencies normalized by riser-years.	Limit maximum possible spill size to 100,000 bbl and use a triangular probability distribution (decreasing with increasing size) in the 10,000 to 100,000 bbl category because of same rationale as for pipelines.	Limit maximum possible spill size to 100,000 bbl and use a triangular probability distribution (decreasing with increasing size) in the 10,000 to 100,000 bbl category because of same rationale as for pipelines.	Not Applicable	Not Applicable
1	Gas: included in Pipelines.	See Gas Pipelines	See Gas Pipelines	See Gas Pipelines	See Gas Pipelines

Table F.1 Oil Spill Data: Summary of Raw Data and Refinements for this Study

		Refinements to Raw Data			
Sub-System	Data Source	Spar	TLP	Hub/Host Jacket	FPSO
Pipelines	<u>Oil</u> : Frequencies for different spill sizes from USCG Database of spills from "Pipelines" for the years 1992- 1998. Spills from liquid pipelines (oil and condensate) separated from those for natural gas pipelines. Frequencies normalized by the length of pipeline and by time (mile-years). Total miles of oil/condensate pipeline in Gulf of Mexico estimated from MMS and State of Louisiana information.	Limit maximum possible spill size to 100,000 bbl and use a lower triangular probability distribution in the 10,000 to 100,000 bbl category because (1) hydrostatic pressures in deeper water and "P-traps" due to bottom contours limit the volume of inventory that can leak and (2) it is not credible that pumping would continue for more than several hours after a leak occurs (6,200 bbl/hr production rate) due to detection systems and operational requirements.	Limit maximum possible spill size to 100,000 bbl and use a lower triangular probability distribution in the 10,000 to 100,000 bbl category because (1) hydrostatic pressures in deeper water and "P-traps" due to bottom contours limit the volume of inventory that can leak and (2) it is not credible that pumping would continue for more than several hours after a leak occurs (6,200 bbl/hr production rate) due to detection systems and operational requirements.	Limit maximum possible spill size to 100,000 bbl and use a lower triangular probability distribution in the 10,000 to 100,000 bbl category because (1) hydrostatic pressures in deeper water and "P-traps" due to bottom contours limit the volume of inventory that can leak and (2) it is not credible that pumping would continue for more than several hours after a leak occurs (6,200 bbl/hr production rate) due to detection systems and operational requirements.	Not Applicable
	<u>Gas</u> : Frequencies from USCG Database of spills from "Pipelines" for 1992-1998. Reported spills from natural gas pipelines separated from those for liquid pipelines. Frequencies normalized by the length of pipeline and by time (mile-years). Total miles of natural gas pipeline estimated from MMS and State of Louisiana information.	Considered a negligible contribution to oil spill risk due to small volumes of condensate and small likelihood of spills (only two spills occurred in the data record and both were less than 10 bbl in size), and not considered further in the analysis.	Considered a negligible contribution to oil spill risk due to small volumes of condensate and small likelihood of spills (only two spills occurred in the data record and both were less than 10 bbl in size), and not considered further in the analysis.	Considered a negligible contribution to oil spill risk due to small volumes of condensate and small likelihood of spills (only two spills occurred in the data record and both were less than 10 bbl in size), and not considered further in the analysis.	Considered a negligible contribution to oil spill risk due to small volumes of condensate and small likelihood of spills (only two spills occurred in the data record and both were less than 10 bbl in size), and not considered further in the analysis.

Table F.1 Oil Spill Data: Su	nmary of Raw Data and	Refinements for this Study
------------------------------	-----------------------	----------------------------

		Refinements to Raw Data				
Sub-System	Data Source	Spar	TLP	Hub/Host Jacket	FPSO	
Sub-System Shuttle Tanker	Data Source Frequencies for different spill sizes from USCG Database of spills from "Tank Ships" in the Gulf of Mexico and related waters for the years 1985- 1999. Frequencies normalized by the number of port or docking calls, including calls to terminals, lightering zones and LOOP. The total number of tanker docking calls in the Gulf of Mexico for the years 1985-1999 estimated from oil import information in the NRC Marine Board lightering study (1998) and assuming average sizes for tankers. Estimates checked with Skaugen Petrotrans.	Spar Not Applicable	Refinements TLP Not Applicable	to Raw Data Hub/Host Jacket	FPSO Exclude pre-1992 data to reflect impact of OPA 90. Exclude spills related to bunkering since it is not required for FPSO (unlike tankers being lightered), and exclude spills for tankers with cargos of dry bulk, chemicals and gas since these are not relevant to crude oil transport. Due to lack of large-spill incidents in Gulf of Mexico, statistically combine these data with ITOPF data for tanker spills world-wide from 1992-1999 to estimate frequencies for spills	
	Estimates checked with Skaugen Petrotrans.				spills world-wide from 1992-1999 to estimate frequencies for spills greater than 10,000 bbl. Factor world-wide spill frequencies down to reflect differences in tanker operations in the Gulf of Mexico versus the world. Use a triangular probability distribution (decreasing with increasing size) in the 100,000 to 500,000 bbl category to account for compartmentalization of cargo tanks.	

Table F.1 Oil Spill Data: Summary of Raw Data and Refinements for this Study

		Refinements to Raw Data				
Sub-System	Data Source	Spar	TLP	Hub/Host Jacket	FPSO	
FPSO Cargo Tank	This category represents a catastrophic, structural failure of the FPSO due to a hurricane or a high-energy collision with a vessel other than the shuttle tanker. All other spills from the FPSO cargo tanks are accounted for in the Shuttle Tanker category (from lightering data). Frequency of occurrence estimated from existing information on FPSO performance: no occurrences of a "system failure" leading to a major breach of an FPSO cargo tank in approximately 500 FPSO-years of operating experience.	Not Applicable	Not Applicable	Not Applicable	Reduce frequency of occurrence by a factor of ten since floating production systems are generally designed to achieve a probability of total system failure that is on the order of 10 ⁻⁴ per year or smaller. Distribute the frequency of total system failure across the different spill size categories according to the storage present in the cargo tanks and the likelihood of a partial versus complete loss of the cargo. Assume that 90% of these incidents will lead to spills smaller than 100,000 bbls. Also, assume that the most common operating condition is 350,000 bbl stored in the cargo tanks.	

Table F.1 Oil Spill Data: Summary of Raw Data and Refinements for this Study

			Refinements	to Raw Data	
Sub-System	Data Source	Spar	TLP	Hub/Host Jacket	FPSO
Supply Vessels	Frequencies for different spill sizes from USCG Database of spills from "Offshore Supply Vessels" in the Gulf of Mexico and related waters for the years 1985-1999. Frequencies normalized by the number of port or docking calls. The total number of docking calls in the Gulf of Mexico for the years 1985- 1999 roughly estimated from discussions with Edison Chouest.	Limit maximum possible spill size to 1,000 bbl to be consistent with cargo capacity for typical supply vessels (less than 1,000 bbl).	Limit maximum possible spill size to 1,000 bbl to be consistent with cargo capacity for typical supply vessels (less than 1,000 bbl).	Limit maximum possible spill size to 1,000 bbl to be consistent with cargo capacity for typical supply vessels (less than 1,000 bbl).	Limit maximum possible spill size to 1,000 bbl to be consistent with cargo capacity for typical supply vessels (less than 1,000 bbl).
Drilling and Intervention	Frequencies for different spill sizes from MMS Database of "Platform" spills due to "Drilling" and "Workover and Completion" activities (includes exploratory and development drilling) in the Gulf of Mexico, for the years 1980-1999. Frequencies normalized by total number of man-days of drill-crew activity because crew-size provides rough indication of activity- level in the operations. Drill- crew activity for the Gulf of Mexico obtained from IADC statistics for the 1990's, and assumed to be representative for the years 1980 to 1999.	No Changes (Note that the possibility of spills larger than 10,000 bbl was evaluated even though none have occurred in the data record. The estimated frequency for this type of an event was negligibly small during development drilling.)	No Changes (Note that the possibility of spills larger than 10,000 bbl was evaluated even though none have occurred in the data record. The probability of this type of an event was considered to be negligibly small during development drilling.)	No Changes (Note that the possibility of spills larger than 10,000 bbl was evaluated even though none have occurred in the data record. The probability of this type of an event was considered to be negligibly small during development drilling.)	No Changes (Note that the possibility of spills larger than 10,000 bbl was evaluated even though none have occurred in the data record. The probability of this type of an event was considered to be negligibly small during development drilling.)

Table F.1 Oil Spill Data: Summary of Raw Data and Refinements for this Study

Appendix F.1

Oil Spill Risk Assessment for Spar

Spar – Risk Summary	F.10
Spar – Frequency Summary	F.12
Spar – Well Systems (Platform)	F.16
Spar – Well Systems (Subsea)	F.20
Spar – Dry Tree Risers	F.24
Spar – Flowlines	F.27
Spar – Import Flowline Risers	F.31
Spar – Topsides	F.34
Spar – Export Pipeline Risers	F.38
Spar – Pipelines	F.41
Spar – Supply Vessels	F.45
Spar – Drilling and Intervention	F.50

Spar - Risk Summary

Overall System Risk Results for 20-year Life:

Expected Total (bbl)	3.759E+03
Std. Dev. in Total (bbl)	1.9E+03

Expected Max (bbl)	2.7E+03
Std. Dev. in Max (bbl)	1.7E+03

		Sub-system Ris	sk Results for 20-year L	ife
	Expected Total (bbl)	Std. Dev. in Total (bbl)	Expected Maximum (bbl)	Std Dev. in Maximum (bbl)
Well Systems - Platform	59	46	51	40
Well Systems - Subsea	78	83	64	68
Dry Tree Risers	15	16	15	16
Flowlines	107	109	105	106
Import Flowline Risers	61	62	60	61
Topsides	525	148	208	59
Export Pipeline Risers	106	76	106	76
Pipelines	2809	1861	2429	1661
Supply Vessels	10	4	9	4
Drilling and Intervention	67	41	63	40

F.10 – Oil Spill Risk Assessment for Spar

Spar - Frequency Summary

Summary Information for Frequencies

	Total System Frequency					
Spill Size Range (bbl)	Expected Value (per year)	Coefficient of Uncertainty	k for Gamma Distribution	n for Gamma Distribution	Lower 90% (per year)	Upper 90% (per year)
1 - 10	1.2E+00	9.6E-02	1.1E+02	9.1E+01	1.0E+00	1.4E+00
10 - 100	3.6E-01	1.7E-01	3.4E+01	9.5E+01	2.7E-01	4.7E-01
100 - 1,000	7.7E-02	3.4E-01	8.5E+00	1.1E+02	3.9E-02	1.2E-01
1,000 - 10,000	2.2E-02	5.4E-01	3.4E+00	1.6E+02	6.6E-03	4.4E-02
10,000 - 100,000	3.7E-03	1.1E+00	8.5E-01	2.3E+02	1.2E-04	1.2E-02
100,000 - 500,000	0.0E+00					
500,000 - 1,000,000	0.0E+00					

		Expected Frequency by Sub-system (per year)								
Spill Size Range (bbl)	Well Systems - Platform	Well Systems - Subsea	Dry Tree Risers	Flowlines	Import Flowline Risers	Topsides	Export Pipeline Risers	Pipelines	Supply Vessels	Drilling and Intervention
1 - 10	4.7E-02	0.0E+00	2.3E-04	4.5E-03	2.5E-03	1.0E+00	2.0E-03	5.4E-02	1.4E-02	5.5E-02
10 - 100	2.0E-02	0.0E+00	2.0E-04	3.9E-03	2.2E-03	2.7E-01	1.8E-03	4.7E-02	7.7E-03	9.5E-03
100 - 1,000	6.7E-03	0.0E+00	7.7E-05	1.5E-03	8.4E-04	4.5E-02	6.8E-04	1.8E-02	6.2E-04	3.7E-03
1,000 - 10,000	0.0E+00	0.0E+00	7.7E-05	1.5E-03	8.4E-04	1.0E-04	6.8E-04	1.8E-02	0.0E+00	5.3E-04
10,000 - 100,000	0.0E+00	0.0E+00	1.5E-05	0.0E+00	0.0E+00	0.0E+00	1.4E-04	3.6E-03	0.0E+00	0.0E+00
100,000 - 500,000	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
500,000 - 1,000,000	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Production System Frequency						
Spill Size Range (bbl)	Expected Value (per year)	Coefficient of Uncertainty	k for Gamma Distribution	n for Gamma Distribution	Lower 90% (per year)	Upper 90% (per year)
1 - 10	1.1E+00	9.8E-02	1.0E+02	9.2E+01	9.6E-01	1.3E+00
10 - 100	3.1E-01	1.8E-01	3.0E+01	9.8E+01	2.2E-01	4.1E-01
100 - 1,000	5.8E-02	4.1E-01	6.1E+00	1.0E+02	2.5E-02	1.0E-01
1,000 - 10,000	3.0E-03	6.8E-01	2.2E+00	7.2E+02	6.0E-04	7.0E-03
10,000 - 100,000	1.5E-05	1.4E+00	5.0E-01	3.3E+04	6.0E-08	5.9E-05
100,000 - 500,000	0.0E+00					
500,000 - 1,000,000	0.0E+00					

Summary Information for Spar Production Frequencies

Summary Information for Spar Transportation Frequencies

		Transportation System Frequency						
Spill Size Range (bbl)	Expected Value (per year)	Coefficient of Uncertainty	k for Gamma Distribution	n for Gamma Distribution	Lower 90% (per year)	Upper 90% (per year)		
1 - 10	5.6E-02	5.0E-01	4.0E+00	7.1E+01	1.9E-02	1.1E-01		
10 - 100	4.9E-02	5.1E-01	3.8E+00	7.9E+01	1.6E-02	9.5E-02		
100 - 1,000	1.9E-02	6.2E-01	2.6E+00	1.4E+02	4.4E-03	4.1E-02		
1,000 - 10,000	1.9E-02	6.2E-01	2.6E+00	1.4E+02	4.4E-03	4.1E-02		
10,000 - 100,000	3.7E-03	1.1E+00	8.4E-01	2.3E+02	1.2E-04	1.2E-02		
100,000 - 500,000								
500,000 - 1,000,000								

Spar - Contribution to Total Frequency for Different Spill Sizes

Spar - Well Systems (Platform) Exposure (bbl produced) 4.1

4.13E+08

	Input Information						
		Combined (Expert	+Data) Estimate	Expert-Based E	xtrapolation Bias	Data-Based	Estimate
		Expected	Coefficient		Coefficient	Expected	Coefficient
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty
(bbl)	(bbl)	(per bbl)	for Frequency	Bias	for Bias	(per bbl)	for Frequency
1 - 10	3	2.3E-09	0.38	1.0E+00	0.00	2.3E-09	0.38
10 - 100	32	9.8E-10	0.58	1.0E+00	0.00	9.8E-10	0.58
100 - 1,000	320	3.3E-10	1.05	1.0E+00	0.33	3.3E-10	1.00
1,000 - 10,000	3200	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
10,000 - 100,000	32000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00

Expected Total (bbl)	5.9E+01
Std. Dev. in Total (bbl)	4.6E+01

Expected Max (bb	ol) 5.1E+01
Std. Dev. in Max ((bbl) 4.0E+01

Reported incidents of oil spills from "well and header systems" in the Gulf of Mexico were taken from the MMS pipeline and platform spill database (provided by Cheryl Anderson of MMS) for the years 1980 to 1999. The data are summarized below. Use only data from 1990 to present to account for changes in operating procedures due to implementation of API RP14C.

Equipment includes subsurface safety valves, wellhead assemblies, chokes, jumpers and injection lines, pressure sensors, surface safety valves, header valves and check valves.

Assume risk is proportional to the volume of production - total production data are available for GOM from 1985-1998.

Total Production bbls in GOM Data:	
Expected Value (bbl)	3.1E+09
Coefficient of Uncertainty	0
Standard Deviation (bbl)	0

			Statistically Estimated Frequency (no prior information)						
Spill Size Range		Frequency			n"	Expected Value	Std. Dev.	Coefficient of	
(bbl)	Count	(per bbl)	k"		(bbl)	(/bbl)	(/bbl)	Uncertainty	
1 - 10	6	2.0E-09		7	3.1E+09	2.3E-09	8.6E-10	0.377964473	
10 - 100	2	6.5E-10		3	3.1E+09	9.8E-10	5.6E-10	0.577350269	
100 - 1,000	0	0.0E+00		1	3.1E+09	3.3E-10	3.3E-10	1	
1,000 - 10,000	0	0.0E+00							
10,000 - 100,000	0	0.0E+00							
100,000 - 500,000	0	0.0E+00							
500,000 - 1,000,000	0	0.0E+00							

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because study well systems are similar to those in data base.

- Apply a coefficient of uncertainty of 0.33 in extrapolating the historical data for the largest spill size category since there have been no occurrences for this spill size on the fixed production systems in the database and its frequency on floating production systems is uncertain.

Exposure for Study System: Platform Well Production (bbl) 4.

4.13E+08

				Sp	ills from W Sour(ell and Hea	ider System TIMS Datal	s in the GoM base)	М				
	(Source, Minis - Tims Batabase)												
						1 - 10 bbl	_		<u> 10 - 100 bb</u>	1	1	00 - 1,000 b	bl
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Productio n (bbl)	Barrels Spilled per 1E6 Bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1980	2	7			2	7	3.4						
1981	3	12			3	12	4.0						
1982	5	14			5	14	2.7						
1983	2	31						2	31	15.5			
1984	1	3			1	3	3.0						
1985	2	43	351133870	0.12	1	3	3.0	1	40	40.0			
1986	2	5	356398376	0.01	2	5	2.5						
1987	3	6	328243087	0.02	3	6	2.0						
1988	5	73	301704812	0.24	4	18	4.5	1	55	55.0			
1989	2	18	281160011	0.06	1	6	6.0	1	12	12.0			
1990	0	0	274955773	0.00									
1991	0	0	295129769	0.00									
1992	3	74	305282682	0.24	1	8	8.0	2	66	33.0			
1993	0	0	309229380	0.00									
1994	2	6	314743342	0.02	2	6	3.0						
1995	1	1	345525211	0.00	1	1	1.0						
1996	2	3	369309647	0.01	2	3	1.5						
1997	0	0	411795024	0.00									
1998	0	0	444466377	0.00									
1999	0	0											
TOTAL	35	295	4.69E+09	4.88E-02	28	91	3	7	204	29	0	0	0

Spar - Well Systems (Subsea) Exposure (bbl produced)

2.73E+08

	_		Input Information	tion			
		Combined (Expe	rt+Data) Estimate	Expert-Based E	xtrapolation Bias	Data-Based	Estimate
		Expected	Coefficient		Coefficient	Expected	Coefficient
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty
(bbl)	(bbl)	(per bbl)	for Frequency	Bias	for Bias	(per bbl)	for Frequency
1 - 10	3	4.6E-09	1.07	2.0E+00	1.00	2.3E-09	0.38
10 - 100	32	2.0E-09	1.15	2.0E+00	1.00	9.8E-10	0.58
100 - 1,000	320	6.5E-10	1.41	2.0E+00	1.00	3.3E-10	1.00
1,000 - 10,000	3200	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
10,000 - 100,000	32000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00

Expected Total (bbl)	7.8E+01
Std. Dev. in Total (bbl)	8.3E+01

Expected Max (bbl)	6.4E+01
Std. Dev. in Max (bbl)	6.8E+01

Reported incidents of oil spills from "well and header systems" in the Gulf of Mexico were taken from the MMS pipeline and platform spill database (provided by Cheryl Anderson of MMS) for the years 1980 to 1999. The data are summarized below. Use only data from 1990 to present to account for changes in operating

Equipment includes subsurface safety valves, wellhead assemblies, chokes, jumpers and injection lines, pressure sensors, surface safety valves, header valves and check valves.

Assume risk is proportional to the volume of production - total production data are available for GOM from 1985-1998.

Total Production bbls in GOM Data:Expected Value (bbl)3.1E+09Coefficient of Uncertainty0Standard Deviation (bbl)0

		Statistically Estimated Frequency (no prior information)						
Spill Size Range		Frequency			n"	Expected Value	Std. Dev.	Coefficient of
(bbl)	Count	(per bbl)	k"		(bbl)	(/bbl)	(/bbl)	Uncertainty
1 - 10	6	2.0E-09		7	3.1E+09	2.3E-09	8.6E-10	0.377964473
10 - 100	2	6.5E-10		3	3.1E+09	9.8E-10	5.6E-10	0.577350269
100 - 1,000	0	0.0E+00		1	3.1E+09	3.3E-10	3.3E-10	1
1,000 - 10,000	0	0.0E+00						
10,000 - 100,000	0	0.0E+00						
100,000 - 500,000	0	0.0E+00						
500,000 - 1,000,000	0	0.0E+00						

Expert-Based Adjustment to Raw Data:

- Double expected frequency for leaks to account for greater potential for sand erosion and cutouts due to high flow rates and detection difficulties for sand.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the historical data since wells in database are mostly platform wells and not subsea wells.

Exposure for Study System:

Subsea Well Production (bbl) 2.73E+08

	Spills from Well and Header Systems in the GoM (Source: MIVIS - TIINIS Database)												
	1 - 10 bbl 10 - 1,000 bbl 100 - 1,000 bbl												bl
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Production (bbl)	Barrels Spilled per 1E6 Bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1980	2	7			2	7	3.4						
1981	3	12			3	12	4.0						
1982	5	14			5	14	2.7						
1983	2	31						2	31	15.5			
1984	1	3			1	3	3.0						
1985	2	43	351133870	0.12	1	3	3.0	1	40	40.0			
1986	2	5	356398376	0.01	2	5	2.5						
1987	3	6	328243087	0.02	3	6	2.0						
1988	5	73	301704812	0.24	4	18	4.5	1	55	55.0			
1989	2	18	281160011	0.06	1	6	6.0	1	12	12.0			
1990	0	0	274955773	0.00									
1991	0	0	295129769	0.00									
1992	3	74	305282682	0.24	1	8	8.0	2	66	33.0			
1993	0	0	309229380	0.00									
1994	2	6	314743342	0.02	2	6	3.0						
1995	1	1	345525211	0.00	1	1	1.0						
1996	2	3	369309647	0.01	2	3	1.5						
1997	0	0	411795024	0.00						ļ			
1998	0	0	444466377	0.00						ļ			
1999	0	0											
TOTAL	35	295	4.69E+09	4.88E-02	28	91	3	7	204	29	0	0	0

Spar - Dry Tree RisersExposure (riser-years)120

			nput Informati	on			
		Combined (E Estir	xpert+Data) nate	Data-Based	d Estimate		
		Expected	Coefficient		Coefficient	Expected	Coefficient
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty
(bbl)	(bbl)	(per riser-year)	for Frequency	Bias	for Bias	(per riser-year)	for Frequency
1 - 10	3	3.8E-05	1.41	1.0E+00	1.00	3.8E-05	1.00
10 - 100	32	3.3E-05	1.41	1.0E+00	1.00	3.3E-05	1.00
100 - 1,000	320	1.3E-05	1.41	1.0E+00	1.00	1.3E-05	1.00
1,000 - 10,000	3200	1.3E-05	1.41	1.0E+00	1.00	1.3E-05	1.00
10,000 - 100,000	32000	2.6E-06	1.41	1.0E+00	1.00	2.6E-06	1.00
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00

Expected Total (bbl)	1.5E+01
Std. Dev. in Total (bbl)	1.6E+01

Expected Max (bbl)	1.5E+01
Std. Dev. in Max (bbl)	1.6E+01

Use OTC 8518 (Wolford et al. 1997) information for leak frequency from dual-cased production risers: 6.0x10⁻⁵ loss-of-well control events (including during production and well intervention) per riser-year based on fault tree analysis - use 1x10⁻⁴ leaks per riser-year as an approximation for the study system.

Leak Frequency for riser (per riser year):	
Expected Value (OTC Paper)	1.00E-04
Coefficient of Uncertainty (Few data to support	1.00
Standard Deviation	0.0001

Distribute spill sizes from risers using the pipeline spill-size distribution for spills less than 100,000 bbl in size (see Pipeline worksheet for details).

	Expected		Expected	
	Pipeline	Leak	Riser	Coefficient of
Spill Size Range	Frequency	Distribution	Frequency	Uncertainty in
(bbl)	(per mile-year)	for no SSV Failure	(per riser year)	Frequency
1 - 10	3.72E-04	38%	3.85E-05	1.00
10 - 100	3.22E-04	33%	3.33E-05	1.00
100 - 1,000	1.24E-04	13%	1.28E-05	1.00
1,000 - 10,000	1.24E-04	13%	1.28E-05	1.00
10,000 - 100,000	2.48E-05	3%	2.56E-06	1.00
100,000 - 500,000	0.00E+00	0%	0.00E+00	0.00
500,000 - 1,000,000	0.00E+00	0%	0.00E+00	0.00
		Total:	1.00E-04	

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because estimated frequency was for similar types of risers.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the data because there are no actual occurrences of these types of events from dual risers for deepwater floating production systems.

- While a large spill (>100,000 bbl spill) could occur if there is a leak from the riser system and a failure of the subsea safety valve (SSV), this possibility is considered to be so remote as to be negligible. For example, the probability of failure for an SSV is estimated to be about 0.001 giving approximately a 0.0001x0.001 or 1x10-7 frequency per riser year for this type of an event, which would contribute very little to the expected oil spill volume. Therefore, the frequencies for spills greater than 100,000 bbl are assumed to be zero.

Exposure for Study System:	
Number of Dry Tree Risers	6
Service Life (years)	20
Exposure (riser-years)	120

Spar - Flowlines

Exposure (mile-years) 240

Input Information

		Combined (E Estin	xpert+Data)	Expert-Based E	xtrapolation Bias	Data-Based	Estimate
		Expected	Coefficient		Coefficient	Expected	Coefficient
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty
(bbl)	(bbl)	(per mile-year)	for Frequency	Bias	for Bias	(per mile-year)	for Frequency
1 - 10	3	3.7E-04	1.08	1.0E+00	1.00	3.7E-04	4.0E-01
10 - 100	32	3.2E-04	1.08	1.0E+00	1.00	3.2E-04	4.1E-01
100 - 1,000	320	1.2E-04	1.14	1.0E+00	1.00	1.2E-04	5.5E-01
1,000 - 10,000	3200	1.2E-04	1.14	1.0E+00	1.00	1.2E-04	5.5E-01
10,000 - 100,000	32000	0.0E+00	0.00	0.0E+00	0.00	2.5E-05	1.1E+00
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.0E+00
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.0E+00

Expected Total (bbl)	1.1E+02
Std. Dev. in Total (bbl)	1.1E+02
Expected Max (bbl)	1.1E+02
Std. Dev. in Max (bbl)	1.1E+02

Reported incidents of oil pipeline leaks in the Gulf of Mexico were taken from the USCG spill database for the years 1992 to 1998. The data are summarized below.

Total Pipeline Miles in GOM federal and state waters estimated from MMS and Lousiana data making the following assumptions:

Federal Waters Sum: Include "unknown" mileage in all years

State Waters Sum: Start with 2,500 miles from Mariano Hinojosa (Louisiana) in 2000; Maintain constant State/Federal Percentage for Earlier Years

Percent Inactive: Assume 17 percent today, 0 percent in 1948 and increase it linearly with time

Total Active: Reduce both federal and state together with same percentage inactive

Total Active Liquid: Assume 30 percent of pipeline length is liquid versus gas (NRC Marine Board Study 1994)

Result - 44,715 mile-years from 1992 to 1998

As a check, Marine Board Study in 1994 reported 17,000 total miles with 30 % oil/condensate, giving 5,100 miles for 7 years or 35,700 mile-years.

Total Mile Years in Data:	
Expected Value	44715
Coefficient of Uncertainty	0.33
Standard Deviation	14756

			Statistically Estimated Frequency (no prior information)					
Spill Size Range		Frequency		n"	Expected Value	Std. Dev.		
(bbl)	Count	(per mile-yr)	k"	(mile-yr)	(per mile-yr)	(per mile-yr)	C.O.V.	
1 - 10	14	3.1E-04	15	44715	3.7E-04	1.5E-04	0.40	
10 - 100	12	2.7E-04	13	44715	3.2E-04	1.3E-04	0.41	
100 - 1,000	4	8.9E-05	5	44715	1.2E-04	6.8E-05	0.55	
1,000 - 10,000	4	8.9E-05	5	44715	1.2E-04	6.8E-05	0.55	
10,000 - 100,000	0	0.0E+00	1	44715	2.5E-05	2.7E-05	1.08	
100,000 - 500,000	0	0.0E+00						
500.000 - 1.000.000	0	0.0E+00						

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because flowliness for study systems will be similar to pipelines in database, although they will be in deeper water than average pipelines in database.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the historical data since most of the pipelines in the historical database are in shallower water than the flowlines for the study system. The deepwater effect may lead to a reduction in the frequency of spills (fewer anchor drags and dropped objects), but the difference was not considered to be significant enough (an EQE 1998 study estimated the frequency of spills for deepwater segments of pipeline would be approximately 70-percent of that for shallow water pipeline segments) to be reflected in the expected bias.

- Limit maximum possible spill size per incident to 10,000 bbl because (1) flowline inventory is small (< 10,000 bbl total in parallel lines) and (2) safety systems should shut production in within 45 minutes of a leak occurring (5 hours at 2,000 bbl/hr total in both lines gives 10,000 bbl).

Study System Exposure:

Length per Line (miles)	10
Number of Lines	2
Service Life (yrs)	12
Exposure (mile-years)	240

(Source. USCG - Marine Casuality and Fondution Database with input from Mivis)														
				1 - 10 bbl			10 - 100 bb	1	1	00 - 1,000 b	bl	1,0	00 - 10,000	bbl
		Total		Total			Total			Total			Total	
	Total	Volume		Volume	Average		Volume	Average		Volume	Average		Volume	Average
	Number	Spilled	Number	Spilled	Spill Size	Number	Spilled	Spill Size	Number	Spilled	Spill Size	Number	Spilled	Spill Size
Year	of Spills	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)
1992	10	3055	3	10	3.3	4	123	30.8	2	922	461.0	1	2000	2000.0
1993	2	5	2	5	2.5									
1994	2	4554				1	10	10.0				1	4544	4544.0
1995	5	32	3	8	2.7	2	24	12.0						
1996	2	28	1	2	2.0	1	26	26.0						
1997	5	223	2	9	4.5	2	51	25.5	1	163	163.0			
1998	8	10214	3	9	3.0	2	39	19.5	1	743	743.0	2	9423	4711.5
TOTAL	34	18111	14	43	3.1	12	273	22.8	4	1828	457.0	4	15967	3991.8

Spills from Pipelines in the GoM and its Waterways (Source: USCG - Marine Casuality and Pollution Database with input from MMS)

Spar - Import Flowline Risers Exposure (riser-years)

24

	Input Information							
		Combined (Expe	ert+Data) Estimate	Expert-Based E	xtrapolation Bias	Data-Base	d Estimate	
		Expected	Coefficient		Coefficient	Expected	Coefficient	
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty	
(bbl)	(bbl)	(per riser-year)	for Frequency	Bias	for Bias	(per riser-year)	for Frequency	
1 - 10	3	2.1E-03	1.15	1.0E+00	1.00	2.1E-03	0.58	
10 - 100	32	1.8E-03	1.15	1.0E+00	1.00	1.8E-03	0.58	
100 - 1,000	320	7.0E-04	1.15	1.0E+00	1.00	7.0E-04	0.58	
1,000 - 10,000	3200	7.0E-04	1.15	1.0E+00	1.00	7.0E-04	0.58	
10,000 - 30,000	32000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00	
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00	
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00	

Expected Total (bbl)	6.1E+01
Std. Dev. in Total (bbl)	6.2E+01

Expected Max (bb	I)	6.0E+01
Std. Dev. in Max (b	bbl)	6.1E+01

Use Parloc 93 information for leak frequency from risers, normalized by riser-years: 2 leaks in 565 riser-years for risers with a diameter greater than 8 inches.

Statistical Analysis:	
Exposure (riser-years)	565
Leaks	2
k"	3
n" (riser-years)	565
Expected Rate (per riser-year)	5.31E-03
Coefficient of Uncertainty in Rate	0.577

Distribute spill sizes from risers using the flowline spill-size distribution (see Flowline worksheet for details).

	Expected		Expected	
	Flowline		Riser	Coefficient of
Spill Size Range	Frequency	Flowline Leak	Frequency	Uncertainty in
(bbl)	(per mile-year)	Distribution	(per riser year)	Frequency
1 - 10	3.72E-04	39%	2.10E-03	0.58
10 - 100	3.22E-04	34%	1.82E-03	0.58
100 - 1,000	1.24E-04	13%	6.99E-04	0.58
1,000 - 10,000	1.24E-04	13%	6.99E-04	0.58
10,000 - 100,000	0.00E+00	0%	0.00E+00	0.00
100,000 - 500,000	0.00E+00	0%	0.00E+00	0.00
500,000 - 1,000,000	0.00E+00	0%	0.00E+00	0.00

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because import risers will be in deeper water (which may increase the frequency) but more modern (which may decrease the frequency) than the risers in the database.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the historical data since the risers in the historical database are not very representative of import risers on floating production systems in deepwater.

- Limit maximum possible spill size per incident to 10,000 bbl because (1) flowline inventory is small (< 10,000 bbl total in parallel lines) and (2) safety systems should shut production in within 45 minutes of a leak occurring (5 hours at 2,000 bbl/hr total in both lines gives 10,000 bbl).

Study System Import Risers:	
2 Import from Flowlines	2
Years of Service	12
Total Riser-Years:	24

Spar - Topsides Exposure (bbl produced) 6.86E+08

			Input Information	on			
		Combined (Expert	+Data) Estimate	Expert-Based F	xtrapolation Bias	Data-Base	d Estimate
		Expected	Coefficient		Coefficient	Expected	Coefficient
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty
(bbl)	(bbl)	(per bbl)	for Frequency	Bias	for Bias	(per bbl)	for Frequency
1 - 10	3	3.0E-08	0.10	1.0E+00	0.00	3.0E-08	0.10
10 - 100	32	7.8E-09	0.20	1.0E+00	0.00	7.8E-09	0.20
100 - 1,000	320	1.3E-09	0.50	1.0E+00	0.00	1.3E-09	0.50
1,000 - 10,000	3200	2.9E-12	1.41	9.0E-03	1.00	3.3E-10	1.00
10,000 - 100,000	32000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00

Expected Total (bbl)	5.2E+02
Std. Dev. in Total (bbl)	1.5E+02

Expected Max (bbl)	2.1E+02
Std. Dev. in Max (bbl)	5.9E+01

Reported incidents of oil spills from "platforms" in the Gulf of Mexico were taken from the MMS pipeline and platform spill database (provided by Cheryl Anderson of MMS) for the years 1980 to 1999. The data are summarized below. Use only data from 1990 to present to account for changes in operating procedures due to implementation of API RP14C.

Process equipment included in data: separators, flare line systems, heaters/treaters, sump systems, pumps, storage tanks, compressors, pig launchers, valves and piping.

Substances included in spill data: oil, condensate, fuel, glycol.

Incidents involving supply vessels and barges (e.g., transfer of fluids to/from a vessel) have been filtered out and are not included in this analysis. The USCG data base is considered to be a more comprehensive source of information about these incidents and activities (included in Supply Vessels worksheet).

Assume risk is proportional to the volume of production - total production data are available for GOM from 1985-1998.

Total GOM Production bbls in Data:	
Expected Value (bbl)	3.1E+09
Coefficient of Uncertainty	0
Standard Deviation (bbl)	0

				Statistically Esti	mated Frequency (no p	rior information)	
Spill Size Range		Frequency		n"	Expected Value	Std. Dev.	Coefficient of
(bbl)	Count	(per bbl)	k"	(bbl)	(/bbl)	(/bbl)	Uncertainty
1 - 10	90	2.9E-08	91	3.1E+09	3.0E-08	3.1E-09	0.105
10 - 100	23	7.5E-09	24	3.1E+09	7.8E-09	1.6E-09	0.204
100 - 1,000	3	9.8E-10	4	3.1E+09	1.3E-09	6.5E-10	0.500
1,000 - 10,000	0	0.0E+00	1	3.1E+09	3.3E-10	3.3E-10	1.000
10,000 - 100,000	0	0.0E+00					
100,000 - 500,000	0	0.0E+00					
500,000 - 1,000,000	0	0.0E+00					

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias for spills less than 1,000 bbl because estimated frequencies are for similar types of process systems. Reduce spill frequency for the 1,000 to 10,000 bbl category to 1.0x10⁻⁴ per year to account for the inventory spilled in a total structural failure.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the data for the 1,000 to 10,000 bbl category because there are no actual occurrences of this type of an event in the data record for any platforms including deepwater floating production systems.

Total Production (bbl)	6.86E+08
Production from Subsea Wells (bbl)	2.73E+08
Production from Platform Wells (bbl)	4.13E+08
Exposure for Study System:	

	(Source: MMS - TIMS Database)																		
	í		i			1 - 10 bbl	I	1	0 - 100 b	bl	10	0 - 1,000	bbl	1,00	0 - 10,000) bbl	10,00	0 - 100,0	00 bbl
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Production (bbl)	Barrels Spilled per 1E6 bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)									
1980	27	1678			23	73	3.2	3	149	49.7				1	1456	1456.0			
1981	21	135			19	62	3.3	2	73	36.5									
1982	26	79			25	67	2.7	1	12	12.0									
1983	48	280			43	127	3.0	5	153	30.6									
1984	39	172			38	122	3.2	1	50	50.0									-
1985	34	141	351133870	0.40	32	100	3.1	2	41	20.5									
1986	24	75	356398376	0.21	24	75	3.1												
1987	19	84	328243087	0.26	17	49	2.9	2	35	17.5									-
1988	12	103	301704812	0.34	10	33	3.3	2	70	35.0									-
1989	12	355	281160011	1.26	10	44	4.4	1	11	11.0	1	300	300.0						
1990	15	91	274955773	0.33	13	47	3.6	2	44	22.0									-
1991	11	477	295129769	1.62	7	33	4.7	3	94	31.3	1	350	350.0						-
1992	9	32	305282682	0.10	9	32	3.6												
1993	9	42	309229380	0.14	8	23	2.9	1	19	19.0									<u> </u>
1994	6	16	314743342	0.05	6	16	2.7												-
1995	16	594	345525211	1.72	11	41	3.7	4	118	29.5	1	435	435.0						-
1996	21	271	369309647	0.73	15	52	3.5	6	219	36.5									<u> </u>
1997	13	260	411795024	0.63	10	33	3.3	2	57	28.5	1	170	170.0						<u> </u>
1998	16	314	444466377	0.71	11	35	3.2	5	279	55.8									<u> </u>
1999	10	78			7	25	3.6	3	53	17.7									
TOTAL	388	5277	4.69E+09	6.09E-01	338	1089	3	45	1477	33	4	1255	314	1	1456	1456	0	0	0

Spills from Oil/Gas Process Activities in the GoM

Spar - Export Pipeline Risers Exposure (riser-years)

20

	Input Information						
		Combined (Expe	rt+Data) Estimate	xtrapolation Bias	Data-Based Estimate		
		Expected	Coefficient		Coefficient	Expected	Coefficient
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty
(bbl)	(bbl)	(per riser-year)	for Frequency	Bias	for Bias	(per riser-year)	for Frequency
1 - 10	3	2.0E-03	1.15	1.0E+00	1.00	2.0E-03	0.58
10 - 100	32	1.8E-03	1.15	1.0E+00	1.00	1.8E-03	0.58
100 - 1,000	320	6.8E-04	1.15	1.0E+00	1.00	6.8E-04	0.58
1,000 - 10,000	3200	6.8E-04	1.15	1.0E+00	1.00	6.8E-04	0.58
10,000 - 30,000	21000	1.4E-04	1.00	1.0E+00	1.00	1.4E-04	0.00
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00

Expected Total (bbl)	1.1E+02
Std. Dev. in Total (bbl)	7.6E+01

Expected Max (bbl)	1.1E+02
Std. Dev. in Max (bbl)	7.6E+01

Use Parloc 93 information for leak frequency from risers, normalized by riser-years: 2 leaks in 565 riser-years for risers with a diameter greater than 8 inches.

Statistical Analysis:

Exposure (riser-years)	565
Leaks	2
k"	3
n" (riser-years)	565
Expected Rate (per riser-year)	5.31E-03
Coefficient of Uncertainty in Rate	0.577

Distribute spill sizes from risers using the pipeline spill-size distribution (see Pipeline worksheet for details).

	Expected		Expected	
	Pipeline		Riser	Coefficient of
Spill Size Range	Frequency	Pipeline Leak	Frequency	Uncertainty in
(bbl)	(per mile-year)	Distribution	(per riser year)	Frequency
1 - 10	3.72E-04	38%	2.04E-03	0.58
10 - 100	3.22E-04	33%	1.77E-03	0.58
100 - 1,000	1.24E-04	13%	6.81E-04	0.58
1,000 - 10,000	1.24E-04	13%	6.81E-04	0.58
10,000 - 100,000	2.48E-05	3%	1.36E-04	0.00
100,000 - 500,000	0.00E+00	0%	0.00E+00	0.00
500,000 - 1,000,000	0.00E+00	0%	0.00E+00	0.00

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because import risers will be in deeper water (which may increase the frequency) but more modern (which may decrease the frequency) than the risers in the database.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the historical data since the risers in the historical database are not very representative of export risers on floating production systems in deepwater.

- Limit maximum possible spill size to 100,000 bbl and use a triangular probability distribution (decreasing with increasing size) in the 10,000 to 100,000 bbl category because (1) hydrostatic pressures in deeper water and "P-traps" due to bottom contours limit the volume of inventory that can leak and (2) it is not credible that pumping from the Spar would continue for more than several hours after a leak occurs (6,200 bbl/hr production rate) due to detection systems and operational requirements. Therefore, the representative spill-size for the largest category (10,000 to 100,000 bbls) is obtained by assuming that the logarithm of the spill size has a triangular distribution (versus a uniform distribution) with the maximum likelihood at 10,000 bbls and the minimum likelihood at 100,000 bbls, giving a representative value of 21,000 bbls. (Note that this same approach is used for the largest spill-size category for FPSO shuttle tankers.)

1
20
20

Spar - Pipelines

Exposure (mile-years) 2900

	Input Information							
		Combined (Exne	rt (Data) Estimato	Export Basad E	vtrapolation Rias	Data Basad	Ectimato	
		Expected	Coefficient	Expert-based E	Coefficient	Expected	Coefficient	
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty	
(bbl)	(bbl)	(per mile-year)	for Frequency	Bias	for Bias	(per mile-year)	for Frequency	
1 - 10	3	3.7E-04	0.52	1.0E+00	0.33	3.7E-04	0.40	
10 - 100	32	3.2E-04	0.53	1.0E+00	0.33	3.2E-04	0.41	
100 - 1,000	320	1.2E-04	0.64	1.0E+00	0.33	1.2E-04	0.55	
1,000 - 10,000	3200	1.2E-04	0.64	1.0E+00	0.33	1.2E-04	0.55	
10,000 - 100,000	21000	2.5E-05	1.13	1.0E+00	0.33	2.5E-05	1.08	
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00	
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00	

Expected Total (bbl)	2.8E+03
Std. Dev. in Total (bbl)	1.9E+03
Expected Max (bbl)	2.4E+03
Std. Dev. in Max (bbl)	1.7E+03

Reported incidents of oil pipeline leaks in the Gulf of Mexico were taken from the USCG spill database for the years 1992 to 1998. The data are summarized below.

Total Pipeline Miles in GOM federal and state waters estimated from MMS and Lousiana data making the following assumptions:

Federal Waters Sum: Include "unknown" mileage in all years

State Waters Sum: Start with 2,500 miles from Mariano Hinojosa (Louisiana) in 2000; Maintain constant State/Federal Percentage for Earlier Years

Percent Inactive: Assume 17 percent today, 0 percent in 1948 and increase it linearly with time

Total Active: Reduce both federal and state together with same percentage inactive

Total Active Liquid: Assume 30 percent of pipeline length is liquid versus gas (NRC Marine Board Study 1994)

Result - 44,715 mile-years from 1992 to 1998

As a check, Marine Board Study in 1994 reported 17,000 total miles with 30 % oil/condensate, giving 5,100 miles for 7 years or 35,700 mile-years.

Total Mile Years in Data:	
Expected Value	44715
Coefficient of Uncertainty	0.33
Standard Deviation	14756

				Statistically Estim	nated Frequency (no pr	ior information)	
Spill Size Range		Frequency		n"	Expected Value	Std. Dev.	
(bbl)	Count	(per mile-yr)	k"	(mile-yr)	(per mile-yr)	(per mile-yr)	C.O.V.
1 - 10	14	3.1E-04	15	44715	3.7E-04	1.5E-04	0.40
10 - 100	12	2.7E-04	13	44715	3.2E-04	1.3E-04	0.41
100 - 1,000	4	8.9E-05	5	44715	1.2E-04	6.8E-05	0.55
1,000 - 10,000	4	8.9E-05	5	44715	1.2E-04	6.8E-05	0.55
10,000 - 100,000	0	0.0E+00	1	44715	2.5E-05	2.7E-05	1.08
100,000 - 500,000	0	0.0E+00					
500,000 - 1,000,000	0	0.0E+00					

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because pipelines for study systems will be similar to pipelines in database, although they will be in deeper water on average.

- Apply a coefficient of uncertainty of 0.33 in extrapolating the historical data since most of the pipelines in the historical database are in shallower water on average than the pipeline for the study system. The deepwater effect may lead to a reduction in the frequency of spills (fewer anchor drags and dropped objects), but the difference was not considered to be significant enough (an EQE 1998 study estimated the frequency of spills for deepwater segments of pipeline would be approximately 70-percent of that for shallow water pipeline segments) to be reflected in the expected bias.

- Limit maximum possible spill size to 100,000 bbl and use a triangular probability distribution (decreasing with increasing size) in the 10,000 to 100,000 bbl category because (1) hydrostatic pressures in deeper water and "P-traps" due to bottom contours limit the volume of inventory that can leak and (2) it is not credible that pumping from the Spar would continue for more than several hours after a leak occurs (6,200 bbl/hr production rate) due to detection systems and operational requirements. Therefore, the representative spill-size for the largest category (10,000 to 100,000 bbls) is obtained by assuming that the logarithm of the spill size has a triangular distribution (versus a uniform distribution) with the maximum likelihood at 10,000 bbls, giving a representative value of 21,000 bbls. (Note that this same approach is used for the largest spill-size category for FPSO shuttle tankers.)

	Exposure	for Study	/ System	(mile-years):	
--	----------	-----------	----------	---------------	--

to Hub (miles)	45
to Shore from Hub (miles)	80
to Terminal from Shore (miles)	20
Total Length (miles)	145
Mile Years (20 years)	2900

	(Source: USCG - Marine Casuality and Pollution Database with input from MMS)													
	1 - 10 bbl 10 - 100 bbl 100 - 1,000 bbl 1,000 - 10,000 bbl											bbl		
				Total			Total			Total			Total	
	Total	Total		Volume	Average									
	Number	Volume	Number of	Spilled	Spill Size	Number	Spilled	Spill Size	Number	Spilled	Spill Size	Number	Spilled	Spill Size
Year	of Spills	Spilled (bbl)	Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)
1992	10	3055	3	10	3.3	4	123	30.8	2	922	461.0	1	2000	2000.0
1993	2	5	2	5	2.5									
1994	2	4554				1	10	10.0				1	4544	4544.0
1995	5	32	3	8	2.7	2	24	12.0						
1996	2	28	1	2	2.0	1	26	26.0						
1997	5	223	2	9	4.5	2	51	25.5	1	163	163.0			
1998	8	10214	3	9	3.0	2	39	19.5	1	743	743.0	2	9423	4711.5
TOTAL	34	18111	14	43	3.1	12	273	22.8	4	1828	457.0	4	15967	3991.8

Spills from Pipelines in the GoM and its Waterways (Source: USCG - Marine Casuality and Pollution Database with input from MMS)

Spar - Supply Vessels Exposure (docking calls) 12287

Input Information **Combined (Expert+Data)** Expert-Based Extrapolation Bias **Data-Based Estimate** Estimate Expected Coefficient Coefficient Expected Coefficient **Spill Size Range Spill Size** Frequency of Uncertainty Expected of Uncertainty Frequency of Uncertainty (bbl) (per call) for Frequency Bias for Bias (per call) for Frequency (bbl) 1 - 10 2.2E-05 0.46 1.0E+00 0.33 2.2E-05 0.32 3 32 10 - 100 1.2E-05 0.48 1.0E+00 0.33 1.2E-05 0.34 100 - 1,000 320 1.0E-06 0.75 1.0E+00 0.33 1.0E-06 0.67 3200 0.0E+00 0.00 0.0E+00 0.00 3.4E-07 1.08 1,000 - 10,000 10,000 - 100,000 32000 0.0E+00 0.00 0.0E+00 0.00 0.0E+00 0.00 100,000 - 500,000 225000 0.0E+00 0.00 0.0E+00 0.0E+00 0.00 0.00 500,000 - 1,000,000 707000 0.0E+00 0.00 0.0E+00 0.00 0.0E+00 0.00

Expected Total (bbl)	9.7E+00
Std. Dev. in Total (bbl)	3.8E+00

Expected Max (bbl)	9.1E+00
Std. Dev. in Max (bbl)	3.5E+00

Risk of a spill from a supply vessel is assumed to be proportional to the number of docking or port calls (in field and at the terminal) because this is where most spills occur due to the number of operations (including offloading) and difficulties in navigation (traffic and shore).

The USCG database of spills from offshore supply vessels (OSVs) was used to estimate the frequency of different spill sizes. Data from the years 1985-1999 were used in this analysis.

The data base was searched for petroleum spills from supply vessels. Substances considered included crude, fuel, diesel, lubricating oil and drilling mud.

Incidents were included from the following locations to represent the "Gulf of Mexico": Gulf of Mexico, Sabine/Neches River, Corpus Christi Ship Channel and Harbor, Galveston Bay, Houston Ship Channel, Lower and Upper Mississippi River, and Intercoastal Waterway - Gulf.

The database includes incidents related to vessel transit and docking calls at platorms and ports. A rough picture of supply vessel activity in the GOM (based on discussions with Edison Chouest): 300 boats making an average of 2 dock calls per day = 300x2x365 = 219,000 docking calls per year.

Total Docking Calls in Data (15 yrs):	
Expected Value	3285000
Coefficient of Uncertainty	0.33
Standard Deviation	1084050

Spill Size Range		Frequency			n"	Expected Value	Std. Dev.	
(bbl)	Count	(per call)	k"		(calls)	(/call)	(/call)	C.O.V.
1 - 10	65	2.0E-05		66	3285000	2.2E-05	7.2E-06	0.32
10 - 100	36	1.1E-05		37	3285000	1.2E-05	4.3E-06	0.34
100 - 1,000	2	6.1E-07		3	3285000	1.0E-06	6.8E-07	0.67
1,000 - 10,000	0	0.0E+00		1	3285000	3.4E-07	3.6E-07	1.08
10,000 - 100,000	0	0.0E+00						
100,000 - 500,000	0	0.0E+00						
500,000 - 1,000,000	0	0.0E+00						

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias.

- Apply a coefficient of uncertainty of 0.33 in extrapolating the historical data because supply vessels for these systems will be larger and more modern (dynamically-positioned) than the typical vessels that comprise the historical data.

- Limit maximum possible spill size to 1,000 bbl to be consistent with cargo capacity for typical supply vessels (less than 1,000 bbl).

Exposure for Study System:	
1 trip per 3 days during production	0.333333333
Days of Production (20 years)	7300
Trips	2433.333333
1 trip por 2 dovo during drilling/workovor	0 22222222
6 Platform Walls (20 years)	0.0000000000000000000000000000000000000
Drilling & Completion (5*00 + 6*20 dove)	570
Slickling (2 per well year @ 5 days)	1900
Coiled Tubing (2/4 per well yr @ 20 days)	1000
Colled Tubling (3/4 per well-yr @ 20 days)	1000
Change out (1/2 per well vr @ 50 days)	1000
Pacampletion (1/5 per well-yr @ 50 days)	2000
Sidetrack/Deepening (1/15 per well-yr @ 50 days)	520
Tripe	320
mps	3230
3 Subsea Wells (12 years)	
Drilling & Completion (3*90 + 90 days)	360
Coiled Tubing (1/4 per well-yr @ 20 days)	180
Hydraulic (1/5 per well-yr @ 20 days)	144
Change out (1/8 per well-yr @ 50 days)	225
Recompletion (1/10 per well-yr @ 50 days)	180
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156
Replace Wellhead (1/12 per well-yr @ 65 days)	195
Trips	480

Docking calls (trips*2)

12287

	Spills from OSV Activities in the GoM and its Waterways (Source: USCG - Marine Casuality and Pollution Database)																
1 - 10 bbl 10 - 100 bbl 100 - 1 000 bbl 1000 - 10 000 bbl																	
	Total Number	Total Volume Spilled	Number	Total Volume Spilled	Average Spill Size	Number	Total Total Volume Spilled	Average Spill Size	Number	Total Volume Spilled	Average Spill Size	Number	<u>total</u> Total Volume Spilled	Average Spill Size	Number	Total Volume Spilled	Average Spill Size
Year	of Spills	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)
1985	0	0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0
1986	7	34	6	17	2.8	1	17	17.0	0	0	0.0	0	0	0.0	0	0	0.0
1987	4	42	3	6	2.0	1	36	36.0	0	0	0.0	0	0	0.0	0	0	0.0
1988	3	40	2	10	5.0	1	30	30.0	0	0	0.0	0	0	0.0	0	0	0.0
1989	5	30	4	9	2.3	1	21	21.0	0	0	0.0	0	0	0.0	0	0	0.0
1990	10	78	7	24	3.4	3	54	18.0	0	0	0.0	0	0	0.0	0	0	0.0
1991	11	78	9	37	4.1	2	41	20.5	0	0	0.0	0	0	0.0	0	0	0.0
1992	3	39	2	7	3.5	1	32	32.0	0	0	0.0	0	0	0.0	0	0	0.0
1993	8	191	3	9	3.0	5	182	36.4	0	0	0.0	0	0	0.0	0	0	0.0
1994	10	21	10	21	2.1	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0
1995	10	534	3	9	3.0	6	211	35.2	1	314	314.0	0	0	0.0	0	0	0.0
1996	9	161	5	18	3.6	4	143	35.8	0	0	0.0	0	0	0.0	0	0	0.0
1997	10	103	6	26	4.3	4	77	19.3	0	0	0.0	0	0	0.0	0	0	0.0
1998	9	257	4	11	2.8	4	116	29.0	1	130	130.0	0	0	0.0	0	0	0.0
1999	4	193	1	3	3.0	3	190	63.3	0	0	0.0	0	0	0.0	0	0	0.0
TOTAL	103	1801	65	207	3	36	1150	32	2	444	222	0	0	0	0	0	0

Spar - Drilling and InterventionExposure (man-days)246912

Input Information											
	Combined (Expert+Data) Estimate Expert-Based Extrapolation Bias Data-Based Estim										
		Expected	Coefficient		Coefficient	Expected	Coefficient				
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty				
(bbl)	(bbl)	(per man-day)	for Frequency	Bias	for Bias	(per man-day)	for Frequency				
1 - 10	3	4.4E-06	0.46	1.0E+00	0.33	4.4E-06	0.31				
10 - 100	32	7.7E-07	0.51	1.0E+00	0.33	7.7E-07	0.39				
100 - 1,000	320	3.0E-07	0.59	1.0E+00	0.33	3.0E-07	0.49				
1,000 - 10,000	3200	4.3E-08	1.13	1.0E+00	0.33	4.3E-08	1.08				
10,000 - 100,000	32000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00				
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00				
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00				

Expected Total (bbl)	6.7E+01
Std. Dev. in Total (bbl)	4.1E+01

Expected Max (bbl)	6.3E+01
Std. Dev. in Max (bbl)	4.0E+01

Risk of a spill from drilling and well intervention is assumed to be proportional to the number of man-days of operations. This approach means that operations that require a larger crew will have a greater risk of oil spill because more activities and difficulties are involved. It is also used here because information about man-days of drill crew operations in the GOM is available from IADC, an average of 1.3 million man-days per year in the 1990's. One concern is that the IADC information includes activities in state waters while the MMS data may only include OCS waters, therefore the denominator may be overestimated slightly.

The MMS platform data base (1980-1999) was used to identify drilling activity-related incidents. These incidents include exploratory drilling, development drilling and well workovers and completions. Substances reported in the data base include crude, fuel, diesel, drilling fluids and drilling mud. Rig types include both platform and MODU rigs.

Total man-days in Data (20 yrs):	
Expected Value	2600000
Coefficient of Uncertainty	0.33
Standard Deviation	8580000

		Statistically Estimated Frequency (no prior information)						
Spill Size Range		Frequency		n"	Expected Value	Std. Dev.		
(Idd)	Count	(per man-day)	K"	(man-day)	(per man-day)	(per man-day)	C.O.V.	
1 - 10	103	4.0E-06	104	26000000	4.4E-06	1.4E-06	0.31	
10 - 100	17	6.5E-07	18	2600000	7.7E-07	3.0E-07	0.39	
100 - 1,000	6	2.3E-07	7	26000000	3.0E-07	1.5E-07	0.49	
1,000 - 10,000	0	0.0E+00	1	26000000	4.3E-08	4.6E-08	1.08	
10,000 - 100,000	0	0.0E+00						
100,000 - 500,000	0	0.0E+00						
500,000 - 1,000,000	0	0.0E+00						

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias.

- Apply a coefficient of uncertainty of 0.33 in extrapolating the historical data because there are relatively few historical data available for deep-water drilling in the Gulf of Mexico (compared to shallow-water drilling).

- Although they have not occurred in the data record, the possiblity for spills larger than 10,000 bbl was evaluated. The estimated frequency was considered to be negligibly small because the reservoir characteristics will be relatively well known since significant exploration and development drilling will have taken place before the production life begins.

Exposure for Study System:

6 Platform Wells (20 years)	days	crew	man-days
Drilling & Completion (5*90 + 6*20 days)	570	40	22800
Slickline (3 per well-year @ 5 days)	1800	4	7200
Coiled Tubing (3/4 per well-yr @ 20 days)	1800	8	14400
Hydraulic (3/4 per well-yr @ 20 days)	1800	8	14400
Change out (1/3 per well-yr @ 50 days)	2000	40	80000
Recompletion (1/5 per well-yr @ 50 days)	1200	40	48000
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520	40	20800
3 Subsea Wells (12 years)			
Drilling & Completion (3*90 + 90 days)	360	40	14400
Coiled Tubing (1/4 per well-yr @ 20 days)	180	4	720
Hydraulic (1/5 per well-yr @ 20 days)	144	8	1152
Change out (1/8 per well-yr @ 50 days)	225	8	1800
Recompletion (1/10 per well-yr @ 50 days)	180	40	7200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156	40	6240
Replace Wellhead (1/12 per well-yr @ 65 days)	195	40	7800
		Total (man-days):	246912

	Spills from Drilling Activities in the GoM												
(Source: MMS - TIMS Database)													
<= 10 bbl > 10 bbl & <= 100 bbl 100 - 1,000 bbl								bbl					
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Production	Barrels Spilled per 1E6 bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1980	8	353			6	17	2.8	1	50	50.0	1	286	286.0
1981	4	253			1	4	4.0	2	39	19.5	1	210	210.0
1982	13	50			13	50	3.8						
1983	14	77			13	52	4.0	1	25	25.0			
1984	2	6			2	6	3.0						
1985	13	98	351133870	0.28	12	48	4.0	1	50	50.0			
1986	7	31	356398376	0.09	7	31	4.4						
1987	10	106	328243087	0.32	7	18	2.6	3	88	29.3			
1988	0	0	301704812	0.00									
1989	7	184	281160011	0.65	4	11	2.8	2	56	28.0	1	117	117.0
1990	4	127	274955773	0.46	3	17	5.7				1	110	110.0
1991	4	14	295129769	0.05	4	14	3.5						
1992	2	102	305282682	0.33	1	2	2.0	1	100	100.0			
1993	1	3	309229380	0.01	1	3	3.0						
1994	1	3	314743342	0.01	1	3	3.0						
1995	4	8	345525211	0.02	4	8	2.0						
1996	4	19	369309647	0.05	3	7	2.3	1	12	12.0			
1997	2	3	411795024	0.01	2	3	1.5						
1998	5	32	444466377	0.07	4	11	2.8	1	21	21.0			
1999	2	7			2	7	3.5						
TOTAL	107	1476	4.69E+09	1.56E-01	90	312	3	13	441	34	4	723	181

	Spills from Completion/Workover Activities in the GoM												
	(Source: MMS - TIMS Database)												
<= 10 bbl > 10 bbl & <= 100 bbl > 100 bbl						>100 bbl							
Year	Total Number of Spills	Total Volume Spilled	Total Production	Barrels Spilled per 1E6 bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1980	0	0											
1981	3	68			2	4	2.0	1	64	64.0			
1982	1	3			1	3	3.0						
1983	1	2			1	2	2.0						
1984	0	0											
1985	1	5	351133870	0.01	1	5	5.0						
1986	0	0	356398376	0.00									
1987	1	3	328243087	0.01	1	3	3.0						
1988	0	0	301704812	0.00									
1989	1	6	281160011	0.02	1	6	6.0						
1990	1	8	274955773	0.03	1	8	8.0						
1991	0	0	295129769	0.00									
1992	0	0	305282682	0.00									
1993	0	0	309229380	0.00									
1994	3	172	314743342	0.55	1	6	6.0	1	25	25.0	1	141	141.0
1995	1	4	345525211	0.01	1	4	4.0						
1996	1	5	369309647	0.01	1	5	5.0						
1997	2	3	411795024	0.01	2	3	1.5						
1998	3	276	444466377	0.62				2	106	53.0	1	170	170.0
1999	0	0											
TOTAL	19	555	4.69E+09	1.03E-01	13	49	4	4	195	49	2	311	156

Appendix F.2

Oil Spill Risk Assessment for TLP

TLP – Risk Summary	F.57
TLP – Frequency Summary	F.59
TLP – Well Systems (Platform)	F.63
TLP – Well Systems (Subsea)	F.67
TLP – Dry Tree Risers	F.71
TLP – Flowlines	F.74
TLP – Import Flowline Risers	F.78
TLP – Topsides	F.81
TLP – Export Pipeline Risers	F.85
TLP – Pipelines	F.88
TLP – Supply Vessels	F.92
TLP – Drilling and Intervention	F.97

TLP - Risk Summary

Overall System Risk Results for 20-year Life:

Expected Total (bbl)	3.759E+03
Std. Dev. in Total (bbl)	1.9E+03

Expected Max (bbl)	2.7E+03
Std. Dev. in Max (bbl)	1.7E+03

		Sub-system Ris	sk Results for 20-year L	ife
	Expected Total (bbl)	Std. Dev. in Total (bbl)	Expected Maximum (bbl)	Std Dev. in Maximum (bbl)
Well Systems - Platform	59	46	51	40
Well Systems - Subsea	78	83	64	68
Dry Tree Risers	15	16	15	16
Flowlines	107	109	105	106
Import Flowline Risers	61	62	60	61
Topsides	525	148	208	59
Export Pipeline Risers	106	76	106	76
Pipelines	2809	1861	2429	1661
Supply Vessels	10	4	9	4
Drilling and Intervention	67	41	63	40

F.57 – Oil Spill Risk Assessment for TLP

TLP - Frequency Summary

Summary Information for Frequencies

	Total System Frequency								
Spill Size Range (bbl)	Expected Value (per year)	Coefficient of Uncertainty	k for Gamma Distribution	n for Gamma Distribution	Lower 90% (per year)	Upper 90% (per year)			
1 - 10	1.2E+00	9.6E-02	1.1E+02	9.1E+01	1.0E+00	1.4E+00			
10 - 100	3.6E-01	1.7E-01	3.4E+01	9.5E+01	2.7E-01	4.7E-01			
100 - 1,000	7.7E-02	3.4E-01	8.5E+00	1.1E+02	3.9E-02	1.2E-01			
1,000 - 10,000	2.2E-02	5.4E-01	3.4E+00	1.6E+02	6.6E-03	4.4E-02			
10,000 - 100,000	3.7E-03	1.1E+00	8.5E-01	2.3E+02	1.2E-04	1.2E-02			
100,000 - 500,000	0.0E+00								
500,000 - 1,000,000	0.0E+00								

		Expected Frequency by Sub-system (per year)										
Spill Size Range (bbl)	Well Systems - Platform	Well Systems - Subsea	Dry Tree Risers	Flowlines	Import Flowline Risers	Topsides	Export Pipeline Risers	Pipelines	Supply Vessels	Drilling and Intervention		
1 - 10	4.7E-02	0.0E+00	2.3E-04	4.5E-03	2.5E-03	1.0E+00	2.0E-03	5.4E-02	1.4E-02	5.5E-02		
10 - 100	2.0E-02	0.0E+00	2.0E-04	3.9E-03	2.2E-03	2.7E-01	1.8E-03	4.7E-02	7.7E-03	9.5E-03		
100 - 1,000	6.7E-03	0.0E+00	7.7E-05	1.5E-03	8.4E-04	4.5E-02	6.8E-04	1.8E-02	6.2E-04	3.7E-03		
1,000 - 10,000	0.0E+00	0.0E+00	7.7E-05	1.5E-03	8.4E-04	1.0E-04	6.8E-04	1.8E-02	0.0E+00	5.3E-04		
10,000 - 100,000	0.0E+00	0.0E+00	1.5E-05	0.0E+00	0.0E+00	0.0E+00	1.4E-04	3.6E-03	0.0E+00	0.0E+00		
100,000 - 500,000	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		
500,000 - 1,000,000	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		

		Production System Frequency										
Spill Size Range (bbl)	Expected Value (per year)	Coefficient of Uncertainty	k for Gamma Distribution	n for Gamma Distribution	Lower 90% (per year)	Upper 90% (per year)						
1 - 10	1.1E+00	9.8E-02	1.0E+02	9.2E+01	9.6E-01	1.3E+00						
10 - 100	3.1E-01	1.8E-01	3.0E+01	9.8E+01	2.2E-01	4.1E-01						
100 - 1,000	5.8E-02	4.1E-01	6.1E+00	1.0E+02	2.5E-02	1.0E-01						
1,000 - 10,000	3.0E-03	6.8E-01	2.2E+00	7.2E+02	6.0E-04	7.0E-03						
10,000 - 100,000	1.5E-05	1.4E+00	5.0E-01	3.3E+04	6.0E-08	5.9E-05						
100,000 - 500,000												
500,000 - 1,000,000												

Summary Information for TLP Production Frequencies

Summary Information for TLP Transportation Frequencies

		Transportation System Frequency									
Spill Size Range (bbl)	Expected Value (per year)	Coefficient of Uncertainty	k for Gamma Distribution	n for Gamma Distribution	Lower 90% (per year)	Upper 90% (per year)					
1 - 10	5.6E-02	5.0E-01	4.0E+00	7.1E+01	1.9E-02	1.1E-01					
10 - 100	4.9E-02	5.1E-01	3.8E+00	7.9E+01	1.6E-02	9.5E-02					
100 - 1,000	1.9E-02	6.2E-01	2.6E+00	1.4E+02	4.4E-03	4.1E-02					
1,000 - 10,000	1.9E-02	6.2E-01	2.6E+00	1.4E+02	4.4E-03	4.1E-02					
10,000 - 100,000	3.7E-03	1.1E+00	8.4E-01	2.3E+02	1.2E-04	1.2E-02					
100,000 - 500,000											
500,000 - 1,000,000											

TLP - Contribution to Total Frequency for Different Spill Sizes

TLP - Well Systems (Platform) Exposure (bbl produced) 4.1

4.13E+08

			Input Inform	ation			
		Combined (Expert	+Data) Estimate	Expert-Based E	xtrapolation Bias	Data-Based	Estimate
		Expected	Coefficient	_	Coefficient	Expected	Coefficient
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty
(bbl)	(bbl)	(per bbl)	for Frequency	Bias	for Bias	(per bbl)	for Frequency
1 - 10	3	2.3E-09	0.38	1.0E+00	0.00	2.3E-09	0.38
10 - 100	32	9.8E-10	0.58	1.0E+00	0.00	9.8E-10	0.58
100 - 1,000	320	3.3E-10	1.05	1.0E+00	0.33	3.3E-10	1.00
1,000 - 10,000	3200	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
10,000 - 100,000	32000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00

Expected Total (bbl)	5.9E+01
Std. Dev. in Total (bbl)	4.6E+01

Expected Max (bbl)	5.1E+01
Std. Dev. in Max (bbl)	4.0E+01

F.64 – Oil Spill Risk Assessment for TLP

Reported incidents of oil spills from "well and header systems" in the Gulf of Mexico were taken from the MMS pipeline and platform spill database (provided by Cheryl Anderson of MMS) for the years 1980 to 1999. The data are summarized below. Use only data from 1990 to present to account for changes in operating procedures due to implementation of API RP14C.

Equipment includes subsurface safety valves, wellhead assemblies, chokes, jumpers and injection lines, pressure sensors, surface safety valves, header valves and check valves.

Assume risk is proportional to the volume of production - total production data are available for GOM from 1985-1998.

Total Production bbls in GOM Data:	
Expected Value (bbl)	3.1E+09
Coefficient of Uncertainty	0
Standard Deviation (bbl)	0

					Statistically Estin	nated Frequency (no pri	or information)	
Spill Size Range		Frequency			n"	Expected Value	Std. Dev.	Coefficient of
(bbl)	Count	(per bbl)	k"		(bbl)	(/bbl)	(/bbl)	Uncertainty
1 - 10	6	2.0E-09		7	3.1E+09	2.3E-09	8.6E-10	0.377964473
10 - 100	2	6.5E-10		3	3.1E+09	9.8E-10	5.6E-10	0.577350269
100 - 1,000	0	0.0E+00		1	3.1E+09	3.3E-10	3.3E-10	1
1,000 - 10,000	0	0.0E+00						
10,000 - 100,000	0	0.0E+00						
100,000 - 500,000	0	0.0E+00						
500,000 - 1,000,000	0	0.0E+00						

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because study well systems are similar to those in data base.

- Apply a coefficient of uncertainty of 0.33 in extrapolating the historical data for the largest spill size category since there have been no occurrences for this spill size on the fixed production systems in the database and its frequency on floating production systems is uncertain.

Exposure for Study System: Platform Well Production (bbl) 4.

4.13E+08

				Sp	ills from W (Souro)	ell and Hea ce: MMS - '	ider System TIMS Datal	s in the GoI base)	M				
			1			1 - 10 bbl	1		<u>10 - 100 bb</u>	1	1	<u>00 - 1,000 b</u>	bl
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Productio n (bbl)	Barrels Spilled per 1E6 Bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1980	2	7			2	7	3.4						
1981	3	12			3	12	4.0						
1982	5	14			5	14	2.7						
1983	2	31						2	31	15.5			
1984	1	3			1	3	3.0						
1985	2	43	351133870	0.12	1	3	3.0	1	40	40.0			
1986	2	5	356398376	0.01	2	5	2.5						
1987	3	6	328243087	0.02	3	6	2.0						
1988	5	73	301704812	0.24	4	18	4.5	1	55	55.0			
1989	2	18	281160011	0.06	1	6	6.0	1	12	12.0			
1990	0	0	274955773	0.00									
1991	0	0	295129769	0.00									
1992	3	74	305282682	0.24	1	8	8.0	2	66	33.0			
1993	0	0	309229380	0.00									
1994	2	6	314743342	0.02	2	6	3.0						
1995	1	1	345525211	0.00	1	1	1.0						
1996	2	3	369309647	0.01	2	3	1.5						
1997	0	0	411795024	0.00									
1998	0	0	444466377	0.00									
1999	0	0											
TOTAL	35	295	4.69E+09	4.88E-02	28	91	3	7	204	29	0	0	0

TLP - Well Systems (Subsea) Exposure (bbl produced)

2.73E+08

Input Information									
		Combined (Exne	rt⊥Data) Estimato	Expert-Based F	xtranolation Bias	Data-Based	Estimate		
		Expected	Coefficient		Coefficient	Expected	Coefficient		
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty		
(bbl)	(bbl)	(per bbl)	for Frequency	Bias	for Bias	(per bbl)	for Frequency		
1 - 10	3	4.6E-09	1.07	2.0E+00	1.00	2.3E-09	0.38		
10 - 100	32	2.0E-09	1.15	2.0E+00	1.00	9.8E-10	0.58		
100 - 1,000	320	6.5E-10	1.41	2.0E+00	1.00	3.3E-10	1.00		
1,000 - 10,000	3200	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00		
10,000 - 100,000	32000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00		
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00		
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00		

Expected Total (bbl)	7.8E+01
Std. Dev. in Total (bbl)	8.3E+01

Expected Max (bbl)	6.4E+01
Std. Dev. in Max (bbl)	6.8E+01

Reported incidents of oil spills from "well and header systems" in the Gulf of Mexico were taken from the MMS pipeline and platform spill database (provided by Cheryl Anderson of MMS) for the years 1980 to 1999. The data are summarized below. Use only data from 1990 to present to account for changes in operating

Equipment includes subsurface safety valves, wellhead assemblies, chokes, jumpers and injection lines, pressure sensors, surface safety valves, header valves and check valves.

Assume risk is proportional to the volume of production - total production data are available for GOM from 1985-1998.

Total Production bbls in GOM Data:Expected Value (bbl)3.1E+09Coefficient of Uncertainty0Standard Deviation (bbl)0

			Statistically Estimated Frequency (no prior information)						
Spill Size Range		Frequency			n"	Expected Value	Std. Dev.	Coefficient of	
(bbl)	Count	(per bbl)	k"		(bbl)	(/bbl)	(/bbl)	Uncertainty	
1 - 10	6	2.0E-09		7	3.1E+09	2.3E-09	8.6E-10	0.377964473	
10 - 100	2	6.5E-10		3	3.1E+09	9.8E-10	5.6E-10	0.577350269	
100 - 1,000	0	0.0E+00		1	3.1E+09	3.3E-10	3.3E-10	1	
1,000 - 10,000	0	0.0E+00							
10,000 - 100,000	0	0.0E+00							
100,000 - 500,000	0	0.0E+00							
500,000 - 1,000,000	0	0.0E+00							

Expert-Based Adjustment to Raw Data:

- Double expected frequency for leaks to account for greater potential for sand erosion and cutouts due to high flow rates and detection difficulties for sand.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the historical data since wells in database are mostly platform wells and not subsea wells.

Exposure for Study System:

Subsea Well Production (bbl) 2.73E+08

Spills from Well and Header Systems in the GoM (Source: MMS - TIMS Database)													
1 - 10 bbl								10 - 100 bbl			1	00 - 1,000 b	bl
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Production (bbl)	Barrels Spilled per 1E6 Bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1980	2	7			2	7	3.4						
1981	3	12			3	12	4.0						
1982	5	14			5	14	2.7						
1983	2	31						2	31	15.5			
1984	1	3			1	3	3.0						
1985	2	43	351133870	0.12	1	3	3.0	1	40	40.0			ļ
1986	2	5	356398376	0.01	2	5	2.5						ļ
1987	3	6	328243087	0.02	3	6	2.0						ļ
1988	5	73	301704812	0.24	4	18	4.5	1	55	55.0			ļ
1989	2	18	281160011	0.06	1	6	6.0	1	12	12.0			
1990	0	0	274955773	0.00									ļ
1991	0	0	295129769	0.00									ļ
1992	3	74	305282682	0.24	1	8	8.0	2	66	33.0			
1993	0	0	309229380	0.00									ļ
1994	2	6	314743342	0.02	2	6	3.0						ļ
1995	1	1	345525211	0.00	1	1	1.0						
1996	2	3	369309647	0.01	2	3	1.5						ļ
1997	0	0	411795024	0.00						ļ			
1998	0	0	444466377	0.00									ļ
1999	0	0											ļ
TOTAL	35	295	4.69E+09	4.88E-02	28	91	3	7	204	29	0	0	0

TLP - Dry Tree Risers Exposure (riser-years)

120

Input Information								
		Combined (Expert+Data) Estimate		Expert-Based E	xtrapolation Bias	Data-Based Estimate		
		Expected	Coefficient		Coefficient	Expected	Coefficient	
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty	
(bbl)	(bbl)	(per riser-year)	for Frequency	Bias	for Bias	(per riser-year)	for Frequency	
1 - 10	3	3.8E-05	1.41	1.0E+00	1.00	3.8E-05	1.00	
10 - 100	32	3.3E-05	1.41	1.0E+00	1.00	3.3E-05	1.00	
100 - 1,000	320	1.3E-05	1.41	1.0E+00	1.00	1.3E-05	1.00	
1,000 - 10,000	3200	1.3E-05	1.41	1.0E+00	1.00	1.3E-05	1.00	
10,000 - 100,000	32000	2.6E-06	1.41	1.0E+00	1.00	2.6E-06	1.00	
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00	
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00	

Expected Total (bbl)	1.5E+01
Std. Dev. in Total (bbl)	1.6E+01

Expected Max (bbl)	1.5E+01
Std. Dev. in Max (bbl)	1.6E+01

F.72 – Oil Spill Risk Assessment for TLP

Use OTC 8518 (Wolford et al. 1997) information for leak frequency from dual-cased production risers: 6.0x10⁻⁵ loss-of-well control events (including during production and well intervention) per riser-year based on fault tree analysis - use 1x10⁻⁴ leaks per riser-year as an approximation for the study system.

Leak Frequency for riser (per riser year):	
Expected Value (OTC Paper)	1.00E-04
Coefficient of Uncertainty (Few data to support	1.00
Standard Deviation	0.0001

Distribute spill sizes from risers using the pipeline spill-size distribution for spills less than 100,000 bbl in size (see Pipeline worksheet for details).

	Expected		Expected	
	Pipeline	Leak	Riser	Coefficient of
Spill Size Range	Frequency	Distribution	Frequency	Uncertainty in
(bbl)	(per mile-year)	for no SSV Failure	(per riser year)	Frequency
1 - 10	3.72E-04	38%	3.85E-05	1.00
10 - 100	3.22E-04	33%	3.33E-05	1.00
100 - 1,000	1.24E-04	13%	1.28E-05	1.00
1,000 - 10,000	1.24E-04	13%	1.28E-05	1.00
10,000 - 100,000	2.48E-05	3%	2.56E-06	1.00
100,000 - 500,000	0.00E+00	0%	0.00E+00	0.00
500,000 - 1,000,000	0.00E+00	0%	0.00E+00	0.00
		Total:	1.00E-04	

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because estimated frequency was for similar types of risers.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the data because there are no actual occurrences of these types of events from dual risers for deepwater floating production systems.

- While a large spill (>100,000 bbl spill) could occur if there is a leak from the riser system and a failure of the subsea safety valve (SSV), this possibility is considered to be so remote as to be negligible. For example, the probability of failure for an SSV is estimated to be about 0.001 giving approximately a 0.0001x0.001 or 1x10-7 frequency per riser year for this type of an event, which would contribute very little to the expected oil spill volume. Therefore, the frequencies for spills greater than 100,000 bbl are assumed to be zero.

Exposure for Study System:	
Number of Dry Tree Risers	6
Service Life (years)	20
Exposure (riser-years)	120

TLP - Flowlines

Exposure (mile-years) 240

Input Information

		Combined (Expert+Data) Estimate		Expert-Based E	xtrapolation Bias	Data-Based	Estimate
		Expected	Coefficient		Coefficient	Expected	Coefficient
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty
(bbl)	(bbl)	(per mile-year)	for Frequency	Bias	for Bias	(per mile-year)	for Frequency
1 - 10	3	3.7E-04	1.08	1.0E+00	1.00	3.7E-04	4.0E-01
10 - 100	32	3.2E-04	1.08	1.0E+00	1.00	3.2E-04	4.1E-01
100 - 1,000	320	1.2E-04	1.14	1.0E+00	1.00	1.2E-04	5.5E-01
1,000 - 10,000	3200	1.2E-04	1.14	1.0E+00	1.00	1.2E-04	5.5E-01
10,000 - 100,000	32000	0.0E+00	0.00	0.0E+00	0.00	2.5E-05	1.1E+00
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.0E+00
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.0E+00

Expected Total (bbl)	1.1E+02
Std. Dev. in Total (bbl)	1.1E+02
Expected Max (bbl)	1.1E+02
Std. Dev. in Max (bbl)	1.1E+02

Reported incidents of oil pipeline leaks in the Gulf of Mexico were taken from the USCG spill database for the years 1992 to 1998. The data are summarized below.

Total Pipeline Miles in GOM federal and state waters estimated from MMS and Lousiana data making the following assumptions:

Federal Waters Sum: Include "unknown" mileage in all years

State Waters Sum: Start with 2,500 miles from Mariano Hinojosa (Louisiana) in 2000; Maintain constant State/Federal Percentage for Earlier Years

Percent Inactive: Assume 17 percent today, 0 percent in 1948 and increase it linearly with time

Total Active: Reduce both federal and state together with same percentage inactive

Total Active Liquid: Assume 30 percent of pipeline length is liquid versus gas (NRC Marine Board Study 1994)

Result - 44,715 mile-years from 1992 to 1998

As a check, Marine Board Study in 1994 reported 17,000 total miles with 30 % oil/condensate, giving 5,100 miles for 7 years or 35,700 mile-years.

Total Mile Years in Data:	
Expected Value	44715
Coefficient of Uncertainty	0.33
Standard Deviation	14756

			Statistically Estimated Frequency (no prior information)						
Spill Size Range		Frequency		n"	Expected Value	Std. Dev.			
(bbl)	Count	(per mile-yr)	k"	(mile-yr)	(per mile-yr)	(per mile-yr)	C.O.V.		
1 - 10	14	3.1E-04	15	44715	3.7E-04	1.5E-04	0.40		
10 - 100	12	2.7E-04	13	44715	3.2E-04	1.3E-04	0.41		
100 - 1,000	4	8.9E-05	5	44715	1.2E-04	6.8E-05	0.55		
1,000 - 10,000	4	8.9E-05	5	44715	1.2E-04	6.8E-05	0.55		
10,000 - 100,000	0	0.0E+00	1	44715	2.5E-05	2.7E-05	1.08		
100,000 - 500,000	0	0.0E+00							
500.000 - 1.000.000	0	0.0E+00							

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because flowliness for study systems will be similar to pipelines in database, although they will be in deeper water than average pipelines in database.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the historical data since most of the pipelines in the historical database are in shallower water than the flowlines for the study system. The deepwater effect may lead to a reduction in the frequency of spills (fewer anchor drags and dropped objects), but the difference was not considered to be significant enough (an EQE 1998 study estimated the frequency of spills for deepwater segments of pipeline would be approximately 70-percent of that for shallow water pipeline segments) to be reflected in the expected bias.

- Limit maximum possible spill size per incident to 10,000 bbl because (1) flowline inventory is small (< 10,000 bbl total in parallel lines) and (2) safety systems should shut production in within 45 minutes of a leak occurring (5 hours at 2,000 bbl/hr total in both lines gives 10,000 bbl).

Study System Exposure:

Length per Line (miles)	10
Number of Lines	2
Service Life (yrs)	12
Exposure (mile-years)	240

				1 - 10 bbl			10 - 100 bb	1	1	00 - 1,000 b	bl	1,0	00 - 10,000	bbl
		Total		Total			Total			Total			Total	
	Total	Volume		Volume	Average		Volume	Average		Volume	Average		Volume	Average
	Number	Spilled	Number	Spilled	Spill Size	Number	Spilled	Spill Size	Number	Spilled	Spill Size	Number	Spilled	Spill Size
Year	of Spills	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)
1992	10	3055	3	10	3.3	4	123	30.8	2	922	461.0	1	2000	2000.0
1993	2	5	2	5	2.5									
1994	2	4554				1	10	10.0				1	4544	4544.0
1995	5	32	3	8	2.7	2	24	12.0						
1996	2	28	1	2	2.0	1	26	26.0						
1997	5	223	2	9	4.5	2	51	25.5	1	163	163.0			
1998	8	10214	3	9	3.0	2	39	19.5	1	743	743.0	2	9423	4711.5
TOTAL	34	18111	14	43	3.1	12	273	22.8	4	1828	457.0	4	15967	3991.8

Spills from Pipelines in the GoM and its Waterways (Source: USCG - Marine Casuality and Pollution Database with input from MMS)

TLP - Import Flowline Risers Exposure (riser-years)

24

	Input Information									
		Combined (Expe	ombined (Expert+Data) Estimate Expert-Based Extrapolation Bias Data-Based Estimate							
		Expected	Coefficient		Coefficient	Expected	Coefficient			
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty			
(bbl)	(bbl)	(per riser-year)	for Frequency	Bias	for Bias	(per riser-year)	for Frequency			
1 - 10	3	2.1E-03	1.15	1.0E+00	1.00	2.1E-03	0.58			
10 - 100	32	1.8E-03	1.15	1.0E+00	1.00	1.8E-03	0.58			
100 - 1,000	320	7.0E-04	1.15	1.0E+00	1.00	7.0E-04	0.58			
1,000 - 10,000	3200	7.0E-04	1.15	1.0E+00	1.00	7.0E-04	0.58			
10,000 - 30,000	32000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00			
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00			
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00			

Expected Total (bbl)	6.1E+01
Std. Dev. in Total (bbl)	6.2E+01

Expected Max (bb	I)	6.0E+01
Std. Dev. in Max (b	bbl)	6.1E+01

Use Parloc 93 information for leak frequency from risers, normalized by riser-years: 2 leaks in 565 riser-years for risers with a diameter greater than 8 inches.

Statistical Analysis:	
Exposure (riser-years)	565
Leaks	2
k"	3
n" (riser-years)	565
Expected Rate (per riser-year)	5.31E-03
Coefficient of Uncertainty in Rate	0.577

Distribute spill sizes from risers using the flowline spill-size distribution (see Flowline worksheet for details).

	Expected		Expected	
	Flowline		Riser	Coefficient of
Spill Size Range	Frequency	Flowline Leak	Frequency	Uncertainty in
(bbl)	(per mile-year)	Distribution	(per riser year)	Frequency
1 - 10	3.72E-04	39%	2.10E-03	0.58
10 - 100	3.22E-04	34%	1.82E-03	0.58
100 - 1,000	1.24E-04	13%	6.99E-04	0.58
1,000 - 10,000	1.24E-04	13%	6.99E-04	0.58
10,000 - 100,000	0.00E+00	0%	0.00E+00	0.00
100,000 - 500,000	0.00E+00	0%	0.00E+00	0.00
500,000 - 1,000,000	0.00E+00	0%	0.00E+00	0.00

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because import risers will be in deeper water (which may increase the frequency) but more modern (which may decrease the frequency) than the risers in the database.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the historical data since the risers in the historical database are not very representative of import risers on floating production systems in deepwater.

- Limit maximum possible spill size per incident to 10,000 bbl because (1) flowline inventory is small (< 10,000 bbl total in parallel lines) and (2) safety systems should shut production in within 45 minutes of a leak occurring (5 hours at 2,000 bbl/hr total in both lines gives 10,000 bbl).

Study System Import Risers:	
2 Import from Flowlines	2
Years of Service	12
Total Riser-Years:	24

TLP - Topsides Exposure (bbl produced) 6.86E+08

Input Information									
		Combined (Expert	+Data) Estimate	Expert-Based E	xtrapolation Bias	Data-Base	d Estimate		
		Expected	Coefficient		Coefficient	Expected	Coefficient		
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty		
(bbl)	(bbl)	(per bbl)	for Frequency	Bias	for Bias	(per bbl)	for Frequency		
1 - 10	3	3.0E-08	0.10	1.0E+00	0.00	3.0E-08	0.10		
10 - 100	32	7.8E-09	0.20	1.0E+00	0.00	7.8E-09	0.20		
100 - 1,000	320	1.3E-09	0.50	1.0E+00	0.00	1.3E-09	0.50		
1,000 - 10,000	3200	2.9E-12	1.41	9.0E-03	1.00	3.3E-10	1.00		
10,000 - 100,000	32000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00		
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00		
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00		

Expected Total (bbl)	5.2E+02
Std. Dev. in Total (bbl)	1.5E+02

Expected Max (bbl)	2.1E+02
Std. Dev. in Max (bbl)	5.9E+01

Reported incidents of oil spills from "platforms" in the Gulf of Mexico were taken from the MMS pipeline and platform spill database (provided by Cheryl Anderson of MMS) for the years 1980 to 1999. The data are summarized below. Use only data from 1990 to present to account for changes in operating procedures due to implementation of API RP14C.

Process equipment included in data: separators, flare line systems, heaters/treaters, sump systems, pumps, storage tanks, compressors, pig launchers, valves and piping.

Substances included in spill data: oil, condensate, fuel, glycol.

Incidents involving supply vessels and barges (e.g., transfer of fluids to/from a vessel) have been filtered out and are not included in this analysis. The USCG data base is considered to be a more comprehensive source of information about these incidents and activities (included in Supply Vessels worksheet).

Assume risk is proportional to the volume of production - total production data are available for GOM from 1985-1998.

Total GOM Production bbls in Data:	
Expected Value (bbl)	3.1E+09
Coefficient of Uncertainty	0
Standard Deviation (bbl)	0

				Statistically Esti	mated Frequency (no pr	rior information)	
Spill Size Range		Frequency		n"	Expected Value	Std. Dev.	Coefficient of
(bbl)	Count	(per bbl)	k"	(bbl)	(/bbl)	(/bbl)	Uncertainty
1 - 10	90	2.9E-08	91	3.1E+09	3.0E-08	3.1E-09	0.105
10 - 100	23	7.5E-09	24	3.1E+09	7.8E-09	1.6E-09	0.204
100 - 1,000	3	9.8E-10	4	3.1E+09	1.3E-09	6.5E-10	0.500
1,000 - 10,000	0	0.0E+00	1	3.1E+09	3.3E-10	3.3E-10	1.000
10,000 - 100,000	0	0.0E+00					
100,000 - 500,000	0	0.0E+00					
500,000 - 1,000,000	0	0.0E+00					

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias for spills less than 1,000 bbl because estimated frequencies are for similar types of process systems. Reduce spill frequency for the 1,000 to 10,000 bbl category to 1.0x10⁻⁴ per year to account for the inventory spilled in a total structural failure.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the data for the 1,000 to 10,000 bbl category because there are no actual occurrences of this type of an event in the data record for any platforms including deepwater floating production systems.

Total Production (bbl)	6.86E+08
Production from Subsea Wells (bbl)	2.73E+08
Production from Platform Wells (bbl)	4.13E+08
Exposure for Study System:	

	(Source: MMS - TIMS Database)																		
	í		í			1 - 10 bb	1	1	0 - 100 b	bl	10	0 - 1,000	bbl	1,00	0 - 10,000	0 bbl	10,00	0 - 100,0	00 bbl
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Production (bbl)	Barrels Spilled per 1E6 bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)									
1980	27	1678			23	73	3.2	3	149	49.7				1	1456	1456.0			
1981	21	135			19	62	3.3	2	73	36.5									<u> </u>
1982	26	79			25	67	2.7	1	12	12.0									
1983	48	280			43	127	3.0	5	153	30.6									-
1984	39	172			38	122	3.2	1	50	50.0									
1985	34	141	351133870	0.40	32	100	3.1	2	41	20.5									-
1986	24	75	356398376	0.21	24	75	3.1												-
1987	19	84	328243087	0.26	17	49	2.9	2	35	17.5									
1988	12	103	301704812	0.34	10	33	3.3	2	70	35.0									
1989	12	355	281160011	1.26	10	44	4.4	1	11	11.0	1	300	300.0						-
1990	15	91	274955773	0.33	13	47	3.6	2	44	22.0									
1991	11	477	295129769	1.62	7	33	4.7	3	94	31.3	1	350	350.0						-
1992	9	32	305282682	0.10	9	32	3.6												
1993	9	42	309229380	0.14	8	23	2.9	1	19	19.0									
1994	6	16	314743342	0.05	6	16	2.7												-
1995	16	594	345525211	1.72	11	41	3.7	4	118	29.5	1	435	435.0						
1996	21	271	369309647	0.73	15	52	3.5	6	219	36.5									<u> </u>
1997	13	260	411795024	0.63	10	33	3.3	2	57	28.5	1	170	170.0			ļ			
1998	16	314	444466377	0.71	11	35	3.2	5	279	55.8						ļ			
1999	10	78			7	25	3.6	3	53	17.7									<u> </u>
TOTAL	388	5277	4.69E+09	6.09E-01	338	1089	3	45	1477	33	4	1255	314	1	1456	1456	0	0	0

Spills from Oil/Gas Process Activities in the GoM

TLP - Export Pipeline Risers Exposure (riser-years)

20

	Input Information									
		Combined (Expe	bined (Expert+Data) Estimate Expert-Based Extrapolation Bias Data-Based Extrapolation Data-Based Extrapolation Bias							
		Expected	Coefficient		Coefficient	Expected	Coefficient			
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty			
(bbl)	(bbl)	(per riser-year)	for Frequency	Bias	for Bias	(per riser-year)	for Frequency			
1 - 10	3	2.0E-03	1.15	1.0E+00	1.00	2.0E-03	0.58			
10 - 100	32	1.8E-03	1.15	1.0E+00	1.00	1.8E-03	0.58			
100 - 1,000	320	6.8E-04	1.15	1.0E+00	1.00	6.8E-04	0.58			
1,000 - 10,000	3200	6.8E-04	1.15	1.0E+00	1.00	6.8E-04	0.58			
10,000 - 30,000	21000	1.4E-04	1.00	1.0E+00	1.00	1.4E-04	0.00			
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00			
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00			

Expected Total (bbl)	1.1E+02
Std. Dev. in Total (bbl)	7.6E+01

Expected Max (bbl)	1.1E+02
Std. Dev. in Max (bbl)	7.6E+01

Use Parloc (1993) information for leak frequency from risers, normalized by riser-years: 2 leaks in 565 riser-years for risers with a diameter greater than 8 inches.

Statistical Analysis:

Exposure (riser-years)	565
Leaks	2
k"	3
n" (riser-years)	565
Expected Rate (per riser-year)	5.31E-03
Coefficient of Uncertainty in Rate	0.577

Distribute spill sizes from risers using the pipeline spill-size distribution (see Pipeline worksheet for details).

	Expected		Expected	
	Pipeline		Riser	Coefficient of
Spill Size Range	Frequency	Pipeline Leak	Frequency	Uncertainty in
(bbl)	(per mile-year)	Distribution	(per riser year)	Frequency
1 - 10	3.72E-04	38%	2.04E-03	0.58
10 - 100	3.22E-04	33%	1.77E-03	0.58
100 - 1,000	1.24E-04	13%	6.81E-04	0.58
1,000 - 10,000	1.24E-04	13%	6.81E-04	0.58
10,000 - 100,000	2.48E-05	3%	1.36E-04	0.00
100,000 - 500,000	0.00E+00	0%	0.00E+00	0.00
500,000 - 1,000,000	0.00E+00	0%	0.00E+00	0.00

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because import risers will be in deeper water (which may increase the frequency) but more modern (which may decrease the frequency) than the risers in the database.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the historical data since the risers in the historical database are not very representative of export risers on floating production systems in deepwater.

- Limit maximum possible spill size to 100,000 bbl and use a triangular probability distribution (decreasing with increasing size) in the 10,000 to 100,000 bbl category because (1) hydrostatic pressures in deeper water and "P-traps" due to bottom contours limit the volume of inventory that can leak and (2) it is not credible that pumping from the TLP would continue for more than several hours after a leak occurs (6,200 bbl/hr production rate) due to detection systems and operational requirements. Therefore, the representative spill-size for the largest category (10,000 to 100,000 bbls) is obtained by assuming that the logarithm of the spill size has a triangular distribution (versus a uniform distribution) with the maximum likelihood at 10,000 bbls and the minimum likelihood at 100,000 bbls, giving a representative value of 21,000 bbls. (Note that this same approach is used for the largest spill-size category for FPSO shuttle tankers.)

Exposure	for	Study	S	ystem:
----------	-----	-------	---	--------

Total Riser-Years:	20
Years of Service	20
1 Export Riser	1

TLP - Pipelines

Exposure (mile-years) 2900

Input Information										
		Combined (Expe	rt+Data) Estimate	Expert-Based E	xtrapolation Bias	Data-Based	Estimate			
		Expected	Coefficient		Coefficient	Expected	Coefficient			
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty			
(bbl)	(bbl)	(per mile-year)	for Frequency	Bias	for Bias	(per mile-year)	for Frequency			
1 - 10	3	3.7E-04	0.52	1.0E+00	0.33	3.7E-04	0.40			
10 - 100	32	3.2E-04	0.53	1.0E+00	0.33	3.2E-04	0.41			
100 - 1,000	320	1.2E-04	0.64	1.0E+00	0.33	1.2E-04	0.55			
1,000 - 10,000	3200	1.2E-04	0.64	1.0E+00	0.33	1.2E-04	0.55			
10,000 - 100,000	21000	2.5E-05	1.13	1.0E+00	0.33	2.5E-05	1.08			
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00			
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00			

Expected Total (bbl)	2.8E+03
Std. Dev. in Total (bbl)	1.9E+03
Expected Max (bbl)	2.4E+03
Std. Dev. in Max (bbl)	1.7E+03

Reported incidents of oil pipeline leaks in the Gulf of Mexico were taken from the USCG spill database for the years 1992 to 1998. The data are summarized below.

Total Pipeline Miles in GOM federal and state waters estimated from MMS and Lousiana data making the following assumptions:

Federal Waters Sum: Include "unknown" mileage in all years

State Waters Sum: Start with 2,500 miles from Mariano Hinojosa (Louisiana) in 2000; Maintain constant State/Federal Percentage for Earlier Years

Percent Inactive: Assume 17 percent today, 0 percent in 1948 and increase it linearly with time

Total Active: Reduce both federal and state together with same percentage inactive

Total Active Liquid: Assume 30 percent of pipeline length is liquid versus gas (NRC Marine Board Study 1994)

Result - 44,715 mile-years from 1992 to 1998

As a check, Marine Board Study in 1994 reported 17,000 total miles with 30 % oil/condensate, giving 5,100 miles for 7 years or 35,700 mile-years.

Total Mile Years in Data:	
Expected Value	44715
Coefficient of Uncertainty	0.33
Standard Deviation	14756

			Statistically Estimated Frequency (no prior information)						
Spill Size Range		Frequency			n"	Expected Value	Std. Dev.		
(bbl)	Count	(per mile-yr)	k"		(mile-yr)	(per mile-yr)	(per mile-yr)	C.O.V.	
1 - 10	14	3.1E-04		15	44715	3.7E-04	1.5E-04	0.40	
10 - 100	12	2.7E-04		13	44715	3.2E-04	1.3E-04	0.41	
100 - 1,000	4	8.9E-05		5	44715	1.2E-04	6.8E-05	0.55	
1,000 - 10,000	4	8.9E-05		5	44715	1.2E-04	6.8E-05	0.55	
10,000 - 100,000	0	0.0E+00		1	44715	2.5E-05	2.7E-05	1.08	
100,000 - 500,000	0	0.0E+00							
500,000 - 1,000,000	0	0.0E+00							

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because pipelines for study systems will be similar to pipelines in database, although they will be in deeper water on average.

- Apply a coefficient of uncertainty of 0.33 in extrapolating the historical data since most of the pipelines in the historical database are in shallower water on average than the pipeline for the study system. The deepwater effect may lead to a reduction in the frequency of spills (fewer anchor drags and dropped objects), but the difference was not considered to be significant enough (an EQE 1998 study estimated the frequency of spills for deepwater segments of pipeline would be approximately 70-percent of that for shallow water pipeline segments) to be reflected in the expected bias.

- Limit maximum possible spill size to 100,000 bbl and use a triangular probability distribution (decreasing with increasing size) in the 10,000 to 100,000 bbl category because (1) hydrostatic pressures in deeper water and "P-traps" due to bottom contours limit the volume of inventory that can leak and (2) it is not credible that pumping from the TLP would continue for more than several hours after a leak occurs (6,200 bbl/hr production rate) due to detection systems and operational requirements. Therefore, the representative spill-size for the largest category (10,000 to 100,000 bbls) is obtained by assuming that the logarithm of the spill size has a triangular distribution (versus a uniform distribution) with the maximum likelihood at 10,000 bbls. (Note that this same approach is used for the largest spill-size category for FPSO shuttle tankers.)

Exposure for Study System (mile-years):	
to Hub (miles)	45
to Shore from Hub (miles)	80
to Terminal from Shore (miles)	20
Total Length (miles)	145
Mile Years (20 years)	2900

	(Source: USCG - Marine Casuality and Pollution Database with input from MMS)													
				1 - 10 bbl			10 - 100 bb	l	100 - 1.000 bbl			1,000 - 10,000 bbl		
				Total			Total			Total			Total	
	Total	Total		Volume	Average		Volume	Average		Volume	Average		Volume	Average
	Number	Volume	Number of	Spilled	Spill Size	Number	Spilled	Spill Size	Number	Spilled	Spill Size	Number	Spilled	Spill Size
Year	of Spills	Spilled (bbl)	Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)
1992	10	3055	3	10	3.3	4	123	30.8	2	922	461.0	1	2000	2000.0
1993	2	5	2	5	2.5									
1994	2	4554				1	10	10.0				1	4544	4544.0
1995	5	32	3	8	2.7	2	24	12.0						
1996	2	28	1	2	2.0	1	26	26.0						
1997	5	223	2	9	4.5	2	51	25.5	1	163	163.0			
1998	8	10214	3	9	3.0	2	39	19.5	1	743	743.0	2	9423	4711.5
TOTAL	34	18111	14	43	3.1	12	273	22.8	4	1828	457.0	4	15967	3991.8

Spills from Pipelines in the GoM and its Waterways (Source: USCG - Marine Casuality and Pollution Database with input from MMS)

TLP - Supply Vessels Exposure (docking calls) 12287

Input Information										
	Combined (Expert+Data) Estimate Expert-Based Extrapolati						ed Estimate			
		Expected	Coefficient		Coefficient	Expected	Coefficient			
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty			
(bbl)	(bbl)	(per call)	for Frequency	Bias	for Bias	(per call)	for Frequency			
1 - 10	3	2.2E-05	0.46	1.0E+00	0.33	2.2E-05	0.32			
10 - 100	32	1.2E-05	0.48	1.0E+00	0.33	1.2E-05	0.34			
100 - 1,000	320	1.0E-06	0.75	1.0E+00	0.33	1.0E-06	0.67			
1,000 - 10,000	3200	0.0E+00	0.00	0.0E+00	0.00	3.4E-07	1.08			
10,000 - 100,000	32000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00			
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00			
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00			

Expected Total (bbl)	9.7E+00
Std. Dev. in Total (bbl)	3.8E+00

Expected Max (bbl)	9.1E+00
Std. Dev. in Max (bbl)	3.5E+00

Risk of a spill from a supply vessel is assumed to be proportional to the number of docking or port calls (in field and at the terminal) because this is where most spills occur due to the number of operations (including offloading) and difficulties in navigation (traffic and shore).

The USCG database of spills from offshore supply vessels (OSVs) was used to estimate the frequency of different spill sizes. Data from the years 1985-1999 were used in this analysis.

The data base was searched for petroleum spills from supply vessels. Substances considered included crude, fuel, diesel, lubricating oil and drilling mud.

Incidents were included from the following locations to represent the "Gulf of Mexico": Gulf of Mexico, Sabine/Neches River, Corpus Christi Ship Channel and Harbor, Galveston Bay, Houston Ship Channel, Lower and Upper Mississippi River, and Intercoastal Waterway - Gulf.

The database includes incidents related to vessel transit and docking calls at platorms and ports. A rough picture of supply vessel activity in the GOM (based on discussions with Edison Chouest): 300 boats making an average of 2 dock calls per day = 300x2x365 = 219,000 docking calls per year.

Total Docking Calls in Data (15 yrs):	
Expected Value	3285000
Coefficient of Uncertainty	0.33
Standard Deviation	1084050

		Statistically Estimated Frequency (no prior information)							
Spill Size Range		Frequency			n"	Expected Value	Std. Dev.		
(bbl)	Count	(per call)	k"		(calls)	(/call)	(/call)	C.O.V.	
1 - 10	65	2.0E-05		66	3285000	2.2E-05	7.2E-06	0.32	
10 - 100	36	1.1E-05		37	3285000	1.2E-05	4.3E-06	0.34	
100 - 1,000	2	6.1E-07		3	3285000	1.0E-06	6.8E-07	0.67	
1,000 - 10,000	0	0.0E+00		1	3285000	3.4E-07	3.6E-07	1.08	
10,000 - 100,000	0	0.0E+00							
100,000 - 500,000	0	0.0E+00							
500,000 - 1,000,000	0	0.0E+00							

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias.

- Apply a coefficient of uncertainty of 0.33 in extrapolating the historical data because supply vessels for these systems will be larger and more modern (dynamically-positioned) than the typical vessels that comprise the historical data.

- Limit maximum possible spill size to 1,000 bbl to be consistent with cargo capacity for typical supply vessels (less than 1,000 bbl).

Exposure for Study System:	
1 trip per 3 days during production	0.333333333
Days of Production (20 years)	7300
Trips	2433.333333
1 trip por 2 dovo during drilling/workovor	0 22222222
6 Platform Walls (20 years)	0.0000000000
Drilling & Completion (5*00 + 6*20 dove)	570
Slickling (2 per well year @ 5 days)	1900
Coiled Tubing (2/4 per well yr @ 20 days)	1000
Colled Tubling (3/4 per well-yr @ 20 days)	1000
Change out (1/2 per well vr @ 50 days)	1000
Pacampletion (1/5 per well-yr @ 50 days)	2000
Sidetrack/Deepening (1/15 per well-yr @ 50 days)	520
Tripe	320
mps	3230
3 Subsea Wells (12 years)	
Drilling & Completion (3*90 + 90 days)	360
Coiled Tubing (1/4 per well-yr @ 20 days)	180
Hydraulic (1/5 per well-yr @ 20 days)	144
Change out (1/8 per well-yr @ 50 days)	225
Recompletion (1/10 per well-yr @ 50 days)	180
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156
Replace Wellhead (1/12 per well-yr @ 65 days)	195
Trips	480

Docking calls (trips*2)

12287

	Spills from OSV Activities in the GoM and its Waterways (Source: USCG - Marine Casuality and Pollution Database)																
	1 - 10 bbl 10 - 100 bbl 100 - 1.000 bbl 1.000 - 10.000 bbl 10.000 - 100.000 bbl) bbl					
Voor	Total Number	Total Volume Spilled	Number of Spills	Total Volume Spilled	Average Spill Size	Number of Spills	Total Volume Spilled	Average Spill Size	Number of Spills	Total Volume Spilled	Average Spill Size	Number	Total Volume Spilled	Average Spill Size	Number	Total Volume Spilled	Average Spill Size
1985	0	0	0	0	0.0	0	0	0.0	0	0	0.0	0	0		0	0	0.0
1986	7	34	6	17	2.8	1	17	17.0	0	0	0.0	0	0	0.0	0	0	0.0
1987	4	42	3	6	2.0	1	36	36.0	0	0	0.0	0	0	0.0	0	0	0.0
1988	3	40	2	10	5.0	1	30	30.0	0	0	0.0	0	0	0.0	0	0	0.0
1989	5	30	4	9	2.3	1	21	21.0	0	0	0.0	0	0	0.0	0	0	0.0
1990	10	78	7	24	3.4	3	54	18.0	0	0	0.0	0	0	0.0	0	0	0.0
1991	11	78	9	37	4.1	2	41	20.5	0	0	0.0	0	0	0.0	0	0	0.0
1992	3	39	2	7	3.5	1	32	32.0	0	0	0.0	0	0	0.0	0	0	0.0
1993	8	191	3	9	3.0	5	182	36.4	0	0	0.0	0	0	0.0	0	0	0.0
1994	10	21	10	21	2.1	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0
1995	10	534	3	9	3.0	6	211	35.2	1	314	314.0	0	0	0.0	0	0	0.0
1996	9	161	5	18	3.6	4	143	35.8	0	0	0.0	0	0	0.0	0	0	0.0
1997	10	103	6	26	4.3	4	77	19.3	0	0	0.0	0	0	0.0	0	0	0.0
1998	9	257	4	11	2.8	4	116	29.0	1	130	130.0	0	0	0.0	0	0	0.0
1999	4	193	1	3	3.0	3	190	63.3	0	0	0.0	0	0	0.0	0	0	0.0
TOTAL	103	1801	65	207	3	36	1150	32	2	444	222	0	0	0	0	0	0

TLP - Drilling and Intervention Exposure (man-days) 246912

Input Information								
	rapolation Bias	Data-Base	d Estimate					
		Expected	Coefficient		Coefficient	Expected	Coefficient	
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty	
(bbl)	(bbl)	(per man-day)	for Frequency	Bias	for Bias	(per man-day)	for Frequency	
1 - 10	3	4.4E-06	0.46	1.0E+00	0.33	4.4E-06	0.31	
10 - 100	32	7.7E-07	0.51	1.0E+00	0.33	7.7E-07	0.39	
100 - 1,000	320	3.0E-07	0.59	1.0E+00	0.33	3.0E-07	0.49	
1,000 - 10,000	3200	4.3E-08	1.13	1.0E+00	0.33	4.3E-08	1.08	
10,000 - 100,000	32000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00	
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00	
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00	

Expected Total (bbl)	6.7E+01
Std. Dev. in Total (bbl)	4.1E+01

Expected Max (bbl)	6.3E+01
Std. Dev. in Max (bbl)	4.0E+01

F.98 – Oil Spill Risk Assessment for TLP

Risk of a spill from drilling and well intervention is assumed to be proportional to the number of man-days of operations. This approach means that operations that require a larger crew will have a greater risk of oil spill because more activities and difficulties are involved. It is also used here because information about man-days of drill crew operations in the GOM is available from IADC, an average of 1.3 million man-days per year in the 1990's. One concern is that the IADC information includes activities in state waters while the MMS data may only include OCS waters, therefore the denominator may be overestimated slightly.

The MMS platform data base (1980-1999) was used to identify drilling activity-related incidents. These incidents include exploratory drilling, development drilling and well workovers and completions. Substances reported in the data base include crude, fuel, diesel, drilling fluids and drilling mud. Rig types include both platform and MODU rigs.

Total man-days in Data (20 yrs):	
Expected Value	2600000
Coefficient of Uncertainty	0.33
Standard Deviation	8580000

			Statistically Estimated Frequency (no prior information)					
Spill Size Range	_	Frequency		n"	Expected Value	Std. Dev.		
(bbl)	Count	(per man-day)	k"	(man-day)	(per man-day)	(per man-day)	C.O.V.	
1 - 10	103	4.0E-06	104	26000000	4.4E-06	1.4E-06	0.31	
10 - 100	17	6.5E-07	18	26000000	7.7E-07	3.0E-07	0.39	
100 - 1,000	6	2.3E-07	7	26000000	3.0E-07	1.5E-07	0.49	
1,000 - 10,000	0	0.0E+00	1	26000000	4.3E-08	4.6E-08	1.08	
10,000 - 100,000	0	0.0E+00						
100,000 - 500,000	0	0.0E+00						
500,000 - 1,000,000	0	0.0E+00						

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias.

- Apply a coefficient of uncertainty of 0.33 in extrapolating the historical data because there are relatively few historical data available for deep-water drilling in the Gulf of Mexico (compared to shallow-water drilling).

- Although they have not occurred in the data record, the possibility for spills larger than 10,000 bbl was evaluated. The estimated frequency was considered to be negligibly small because the reservoir characteristics will be relatively well known since significant exploration and development drilling will have taken place before the production life begins.

Exposure for Study System:

6 Platform Wells (20 years)	days	crew	man-days
Drilling & Completion (5*90 + 6*20 days)	570	40	22800
Slickline (3 per well-year @ 5 days)	1800	4	7200
Coiled Tubing (3/4 per well-yr @ 20 days)	1800	8	14400
Hydraulic (3/4 per well-yr @ 20 days)	1800	8	14400
Change out (1/3 per well-yr @ 50 days)	2000	40	80000
Recompletion (1/5 per well-yr @ 50 days)	1200	40	48000
Sidetrack/Deepening (1/15 per well-yr @ 65	520	40	20800
3 Subsea Wells (12 years)			
Drilling & Completion (3*90 + 90 days)	360	40	14400
Coiled Tubing (1/4 per well-yr @ 20 days)	180	4	720
Hydraulic (1/5 per well-yr @ 20 days)	144	8	1152
Change out (1/8 per well-yr @ 50 days)	225	8	1800
Recompletion (1/10 per well-yr @ 50 days)	180	40	7200
Sidetrack/Deepening (1/15 per well-yr @ 65	156	40	6240
Replace Wellhead (1/12 per well-yr @ 65 da	195	40	7800
		Total (man-days):	246912

	Spills from Drilling Activities in the GoM													
				6	Source: MM	S - TIMS I	Database)							
	·	·	r			<= 10 bbl > 10 bbl & <= 100 bbl						100 - 1,000 bbl		
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Production	Barrels Spilled per 1E6 bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	
1980	8	353			6	17	2.8	1	50	50.0	1	286	286.0	
1981	4	253			1	4	4.0	2	39	19.5	1	210	210.0	
1982	13	50			13	50	3.8							
1983	14	77			13	52	4.0	1	25	25.0				
1984	2	6			2	6	3.0							
1985	13	98	351133870	0.28	12	48	4.0	1	50	50.0				
1986	7	31	356398376	0.09	7	31	4.4							
1987	10	106	328243087	0.32	7	18	2.6	3	88	29.3				
1988	0	0	301704812	0.00										
1989	7	184	281160011	0.65	4	11	2.8	2	56	28.0	1	117	117.0	
1990	4	127	274955773	0.46	3	17	5.7				1	110	110.0	
1991	4	14	295129769	0.05	4	14	3.5							
1992	2	102	305282682	0.33	1	2	2.0	1	100	100.0				
1993	1	3	309229380	0.01	1	3	3.0							
1994	1	3	314743342	0.01	1	3	3.0							
1995	4	8	345525211	0.02	4	8	2.0							
1996	4	19	369309647	0.05	3	7	2.3	1	12	12.0				
1997	2	3	411795024	0.01	2	3	1.5							
1998	5	32	444466377	0.07	4	11	2.8	1	21	21.0				
1999	2	7			2	7	3.5							
TOTAL	107	1476	4.69E+09	1.56E-01	90	312	3	13	441	34	4	723	181	

	Spills from Completion/Workover Activities in the GoM												
	(Source: MMS - TIMS Database)												
	;		;		<= 10 bbl > 10 bbl & <= 100 bb				l00 bbl	>100 bbl			
Year	Total Number of Spills	Total Volume Spilled	Total Production	Barrels Spilled per 1E6 bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1980	0	0											
1981	3	68			2	4	2.0	1	64	64.0			
1982	1	3			1	3	3.0						
1983	1	2			1	2	2.0						
1984	0	0											
1985	1	5	351133870	0.01	1	5	5.0						
1986	0	0	356398376	0.00									
1987	1	3	328243087	0.01	1	3	3.0						
1988	0	0	301704812	0.00									
1989	1	6	281160011	0.02	1	6	6.0						
1990	1	8	274955773	0.03	1	8	8.0						
1991	0	0	295129769	0.00									
1992	0	0	305282682	0.00									
1993	0	0	309229380	0.00									
1994	3	172	314743342	0.55	1	6	6.0	1	25	25.0	1	141	141.0
1995	1	4	345525211	0.01	1	4	4.0						
1996	1	5	369309647	0.01	1	5	5.0						
1997	2	3	411795024	0.01	2	3	1.5						
1998	3	276	444466377	0.62				2	106	53.0	1	170	170.0
1999	0	0											
TOTAL	19	555	4.69E+09	1.03E-01	13	49	4	4	195	49	2	311	156

Appendix F.3

Oil Spill Risk Assessment for Hub/Host Jacket

Jacket – Risk Summary	F.104
Jacket – Frequency Summary	F.106
Jacket – Well Systems (Platform)	F.110
Jacket – Well Systems (Subsea)	F.114
Jacket – Flowlines	F.118
Jacket – Topsides	F.122
Jacket – Pipelines	F.126
Jacket – Supply Vessels	F.130
Jacket – Drilling and Intervention	F.135
6	

Jacket - Risk Summary

Overall System Risk Results for 20-year Life:

Expected Total (bbl)	2.3E+03
Std. Dev. in Total (bbl)	1.3E+03

Expected Max (bbl)	1.9E+03
Std. Dev. in Max (bbl)	1.2E+03

		Sub-system Risk Results for 20-year Life							
	Expected Total	Std. Dev. in Total	Expected Maximum	Std Dev. in Maximum					
	(bbl)	(bbl)	(bbl)	(bbl)					
Well Systems - Platform	9	6	8	6					
Well Systems - Subsea	25	27	24	25					
Flowlines	107	109	105	106					
Topsides	147	41	95	32					
Pipelines	1937	1284	1746	1183					
Supply Vessels	10	4	9	4					
Drilling and Intervention	67	41	63	40					

Jacket - Frequency Summary

Summary Information for Frequencies

	Total System Frequency							
Spill Size Range (bbl)	Expected Value (per year)	Coefficient of Uncertainty	k for Gamma Distribution	n for Gamma Distribution	Lower 90% (per year)	Upper 90% (per year)		
1 - 10	3.9E-01	1.1E-01	8.1E+01	2.1E+02	3.2E-01	4.7E-01		
10 - 100	1.3E-01	1.8E-01	2.9E+01	2.3E+02	9.2E-02	1.7E-01		
100 - 1,000	3.1E-02	3.3E-01	9.0E+00	2.9E+02	1.6E-02	5.0E-02		
1,000 - 10,000	1.5E-02	5.6E-01	3.2E+00	2.2E+02	4.1E-03	3.0E-02		
10,000 - 100,000	2.5E-03	1.1E+00	7.8E-01	3.2E+02	6.3E-05	8.1E-03		
100,000 - 500,000	0.0E+00							
500,000 - 1,000,000	0.0E+00							

		Expected Frequency by Sub-system (per year)							
Spill Size Range (bbl)	Well Systems - Platform	Well Systems - Subsea	Flowlines	Topsides	Pipelines	Supply Vessels	Drilling and Intervention		
1 - 10	6.9E-03	0.0E+00	4.5E-03	2.8E-01	3.7E-02	1.4E-02	5.5E-02		
10 - 100	3.0E-03	0.0E+00	3.9E-03	7.3E-02	3.2E-02	7.7E-03	9.5E-03		
100 - 1,000	9.9E-04	0.0E+00	1.5E-03	1.2E-02	1.2E-02	6.2E-04	3.7E-03		
1,000 - 10,000	0.0E+00	0.0E+00	1.5E-03	1.0E-04	1.2E-02	0.0E+00	5.3E-04		
10,000 - 100,000	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.5E-03	0.0E+00	0.0E+00		
100,000 - 500,000	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		
500,000 - 1,000,000	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		

	Production System Frequency							
Spill Size Range (bbl)	Expected Value (per year)	Coefficient of Uncertainty	k for Gamma Distribution	n for Gamma Distribution	Lower 90% (per year)	Upper 90% (per year)		
1 - 10	3.6E-01	1.1E-01	8.3E+01	2.3E+02	2.9E-01	4.2E-01		
10 - 100	9.7E-02	1.7E-01	3.4E+01	3.5E+02	7.1E-02	1.3E-01		
100 - 1,000	1.9E-02	3.6E-01	7.8E+00	4.1E+02	9.3E-03	3.1E-02		
1,000 - 10,000	2.1E-03	8.5E-01	1.4E+00	6.5E+02	2.1E-04	5.7E-03		
10,000 - 100,000								
100,000 - 500,000								
500,000 - 1,000,000								

Summary Information for Jacket Production Frequencies

Summary Information for Jacket Transportation Frequencies

	Transportation System Frequency								
Spill Size Range (bbl)	Expected Value (per year)	Coefficient of Uncertainty	k for Gamma Distribution	n for Gamma Distribution	Lower 90% (per year)	Upper 90% (per year)			
1 - 10	3.7E-02	4.9E-02	4.1E+02	1.1E+04	3.4E-02	4.0E-02			
10 - 100	3.2E-02	1.3E-01	5.7E+01	1.8E+03	2.6E-02	4.0E-02			
100 - 1,000	1.2E-02	2.5E-01	1.5E+01	1.2E+03	7.7E-03	1.8E-02			
1,000 - 10,000	1.2E-02	5.5E-01	3.3E+00	2.7E+02	3.7E-03	2.5E-02			
10,000 - 100,000	2.5E-03	1.1E+00	7.8E-01	3.2E+02	6.3E-05	8.1E-03			
100,000 - 500,000									
500,000 - 1,000,000									

Hub/Host Jacket - Contribution to Total Frequency for Different Spill Sizes

F.108 – Oil Spill Risk Assessment for Hub/Host Jacket

Hub/Host Jacket - Contribution to Total Frequency for Different Spill Sizes

Jacket - Well Systems (Platform)

Exposure (bbl produced) 6.09E+07

Input Information										
		Combined (Expert-	Data) Estimate	Expert-Based E	xtrapolation Bias	Data-Base	d Estimate			
		Expected	Coefficient		Coefficient	Expected	Coefficient			
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty			
(bbl)	(bbl)	(per bbl)	for Frequency	Bias	for Bias	(per bbl)	for Frequency			
1 - 10	3	2.3E-09	0.38	1.0E+00	0.00	2.3E-09	0.38			
10 - 100	32	9.8E-10	0.58	1.0E+00	0.00	9.8E-10	0.58			
100 - 1,000	320	3.3E-10	1.00	1.0E+00	0.00	3.3E-10	1.00			
1,000 - 10,000	3200	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00			
10,000 - 100,000	32000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00			
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00			
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00			

Results for 20-year Life:

Std. Dev. in Max (bbl)

Expected Total (bbl)	8.7E+00
Std. Dev. in Total (bbl)	6.4E+00
Expected Max (bbl)	8.5E+00

6.3E+00

F.111 – Oil Spill Risk Assessment for Hub/Host Jacket

Reported incidents of oil spills from "well and header systems" in the Gulf of Mexico were taken from the MMS pipeline and platform spill database (provided by Cheryl Anderson of MMS) for the years 1980 to 1999. The data are summarized below. Use only data from 1990 to present to account for changes in operating procedures due to implementation of API RP14C.

Equipment includes subsurface safety valves, wellhead assemblies, chokes, jumpers and injection lines, pressure sensors, surface safety valves, header valves and check valves.

Assume risk is proportional to the volume of production - total production data are available for GOM from 1985-1998.

Total Production bbls in GOM Data:	
Expected Value (bbl)	3.1E+09
Coefficient of Uncertainty	0
Standard Deviation (bbl)	0

					Statistically Esti	mated Frequency (no p	rior information)	
Spill Size Range		Frequency			n"	Expected Value	Std. Dev.	Coefficient of
(bbl)	Count	(per bbl)	k"		(bbl)	(/bbl)	(/bbl)	Uncertainty
1 - 10	6	2.0E-09		7	3.1E+09	2.3E-09	8.6E-10	0.377964473
10 - 100	2	6.5E-10		3	3.1E+09	9.8E-10	5.6E-10	0.577350269
100 - 1,000	0	0.0E+00		1	3.1E+09	3.3E-10	3.3E-10	1
1,000 - 10,000	0	0.0E+00						
10,000 - 100,000	0	0.0E+00						
100,000 - 500,000	0	0.0E+00						
500,000 - 1,000,000	0	0.0E+00						

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because study well systems are similar to those in data base.

Exposure for Study System: Platform Well Production (bbl) 6.09E+07

	(Source: MMS - TIMS Database)												
						1 - 10 bbl			10 - 100 bbl		100 - 1,000 bbl		
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Production (bbl)	Barrels Spilled per 1E6 Bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1980	2	7			2	7	3.4						
1981	3	12			3	12	4.0						
1982	5	14			5	14	2.7						
1983	2	31						2	31	15.5			
1984	1	3			1	3	3.0						ļ
1985	2	43	351133870	0.12	1	3	3.0	1	40	40.0			
1986	2	5	356398376	0.01	2	5	2.5						ļ
1987	3	6	328243087	0.02	3	6	2.0						
1988	5	73	301704812	0.24	4	18	4.5	1	55	55.0			
1989	2	18	281160011	0.06	1	6	6.0	1	12	12.0			
1990	0	0	274955773	0.00									
1991	0	0	295129769	0.00									
1992	3	74	305282682	0.24	1	8	8.0	2	66	33.0			
1993	0	0	309229380	0.00									
1994	2	6	314743342	0.02	2	6	3.0						
1995	1	1	345525211	0.00	1	1	1.0						
1996	2	3	369309647	0.01	2	3	1.5						
1997	0	0	411795024	0.00									
1998	0	0	444466377	0.00									
1999	0	0											
TOTAL	35	295	4.69E+09	4.88E-02	28	91	3	7	204	29	0	0	0

Jacket - Well Systems (Subsea) Exposure (bbl produced)

8.89E+07

	Input Information											
		Combined (Esti	Expert+Data) mate	Expert-Based E	xtrapolation Bias	Data-Based	Estimate					
Cuill Cine Dense		Expected	Coefficient	E-marked	Coefficient	Expected	Coefficient					
Spill Size Range (bbl)	Spill Size (bbl)	(per bbl)	of Uncertainty	Expected Bias	of Uncertainty for Bias	(per bbl)	of Uncertainty					
1 - 10	3	4.6E-09	1.07	2.0E+00	1.00	2.3E-09	0.38					
10 - 100	32	2.0E-09	1.15	2.0E+00	1.00	9.8E-10	0.58					
100 - 1,000	320	6.5E-10	1.41	2.0E+00	1.00	3.3E-10	1.00					
1,000 - 10,000	3200	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00					
10,000 - 100,000	32000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00					
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00					
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00					

Expected Total (bbl)	2.5E+01
Std. Dev. in Total (bbl)	2.7E+01

Expected Max (bbl)	2.4E+01
Std. Dev. in Max (bbl)	2.5E+01

F.115 – Oil Spill Risk Assessment for Hub/Host Jacket

Reported incidents of oil spills from "well and header systems" in the Gulf of Mexico were taken from the MMS pipeline and platform spill database (provided by Cheryl Anderson of MMS) for the years 1980 to 1999. The data are summarized below. Use only data from 1990 to present to account for changes in operating procedures due to implementation of API RP14C.

Equipment includes subsurface safety valves, wellhead assemblies, chokes, jumpers and injection lines, pressure sensors, surface safety valves, header valves and check valves.

Assume risk is proportional to the volume of production - total production data are available for GOM from 1985-1998.

Total Production bbls in GOM Data:

Expected Value (bbl)	3.1E+09
Coefficient of Uncertainty	0
Standard Deviation (bbl)	0

			Statistically Estimated Frequency (no prior information)					
	Frequency			n"	Expected Value	Std. Dev.	Coefficient of	
Count	(per bbl)	k"		(bbl)	(/bbl)	(/bbl)	Uncertainty	
6	2.0E-09		7	3.1E+09	2.3E-09	8.6E-10	0.377964473	
2	6.5E-10		3	3.1E+09	9.8E-10	5.6E-10	0.577350269	
0	0.0E+00		1	3.1E+09	3.3E-10	3.3E-10	1	
0	0.0E+00							
0	0.0E+00							
0	0.0E+00							
0	0.0E+00							
	Count 6 2 0 0 0 0 0 0 0	Count Frequency (per bbl) 6 2.0E-09 2 6.5E-10 0 0.0E+00 0 0.0E+00	Frequency Count (per bbl) k" 6 2.0E-09 2 2 6.5E-10 0 0 0.0E+00 0	Frequency Count (per bbl) k" 6 2.0E-09 7 2 6.5E-10 3 0 0.0E+00 1 0 0.0E+00 1 0 0.0E+00 0 0 0.0E+00 0 0 0.0E+00 0 0 0.0E+00 0	Statistically Estistically Estisted Estis estis estis estisted Estisted Estisted Estis estisted Estisted	Statistically Estimated Frequency (no provide the second s	Statistically Estimated Frequency (no prior information) Frequency n" Expected Value Std. Dev. Count (per bbl) k" (bbl) (/bbl) (/bbl) 6 2.0E-09 7 3.1E+09 2.3E-09 8.6E-10 2 6.5E-10 3 3.1E+09 9.8E-10 5.6E-10 0 0.0E+00 1 3.1E+09 3.3E-10 3.3E-10 0 0.0E+00 1 3.1E+09 3.3E-10 3.3E-10 0 0.0E+00 0 0.0E+00 0 0.0E+00 0 0 0.0E+00 0 0.0E+00 0 0.0E+00 0	

Expert-Based Adjustment to Raw Data:

- Double expected frequency for leaks to account for greater potential for sand erosion and cutouts due to high flow rates and detection difficulties for sand.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the historical data since wells in database are mostly platform wells and not subsea wells.

Exposure for Study System: Subsea Well Production (bbl) 8.89E+07

F.116 - Oil Spill Risk Assessment for Hub/Host Jacket

	Spills from Well and Header Systems in the GoM (Source: MIVIS - TIIVIS Database)												
	1 - 10 bbl 10 - 100 bbl 100 - 1,000 bbl												
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Production (bbl)	Barrels Spilled per 1E6 Bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1980	2	7			2	7	3.4						ļ
1981	3	12			3	12	4.0						ļ
1982	5	14			5	14	2.7						
1983	2	31						2	31	15.5			ļ
1984	1	3			1	3	3.0						
1985	2	43	351133870	0.12	1	3	3.0	1	40	40.0			
1986	2	5	356398376	0.01	2	5	2.5						
1987	3	6	328243087	0.02	3	6	2.0						ļ
1988	5	73	301704812	0.24	4	18	4.5	1	55	55.0			ļ
1989	2	18	281160011	0.06	1	6	6.0	1	12	12.0			ļ
1990	0	0	274955773	0.00									
1991	0	0	295129769	0.00									ļ
1992	3	74	305282682	0.24	1	8	8.0	2	66	33.0			
1993	0	0	309229380	0.00									
1994	2	6	314743342	0.02	2	6	3.0						
1995	1	1	345525211	0.00	1	1	1.0						ļ
1996	2	3	369309647	0.01	2	3	1.5						ļ
1997	0	0	411795024	0.00						ļ			ļ
1998	0	0	444466377	0.00									ļ
1999	0	0											
TOTAL	35	295	4.69E+09	4.88E-02	28	91	3	7	204	29	0	0	0

Jacket - Flowlines

Exposure (mile-years) 240

Input Information

		Combined (E Estin	xpert+Data) nate	Expert-Based E	xtrapolation Bias	Data-Based	Estimate
		Expected	Coefficient		Coefficient	Expected	Coefficient
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty
(bbl)	(bbl)	(per mile-year)	for Frequency	Bias	for Bias	(per mile-year)	for Frequency
1 - 10	3	3.7E-04	1.08	1.0E+00	1.00	3.7E-04	4.0E-01
10 - 100	32	3.2E-04	1.08	1.0E+00	1.00	3.2E-04	4.1E-01
100 - 1,000	320	1.2E-04	1.14	1.0E+00	1.00	1.2E-04	5.5E-01
1,000 - 10,000	3200	1.2E-04	1.14	1.0E+00	1.00	1.2E-04	5.5E-01
10,000 - 100,000	32000	0.0E+00	0.00	0.0E+00	0.00	2.5E-05	1.1E+00
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.0E+00
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.0E+00

Expected Total (bbl)	1.1E+02
Std. Dev. in Total (bbl)	1.1E+02
Expected Max (bbl)	1.1E+02
Std. Dev. in Max (bbl)	1.1E+02

F.119 – Oil Spill Risk Assessment for Hub/Host Jacket

Reported incidents of oil pipeline leaks in the Gulf of Mexico were taken from the USCG spill database for the years 1992 to 1998. The data are summarized below.

Total Pipeline Miles in GOM federal and state waters estimated from MMS and Lousiana data making the following assumptions:

Federal Waters Sum: Include "unknown" mileage in all years

State Waters Sum: Start with 2,500 miles from Mariano Hinojosa (Louisiana) in 2000; Maintain constant State/Federal Percentage for Earlier Years

Percent Inactive: Assume 17 percent today, 0 percent in 1948 and increase it linearly with time

Total Active: Reduce both federal and state together with same percentage inactive

Total Active Liquid: Assume 30 percent of pipeline length is liquid versus gas (NRC Marine Board Study 1994)

Result - 44,715 mile-years from 1992 to 1998

As a check, Marine Board Study in 1994 reported 17,000 total miles with 30 % oil/condensate, giving 5,100 miles for 7 years or 35,700 mile-years.

Total Mile Years in Data:	
Expected Value	44715
Coefficient of Uncertainty	0.33
Standard Deviation	14756

Statistically Estimated Frequency (no prior information)												
Spill Size Range		Frequency		n"	Expected Value	Std. Dev.						
(bbl)	Count	(per mile-yr)	k"	(mile-yr)	(per mile-yr)	(per mile-yr)	C.O.V.					
1 - 10	14	3.1E-04	15	44715	3.7E-04	1.5E-04	0.40					
10 - 100	12	2.7E-04	13	44715	3.2E-04	1.3E-04	0.41					
100 - 1,000	4	8.9E-05	5	44715	1.2E-04	6.8E-05	0.55					
1,000 - 10,000	4	8.9E-05	5	44715	1.2E-04	6.8E-05	0.55					
10,000 - 100,000	0	0.0E+00	1	44715	2.5E-05	2.7E-05	1.08					
100,000 - 500,000	0	0.0E+00										
500.000 - 1.000.000	0	0.0E+00										

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because flowliness for study systems will be similar to pipelines in database, although they will be in deeper water than average pipelines in database.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the historical data since most of the pipelines in the historical database are in shallower water than the flowlines for the study system. The deepwater effect may lead to a reduction in the frequency of spills (fewer anchor drags and dropped objects), but the difference was not considered to be significant enough (an EQE 1998 study estimated the frequency of spills for deepwater segments of pipeline would be approximately 70-percent of that for shallow water pipeline segments) to be reflected in the expected bias.

- Limit maximum possible spill size per incident to 10,000 bbl because (1) flowline inventory is small (< 10,000 bbl total in parallel lines) and (2) safety systems should shut production in within 45 minutes of a leak occurring (5 hours at 2,000 bbl/hr total in both lines gives 10,000 bbl).

Study System Exposure:

Length per Line (miles)	10
Number of Lines	2
Service Life (yrs)	12
Exposure (mile-years)	240

	(Source, OSCO - Marine Casualty and Fondtion Database with input from Wivis)														
				1 - 10 bbl			10 - 100 bbl			00 - 1,000 b	bl	1,000 - 10,000 bbl			
		Total		Total			Total			Total			Total		
	Total	Volume		Volume	Average		Volume	Average		Volume	Average		Volume	Average	
	Number	Spilled	Number	Spilled	Spill Size	Number	Spilled	Spill Size	Number	Spilled	Spill Size	Number	Spilled	Spill Size	
Year	of Spills	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	
1992	10	3055	3	10	3.3	4	123	30.8	2	922	461.0	1	2000	2000.0	
1993	2	5	2	5	2.5										
1994	2	4554				1	10	10.0				1	4544	4544.0	
1995	5	32	3	8	2.7	2	24	12.0							
1996	2	28	1	2	2.0	1	26	26.0							
1997	5	223	2	9	4.5	2	51	25.5	1	163	163.0				
1998	8	10214	3	9	3.0	2	39	19.5	1	743	743.0	2	9423	4711.5	
TOTAL	34	18111	14	43	3.1	12	273	22.8	4	1828	457.0	4	15967	3991.8	

Spills from Pipelines in the GoM and its Waterways (Source: USCG - Marine Casuality and Pollution Database with input from MMS)

Jacket - Topsides

Exposure (bbl produced) 1.86E+08

	Input Information														
		Combined (Expert+I	Data) Estimate	Expert-Based E	xtrapolation Bias	Data-Base	d Estimate								
		Expected	Coefficient		Coefficient	Expected	Coefficient								
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty								
(bbl)	(bbl)	(per bbl)	for Frequency	Bias	for Bias	(per bbl)	for Frequency								
1 - 10	3	3.0E-08	0.10	1.0E+00	0.00	3.0E-08	0.10								
10 - 100	32	7.8E-09	0.20	1.0E+00	0.00	7.8E-09	0.20								
100 - 1,000	320	1.3E-09	0.50	1.0E+00	0.00	1.3E-09	0.50								
1,000 - 10,000	3200	1.1E-11	1.41	3.3E-02	1.00	3.3E-10	1.00								
10,000 - 100,000	32000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00								
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00								
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00								

Expected Total (bbl)	1.5E+02
Std. Dev. in Total (bbl)	4.1E+01

Expected Max (bbl)	9.5E+01
Std. Dev. in Max (bbl)	3.2E+01

Reported incidents of oil spills from "platforms" in the Gulf of Mexico were taken from the MMS pipeline and platform spill database (provided by Cheryl Anderson of MMS) for the years 1980 to 1999. The data are summarized below. Use only data from 1990 to present to account for changes in operating procedures due to implementation of API RP14C.

Process equipment included in data: separators, flare line systems, heaters/treaters, sump systems, pumps, storage tanks, compressors, pig launchers, valves and piping.

Substances included in spill data: oil, condensate, fuel, glycol.

Incidents involving supply vessels and barges (e.g., transfer of fluids to/from a vessel) have been filtered out and are not included in this analysis. The USCG data base is considered to be a more comprehensive source of information about these incidents and activities (included in Supply Vessels worksheet).

Assume risk is proportional to the volume of production - total production data are available for GOM from 1985-1998.

Total GOM Production bbls in Data:	
Expected Value (bbl)	3.1E+09
Coefficient of Uncertainty	0
Standard Deviation (bbl)	0

				Statistically Estimated Frequency (no prior information)										
	Spill Size Range		Frequency		n"	Expected Value	Std. Dev.	Coefficient of						
_	(bbl)	Count	(per bbl)	k"	(bbl)	(/bbl)	(/bbl)	Uncertainty						
	1 - 10	90	2.9E-08	91	3.1E+09	3.0E-08	3.1E-09	0.105						
	10 - 100	23	7.5E-09	24	3.1E+09	7.8E-09	1.6E-09	0.204						
	100 - 1,000	3	9.8E-10	4	3.1E+09	1.3E-09	6.5E-10	0.500						
	1,000 - 10,000	0	0.0E+00	1	3.1E+09	3.3E-10	3.3E-10	1.000						
	10,000 - 100,000	0	0.0E+00											
	100,000 - 500,000	0	0.0E+00											
	500,000 - 1,000,000	0	0.0E+00											

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias for spills less than 1,000 bbl because estimated frequencies are for similar types of process systems. Reduce spill frequency for the 1,000 to 10,000 bbl category to 1.0x10⁻⁴ per year to account for the inventory spilled in a total structural failure.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the data for the 1,000 to 10,000 bbl category because there are no actual occurrences of this type of an event in the data record for any platforms including deepwater floating production systems.

Total Production (bbl)	1.86E+08
2.5% Transhipped Volume (bbl)	3.65E+07
Production from Subsea Wells (bbl)	8.89E+07
Production from Platform Wells (bbl)	6.09E+07
Exposure for Study System:	

	(Source: MMS - TIMS Database)																		
	Í		Í			1 - 10 bbl	l	1	10 - 100 bbl			0 - 1,000	bbl	1,000 - 10,000 bbl			10,000 - 100,000 bbl		
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Production (bbl)	Barrels Spilled per 1E6 bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)									
1980	27	1678			23	73	3.2	3	149	49.7				1	1456	1456.0			
1981	21	135			19	62	3.3	2	73	36.5									
1982	26	79			25	67	2.7	1	12	12.0									
1983	48	280			43	127	3.0	5	153	30.6									
1984	39	172			38	122	3.2	1	50	50.0									-
1985	34	141	351133870	0.40	32	100	3.1	2	41	20.5									-
1986	24	75	356398376	0.21	24	75	3.1												-
1987	19	84	328243087	0.26	17	49	2.9	2	35	17.5									
1988	12	103	301704812	0.34	10	33	3.3	2	70	35.0									
1989	12	355	281160011	1.26	10	44	4.4	1	11	11.0	1	300	300.0						-
1990	15	91	274955773	0.33	13	47	3.6	2	44	22.0									
1991	11	477	295129769	1.62	7	33	4.7	3	94	31.3	1	350	350.0						
1992	9	32	305282682	0.10	9	32	3.6												
1993	9	42	309229380	0.14	8	23	2.9	1	19	19.0									
1994	6	16	314743342	0.05	6	16	2.7												
1995	16	594	345525211	1.72	11	41	3.7	4	118	29.5	1	435	435.0						
1996	21	271	369309647	0.73	15	52	3.5	6	219	36.5									
1997	13	260	411795024	0.63	10	33	3.3	2	57	28.5	1	170	170.0						
1998	16	314	444466377	0.71	11	35	3.2	5	279	55.8									
1999	10	78			7	25	3.6	3	53	17.7									<u> </u>
TOTAL	388	5277	4.69E+09	6.09E-01	338	1089	3	45	1477	33	4	1255	314	1	1456	1456	0	0	0

Spills from Oil/Gas Process Activities in the GoM

Jacket - Pipelines

Exposure (mile-years)

2000

Input Information									
		Combined (Expert+I	Data) Estimate	Expert-Based E	xtrapolation Bias	Data-Base	d Estimate		
		Expected	Coefficient		Coefficient	Expected	Coefficient		
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty		
(bbl)	(bbl)	(per mile-year)	for Frequency	Bias	for Bias	(per mile-year)	for Frequency		
1 - 10	3	3.7E-04	0.52	1.0E+00	0.33	3.7E-04	0.40		
10 - 100	32	3.2E-04	0.53	1.0E+00	0.33	3.2E-04	0.41		
100 - 1,000	320	1.2E-04	0.64	1.0E+00	0.33	1.2E-04	0.55		
1,000 - 10,000	3200	1.2E-04	0.64	1.0E+00	0.33	1.2E-04	0.55		
10,000 - 100,000	21000	2.5E-05	1.13	1.0E+00	0.33	2.5E-05	1.08		
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00		
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00		

Expected Total (bbl)	1.9E+03
Std. Dev. in Total (bbl)	1.3E+03
Expected Max (bbl)	1.7E+03
Std Dev in Max (bbl)	1 2E±03

Reported incidents of oil pipeline leaks in the Gulf of Mexico were taken from the USCG spill database for the years 1992 to 1998. The data are summarized below.

Total Pipeline Miles in GOM federal and state waters estimated from MMS and Lousiana data making the following assumptions:

Federal Waters Sum: Include "unknown" mileage in all years

State Waters Sum: Start with 2,500 miles from Mariano Hinojosa (Louisiana) in 2000; Maintain constant State/Federal Percentage for Earlier Years

Percent Inactive: Assume 17 percent today, 0 percent in 1948 and increase it linearly with time

Total Active: Reduce both federal and state together with same percentage inactive

Total Active Liquid: Assume 30 percent of pipeline length is liquid versus gas (NRC Marine Board Study 1994)

Result - 44,715 mile-years from 1992 to 1998

As a check, Marine Board Study in 1994 reported 17,000 total miles with 30 % oil/condensate, giving 5,100 miles for 7 years or 35,700 mile-years.

Total Mile Years in Data:	
Expected Value	44715
Coefficient of Uncertainty	0.33
Standard Deviation	14756

			Statistically Estimated Frequency (no prior information)							
Spill Size Range		Frequency		n"	Expected Value	Std. Dev.				
(bbl)	Count	(per mile-yr)	k"	(mile-yr)	(per mile-yr)	(per mile-yr)	C.O.V.			
1 - 10	14	3.1E-04	15	44715	3.7E-04	1.5E-04	0.40			
10 - 100	12	2.7E-04	13	44715	3.2E-04	1.3E-04	0.41			
100 - 1,000	4	8.9E-05	5	44715	1.2E-04	6.8E-05	0.55			
1,000 - 10,000	4	8.9E-05	5	44715	1.2E-04	6.8E-05	0.55			
10,000 - 100,000	0	0.0E+00	1	44715	2.5E-05	2.7E-05	1.08			
100,000 - 500,000	0	0.0E+00								
500,000 - 1,000,000	0	0.0E+00								

Expert-Based Adjustment to Raw Data:

Assume no extrapolation bias because pipelines for study systems will be similar to pipelines in database, although they will be in deeper water on average.
Apply a coefficient of uncertainty of 0.33 in extrapolating the historical data since most of the pipelines in the historical database are in shallower water on average than the pipeline for the study system. The deepwater effect may lead to a reduction in the frequency of spills (fewer anchor drags and dropped objects), but the difference was not considered to be significant enough (an EQE 1998 study estimated the frequency of spills for deepwater segments of pipeline would be approximately 70-percent of that for shallow water pipeline segments) to be reflected in the expected bias.

- Limit maximum possible spill size to 100,000 bbl and use a triangular probability distribution (decreasing with increasing size) in the 10,000 to 100,000 bbl category because (1) hydrostatic pressures in deeper water and "P-traps" due to bottom contours limit the volume of inventory that can leak and (2) it is not credible that pumping from the jacket would continue for more than several hours after a leak occurs (6,200 bbl/hr production rate) due to detection systems and operational requirements. Therefore, the representative spill-size for the largest category (10,000 to 100,000 bbls) is obtained by assuming that the logarithm of the spill size has a triangular distribution (versus a uniform distribution) with the maximum likelihood at 10,000 bbls and the minimum likelihood at 100,000 bbls, giving a representative value of 21,000 bbls. (Note that this same approach is used for the largest spill-size category for FPSO shuttle tankers.)

Exposure for Study System (mile-years):

Mile Years (20 years)	2000
Total Length (miles)	100
to Terminal from Shore (miles)	20
to Shore from Hub (miles)	80

(Source: USCG - Marine Casuality and Pollution Database with input from MMS)														
1 - 10 bbl 10 - 100 bbl 100 - 1,000 bbl 1,000 - 10,000 bbl										bbl				
				Total			Total			Total			Total	
	Total	Total		Volume	Average									
	Number	Volume	Number of	Spilled	Spill Size	Number	Spilled	Spill Size	Number	Spilled	Spill Size	Number	Spilled	Spill Size
Year	of Spills	Spilled (bbl)	Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)
1992	10	3055	3	10	3.3	4	123	30.8	2	922	461.0	1	2000	2000.0
1993	2	5	2	5	2.5									
1994	2	4554				1	10	10.0				1	4544	4544.0
1995	5	32	3	8	2.7	2	24	12.0						
1996	2	28	1	2	2.0	1	26	26.0						
1997	5	223	2	9	4.5	2	51	25.5	1	163	163.0			
1998	8	10214	3	9	3.0	2	39	19.5	1	743	743.0	2	9423	4711.5
TOTAL	34	18111	14	43	3.1	12	273	22.8	4	1828	457.0	4	15967	3991.8

Spills from Pipelines in the GoM and its Waterways (Source: USCG - Marine Casuality and Pollution Database with input from MMS)

Jacket - Supply Vessels Exposure (docking calls) 12287

12201

Input Information								
		Combined (E Estin	xpert+Data) nate	Expert-Based E	Extrapolation Bias	s Data-Based Estimate		
		Expected	Coefficient	_	Coefficient	Expected	Coefficient	
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty	
(bbl)	(bbl)	(per call)	for Frequency	Bias	for Bias	(per call)	for Frequency	
1 - 10	3	2.2E-05	0.46	1.0E+00	0.33	2.2E-05	0.32	
10 - 100	32	1.2E-05	0.48	1.0E+00	0.33	1.2E-05	0.34	
100 - 1,000	320	1.0E-06	0.75	1.0E+00	0.33	1.0E-06	0.67	
1,000 - 10,000	3200	0.0E+00	0.00	0.0E+00	0.00	3.4E-07	1.08	
10,000 - 100,000	32000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00	
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00	
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00	

Expected Total (bbl)	9.7E+00
Std. Dev. in Total (bbl)	3.8E+00

Expected Max (bbl)	9.1E+00
Std. Dev. in Max (bbl)	3.5E+00

Risk of a spill from a supply vessel is assumed to be proportional to the number of docking or port calls (in field and at the terminal) because this is where most spills occur due to the number of operations (including offloading) and difficulties in navigation (traffic and shore).

The USCG database of spills from offshore supply vessels (OSVs) was used to estimate the frequency of different spill sizes. Data from the years 1985-1999 were used in this analysis.

The data base was searched for petroleum spills from supply vessels. Substances considered included crude, fuel, diesel, lubricating oil and drilling mud.

Incidents were included from the following locations to represent the "Gulf of Mexico": Gulf of Mexico, Sabine/Neches River, Corpus Christi Ship Channel and Harbor, Galveston Bay, Houston Ship Channel, Lower and Upper Mississippi River, and Intercoastal Waterway - Gulf.

The database includes incidents related to vessel transit and docking calls at platorms and ports. A rough picture of supply vessel activity in the GOM (based on discussions with Edison Chouest): 300 boats making an average of 2 dock calls per day = 300x2x365 = 219,000 docking calls per year.

Total Docking Calls in Data (15 yrs):	
Expected Value	3285000
Coefficient of Uncertainty	0.33
Standard Deviation	1084050

	Statistically Estimated Frequency (no prior information)							
Spill Size Range		Frequency			n"	Expected Value	Std. Dev.	
(bbl)	Count	(per call)	k"		(calls)	(/call)	(/call)	C.O.V.
1 - 10	65	2.0E-05		66	3285000	2.2E-05	7.2E-06	0.32
10 - 100	36	1.1E-05		37	3285000	1.2E-05	4.3E-06	0.34
100 - 1,000	2	6.1E-07		3	3285000	1.0E-06	6.8E-07	0.67
1,000 - 10,000	0	0.0E+00		1	3285000	3.4E-07	3.6E-07	1.08
10,000 - 100,000	0	0.0E+00						
100,000 - 500,000	0	0.0E+00						
500,000 - 1,000,000	0	0.0E+00						

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias.

- Apply a coefficient of uncertainty of 0.33 in extrapolating the historical data because supply vessels for these systems will be larger and more modern (dynamically-positioned) than the typical vessels that comprise the historical data.

- Limit maximum possible spill size to 1,000 bbl to be consistent with cargo capacity for typical supply vessels (less than 1,000 bbl).

Exposure for Study System:	
1 trip per 3 days during production	0.333333333
Days of Production (20 years)	7300
Trips	2433.333333
1 trip per 3 days during drilling/workover	0.333333333
6 Platform Wells (20 years)	
Drilling & Completion (5*90 + 6*20 days)	570
Slickline (3 per well-year @ 5 days)	1800
Coiled Tubing (3/4 per well-yr @ 20 days)	1800
Hydraulic (3/4 per well-yr @ 20 days)	1800
Change out (1/3 per well-yr @ 50 days)	2000
Recompletion (1/5 per well-yr @ 50 days)	1200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520
Trips	3230
3 Subsea Wells (12 years)	
Drilling & Completion (3*90 + 90 days)	360
Coiled Tubing (1/4 per well-yr @ 20 days)	180
Hydraulic (1/5 per well-yr @ 20 days)	144
Change out (1/8 per well-yr @ 50 days)	225
Recompletion (1/10 per well-yr @ 50 days)	180
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156
Replace Wellhead (1/12 per well-yr @ 65 days)	195
Trips	480

Docking calls (trips*2)

12287

	Spills from OSV Activities in the GoM and its Waterways (Source: USCG - Marine Casuality and Pollution Database)																
	1 - 10 bbl 10 - 100 bbl 100 - 1 000 bbl 1000 - 10 000 bbl 10 000 - 100 000 bbl																
Voor	Total Number	Total Volume Spilled	Number	Total Volume Spilled	Average Spill Size												
1985	0	0	0	0	0.0	0	0	0.0	0	0	0.0	0	0		0	0	0.0
1986	7	34	6	17	2.8	1	17	17.0	0	0	0.0	0	0	0.0	0	0	0.0
1987	4	42	3	6	2.0	1	36	36.0	0	0	0.0	0	0	0.0	0	0	0.0
1988	3	40	2	10	5.0	1	30	30.0	0	0	0.0	0	0	0.0	0	0	0.0
1989	5	30	4	9	2.3	1	21	21.0	0	0	0.0	0	0	0.0	0	0	0.0
1990	10	78	7	24	3.4	3	54	18.0	0	0	0.0	0	0	0.0	0	0	0.0
1991	11	78	9	37	4.1	2	41	20.5	0	0	0.0	0	0	0.0	0	0	0.0
1992	3	39	2	7	3.5	1	32	32.0	0	0	0.0	0	0	0.0	0	0	0.0
1993	8	191	3	9	3.0	5	182	36.4	0	0	0.0	0	0	0.0	0	0	0.0
1994	10	21	10	21	2.1	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0
1995	10	534	3	9	3.0	6	211	35.2	1	314	314.0	0	0	0.0	0	0	0.0
1996	9	161	5	18	3.6	4	143	35.8	0	0	0.0	0	0	0.0	0	0	0.0
1997	10	103	6	26	4.3	4	77	19.3	0	0	0.0	0	0	0.0	0	0	0.0
1998	9	257	4	11	2.8	4	116	29.0	1	130	130.0	0	0	0.0	0	0	0.0
1999	4	193	1	3	3.0	3	190	63.3	0	0	0.0	0	0	0.0	0	0	0.0
TOTAL	103	1801	65	207	3	36	1150	32	2	444	222	0	0	0	0	0	0

Jacket - Drilling and InterventionExposure (man-days)246912

Input Information										
Combined (Expert+Data) Estimate Expert-Based Extrapolation Bias Data-Based Estimate										
		Expected	Coefficient		Coefficient	Expected	Coefficient			
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty			
(bbl)	(bbl)	(per man-day)	for Frequency	Bias	for Bias	(per man-day)	for Frequency			
1 - 10	3	4.4E-06	0.46	1.0E+00	0.33	4.4E-06	0.31			
10 - 100	32	7.7E-07	0.51	1.0E+00	0.33	7.7E-07	0.39			
100 - 1,000	320	3.0E-07	0.59	1.0E+00	0.33	3.0E-07	0.49			
1,000 - 10,000	3200	4.3E-08	1.13	1.0E+00	0.33	4.3E-08	1.08			
10,000 - 100,000	32000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00			
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00			
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00			

Expected Total (bbl)	6.7E+01
Std. Dev. in Total (bbl)	4.1E+01

Expected Max (bbl)	6.3E+01
Std. Dev. in Max (bbl)	4.0E+01

F.136 – Oil Spill Risk Assessment for Hub/Host Jacket

Risk of a spill from drilling and well intervention is assumed to be proportional to the number of man-days of operations. This approach means that operations that require a larger crew will have a greater risk of oil spill because more activities and difficulties are involved. It is also used here because information about man-days of drill crew operations in the GOM is available from IADC, an average of 1.3 million man-days per year in the 1990's. One concern is that the IADC information includes activities in state waters while the MMS data may only include OCS waters, therefore the denominator may be overestimated slightly.

The MMS platform data base (1980-1999) was used to identify drilling activity-related incidents. These incidents include exploratory drilling, development drilling and well workovers and completions. Substances reported in the data base include crude, fuel, diesel, drilling fluids and drilling mud. Rig types include both platform and MODU rigs.

Total man-days in Data (20 yrs):	
Expected Value	2600000
Coefficient of Uncertainty	0.33
Standard Deviation	8580000

			St	atistically Estimate	ed Frequency (no p	rior information)	
Spill Size Range		Frequency		n"	Expected Value	Std. Dev.	
 (bbl)	Count	(per man-day)	k"	(man-day)	(per man-day)	(per man-day)	C.O.V.
1 - 10	103	4.0E-06	104	26000000	4.4E-06	1.4E-06	0.31
10 - 100	17	6.5E-07	18	26000000	7.7E-07	3.0E-07	0.39
100 - 1,000	6	2.3E-07	7	26000000	3.0E-07	1.5E-07	0.49
1,000 - 10,000	0	0.0E+00	1	26000000	4.3E-08	4.6E-08	1.08
10,000 - 100,000	0	0.0E+00					
100,000 - 500,000	0	0.0E+00					
500,000 - 1,000,000	0	0.0E+00					

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias.

- Apply a coefficient of uncertainty of 0.33 in extrapolating the historical data because there are relatively few historical data available for deep-water drilling in the Gulf of Mexico (compared to shallow-water drilling).

- Although they have not occurred in the data record, the possibility for spills larger than 10,000 bbl was evaluated. The estimated frequency was considered to be negligibly small because the reservoir characteristics will be relatively well known since significant exploration and development drilling will have taken place before the production life begins.

Exposure for Study System:

6 Platform Wells (20 years)	days	crew	man-days
Drilling & Completion (5*90 + 6*20 days)	570	40	22800
Slickline (3 per well-year @ 5 days)	1800	4	7200
Coiled Tubing (3/4 per well-yr @ 20 days)	1800	8	14400
Hydraulic (3/4 per well-yr @ 20 days)	1800	8	14400
Change out (1/3 per well-yr @ 50 days)	2000	40	80000
Recompletion (1/5 per well-yr @ 50 days)	1200	40	48000
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520	40	20800
3 Subsea Wells (12 years)			
Drilling & Completion (3*90 + 90 days)	360	40	14400
Coiled Tubing (1/4 per well-yr @ 20 days)	180	4	720
Hydraulic (1/5 per well-yr @ 20 days)	144	8	1152
Change out (1/8 per well-yr @ 50 days)	225	8	1800
Recompletion (1/10 per well-yr @ 50 days)	180	40	7200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156	40	6240
Replace Wellhead (1/12 per well-yr @ 65 days)	195	40	7800
	т	otal (man-days):	246912

				Spills	s from Drillii	ng Activitie	es in the G	oM					
				(Source: MM	S - TIMS I	Database)						
-			1			<= 10 bbl		> 10 b	bl & <= 1	l00 bbl	10	0 - 1,000	bbl
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Production	Barrels Spilled per 1E6 bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1980	8	353			6	17	2.8	1	50	50.0	1	286	286.0
1981	4	253			1	4	4.0	2	39	19.5	1	210	210.0
1982	13	50			13	50	3.8						
1983	14	77			13	52	4.0	1	25	25.0			
1984	2	6			2	6	3.0						
1985	13	98	351133870	0.28	12	48	4.0	1	50	50.0			
1986	7	31	356398376	0.09	7	31	4.4						
1987	10	106	328243087	0.32	7	18	2.6	3	88	29.3			
1988	0	0	301704812	0.00									
1989	7	184	281160011	0.65	4	11	2.8	2	56	28.0	1	117	117.0
1990	4	127	274955773	0.46	3	17	5.7				1	110	110.0
1991	4	14	295129769	0.05	4	14	3.5						
1992	2	102	305282682	0.33	1	2	2.0	1	100	100.0			
1993	1	3	309229380	0.01	1	3	3.0						
1994	1	3	314743342	0.01	1	3	3.0						
1995	4	8	345525211	0.02	4	8	2.0						
1996	4	19	369309647	0.05	3	7	2.3	1	12	12.0			
1997	2	3	411795024	0.01	2	3	1.5						
1998	5	32	444466377	0.07	4	11	2.8	1	21	21.0			
1999	2	7			2	7	3.5						
TOTAL	107	1476	4.69E+09	1.56E-01	90	312	3	13	441	34	4	723	181

				Spills from (Completion/V	Vorkover A	Activities i	n the GoN	1				
				(Source: MM	S - TIMS I	Database)						
	;		;		<	<= 10 bbl		> 10 b	bl & <= 1	l00 bbl		>100 bbl	
Year	Total Number of Spills	Total Volume Spilled	Total Production	Barrels Spilled per 1E6 bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1980	0	0											
1981	3	68			2	4	2.0	1	64	64.0			
1982	1	3			1	3	3.0						
1983	1	2			1	2	2.0						
1984	0	0											
1985	1	5	351133870	0.01	1	5	5.0						
1986	0	0	356398376	0.00									
1987	1	3	328243087	0.01	1	3	3.0						
1988	0	0	301704812	0.00									
1989	1	6	281160011	0.02	1	6	6.0						
1990	1	8	274955773	0.03	1	8	8.0						
1991	0	0	295129769	0.00									
1992	0	0	305282682	0.00									
1993	0	0	309229380	0.00									
1994	3	172	314743342	0.55	1	6	6.0	1	25	25.0	1	141	141.0
1995	1	4	345525211	0.01	1	4	4.0						
1996	1	5	369309647	0.01	1	5	5.0						
1997	2	3	411795024	0.01	2	3	1.5						
1998	3	276	444466377	0.62				2	106	53.0	1	170	170.0
1999	0	0											
TOTAL	19	555	4.69E+09	1.03E-01	13	49	4	4	195	49	2	311	156

Appendix F.4

Oil Spill Risk Assessment for FPSO

FPSO – Risk Summary	F.142
FPSO – Frequency Summary	F.144
FPSO – Well Systems (Subsea)	F.148
FPSO – Flowlines	F.152
FPSO – Import Flowline Risers	F.156
FPSO – Topsides	F.159
FPSO – Shuttle Tanker	F.163
FPSO – FPSO Cargo Tank	F.174
FPSO – Supply Vessels	F.177
FPSO – Drilling and Intervention	F.182
· · · · · · · · · · · · · · · · · · ·	

FPSO - Risk Summary

Overall System Risk Results for 20-year Life:

Expected Total (bbl)	4.2E+03
Std. Dev. in Total (bbl)	2.2E+03

Expected Max (bbl)	3.4E+03
Std. Dev. in Max (bbl)	2.1E+03

	Sub-system Risk Results for 20-year Life			
	Expected Total	Std. Dev. in Total	Expected Maximum	Std Dev. in Maximum
	(bbl)	(bbl)	(bbl)	(bbl)
Well Systems - Subsea	205	218	135	133
Flowlines	279	284	266	263
Import Flowline Risers	236	241	226	226
Topsides	486	165	207	59
Shuttle Tanker	2692	2145	2593	2113
FPSO Cargo	275	238	275	238
Supply Vessels	7	2	6	2
Drilling and Intervention	37	23	36	22

F.143 – Oil Spill Risk Assessment for FPSO
FPSO - Frequency Summary

Summary Information for Frequencies

	Total System Frequency								
Spill Size Range (bbl)	Expected Value (per year)	Coefficient of Uncertainty	k for Gamma Distribution	n for Gamma Distribution	Lower 90% (per year)	Upper 90% (per year)			
1 - 10	4.2E-01	4.4E-01	5.1E+00	1.2E+01	1.7E-01	7.7E-01			
10 - 100	4.1E-01	3.3E-01	9.0E+00	2.2E+01	2.2E-01	6.6E-01			
100 - 1,000	1.0E-01	4.3E-01	5.4E+00	5.3E+01	4.2E-02	1.8E-01			
1,000 - 10,000	1.3E-02	6.5E-01	2.3E+00	1.8E+02	2.8E-03	2.9E-02			
10,000 - 100,000	8.3E-04	1.0E+00	9.2E-01	1.1E+03	3.4E-05	2.6E-03			
100,000 - 500,000	5.1E-04	1.2E+00	7.3E-01	1.4E+03	1.0E-05	1.7E-03			
500,000 - 1,000,000	1.0E-05	1.4E+00	5.0E-01	5.0E+04	3.9E-08	3.8E-05			

	Expected Frequency by Sub-system (per year)									
Spill Size Range (bbl)	Well Systems - Subsea	Flowlines	Import Flowline Risers	Topsides	Shuttle Tanker	FPSO Cargo	Supply Vessels	Drilling and Intervention		
1 - 10	1.6E-01	1.2E-02	1.1E-02	1.1E-01	8.6E-02	0.0E+00	9.5E-03	3.1E-02		
10 - 100	7.0E-02	1.0E-02	9.7E-03	2.8E-01	3.2E-02	0.0E+00	5.3E-03	5.3E-03		
100 - 1,000	2.3E-02	3.9E-03	3.2E-03	4.7E-02	2.2E-02	0.0E+00	4.3E-04	2.1E-03		
1,000 - 10,000	0.0E+00	3.9E-03	3.2E-03	0.0E+00	5.4E-03	9.0E-05	0.0E+00	2.9E-04		
10,000 - 100,000	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.4E-04	9.0E-05	0.0E+00	0.0E+00		
100,000 - 500,000	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.0E-04	1.0E-05	0.0E+00	0.0E+00		
500,000 - 1,000,000	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.0E-05	0.0E+00	0.0E+00		

	Production System Frequency								
Spill Size Range (bbl)	Expected Value (per year)	Coefficient of Uncertainty	k for Gamma Distribution	n for Gamma Distribution	Lower 90% (per year)	Upper 90% (per year)			
1 - 10	3.3E-01	5.4E-01	3.4E+00	1.0E+01	1.0E-01	6.7E-01			
10 - 100	3.8E-01	3.6E-01	7.8E+00	2.0E+01	1.9E-01	6.3E-01			
100 - 1,000	8.0E-02	5.1E-01	3.8E+00	4.8E+01	2.6E-02	1.6E-01			
1,000 - 10,000	7.4E-03	7.8E-01	1.6E+00	2.2E+02	9.9E-04	1.9E-02			
10,000 - 100,000									
100,000 - 500,000									
500,000 - 1,000,000									

Summary Information for FPSO Production Frequencies

Summary Information for FPSO Transportation Frequencies

	Transportation System Frequency								
Spill Size Range (bbl)	Expected Value (per year)	Coefficient of Uncertainty	k for Gamma Distribution	n for Gamma Distribution	Lower 90% (per year)	Upper 90% (per year)			
1 - 10	8.6E-02	5.1E-01	3.8E+00	4.4E+01	2.8E-02	1.7E-01			
10 - 100	3.2E-02	6.1E-01	2.7E+00	8.2E+01	7.9E-03	7.1E-02			
100 - 1,000	2.2E-02	6.8E-01	2.1E+00	9.9E+01	4.2E-03	5.0E-02			
1,000 - 10,000	5.5E-03	1.1E+00	8.1E-01	1.5E+02	1.6E-04	1.8E-02			
10,000 - 100,000	8.3E-04	1.0E+00	9.2E-01	1.1E+03	3.4E-05	2.6E-03			
100,000 - 500,000	5.1E-04	1.2E+00	7.3E-01	1.4E+03	1.0E-05	1.7E-03			
500,000 - 1,000,000	1.0E-05	1.4E+00	5.0E-01	5.0E+04	3.9E-08	3.8E-05			

FPSO - Contribution to Total Frequency for Different Spill Sizes

FPSO - Contribution to Total Frequency for Different Spill Sizes

FPSO - Well Systems (Subsea) Exposure (bbl produced)

7.19E+08

Input Information								
		Combined (Exper	t+Data) Estimate	Expert-Based Ext	rapolation Bias	Data-Base	d Estimate	
		Expected	Coefficient		Coefficient	Expected	Coefficient	
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty	
(bbl)	(bbl)	(per bbl)	for Frequency	Bias	for Bias	(per bbl)	for Frequency	
1 - 10	3	4.6E-09	1.07	2.0E+00	1.00	2.3E-09	0.38	
10 - 100	32	2.0E-09	1.15	2.0E+00	1.00	9.8E-10	0.58	
100 - 1,000	320	6.5E-10	1.41	2.0E+00	1.00	3.3E-10	1.00	
1,000 - 10,000	3200	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00	
10,000 - 100,000	32000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00	
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00	
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00	

Expected Total (bbl)	2.0E+02
Std. Dev. in Total (bbl)	2.2E+02
Expected Max (bbl)	1.4E+02
Std. Dev. in Max (bbl)	1.3E+02

F.149 – Oil Spill Risk Assessment for FPSO

Reported incidents of oil spills from "well and header systems" in the Gulf of Mexico were taken from the MMS pipeline and platform spill database (provided by Cheryl Anderson of MMS) for the years 1980 to 1999. The data are summarized below. Use only data from 1990 to present to account for changes in operating procedures due to implementation of API RP14C.

Equipment includes subsurface safety valves, wellhead assemblies, chokes, jumpers and injection lines, pressure sensors, surface safety valves, header valves and check valves.

Assume risk is proportional to the volume of production - total production data are available for GOM from 1985-1998.

Total Production bbls in GOM Data:	
Expected Value (bbl)	3.1E+09
Coefficient of Uncertainty	0
Standard Deviation (bbl)	0

Spill Size Range		Frequency			n"	Expected Value	Std. Dev.	Coefficient of
(bbl)	Count	(per bbl)	k"		(bbl)	(/bbl)	(/bbl)	Uncertainty
1 - 10	6	2.0E-09		7	3.1E+09	2.3E-09	8.6E-10	0.377964473
10 - 100	2	6.5E-10		3	3.1E+09	9.8E-10	5.6E-10	0.577350269
100 - 1,000	0	0.0E+00		1	3.1E+09	3.3E-10	3.3E-10	1
1,000 - 10,000	0	0.0E+00						
10,000 - 100,000	0	0.0E+00						
100,000 - 500,000	0	0.0E+00						
500,000 - 1,000,000	0	0.0E+00						

Statistically Estimated Frequency (no prior information)

Expert-Based Adjustment to Raw Data:

- Double expected frequency for leaks to account for greater potential for sand erosion and cutouts due to high flow rates and detection difficulties for sand.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the historical data since wells in database are mostly platform wells and not subsea wells.

Exposure for Study System: Subsea Well Production (bbl) 7.19E+08

	Spills from Well and Header Systems in the GoM (Source: MMS - TIMS Database)												
	1 - 10 bbl 10 - 100 bbl 100 - 1,000 bbl									bl			
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Production (bbl)	Barrels Spilled per 1E6 Bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1980	2	7			2	7	3.4						ļ
1981	3	12			3	12	4.0						
1982	5	14			5	14	2.7						
1983	2	31						2	31	15.5			
1984	1	3			1	3	3.0						ļ
1985	2	43	351133870	0.12	1	3	3.0	1	40	40.0			ļ
1986	2	5	356398376	0.01	2	5	2.5						ļ
1987	3	6	328243087	0.02	3	6	2.0						
1988	5	73	301704812	0.24	4	18	4.5	1	55	55.0			
1989	2	18	281160011	0.06	1	6	6.0	1	12	12.0			
1990	0	0	274955773	0.00									ļ
1991	0	0	295129769	0.00									ļ
1992	3	74	305282682	0.24	1	8	8.0	2	66	33.0			ļ
1993	0	0	309229380	0.00									
1994	2	6	314743342	0.02	2	6	3.0						
1995	1	1	345525211	0.00	1	1	1.0						ļ
1996	2	3	369309647	0.01	2	3	1.5						ļ
1997	0	0	411795024	0.00									
1998	0	0	444466377	0.00									
1999	0	0					ļ			ļ			
TOTAL	35	295	4.69E+09	4.88E-02	28	91	3	7	204	29	0	0	0

FPSO - Flowlines							
Exposure (mile-years)	624						
Input Information	_						
		Combined (Exper	t+Data) Estimate	Expert-Based Ext	rapolation Bias	Data-Based	Estimate
		Expected	Coefficient		Coefficient	Expected	Coefficient
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty
(bbl)	(bbl)	(per mile-year)	for Frequency	Bias	for Bias	(per mile-year)	for Frequency
1 - 10	3	3.7E-04	1.08	1.0E+00	1.00	3.7E-04	4.0E-01
10 - 100	32	3.2E-04	1.08	1.0E+00	1.00	3.2E-04	4.1E-01
100 - 1,000	320	1.2E-04	1.14	1.0E+00	1.00	1.2E-04	5.5E-01
1,000 - 10,000	3200	1.2E-04	1.14	1.0E+00	1.00	1.2E-04	5.5E-01
10,000 - 100,000	32000	0.0E+00	0.00	0.0E+00	0.00	2.5E-05	1.1E+00
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.0E+00
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.0E+00

Expected Total (bbl)	2.8E+02
Std. Dev. in Total (bbl)	2.8E+02
Expected Max (bbl)	2.7E+02
Std. Dev. in Max (bbl)	2.6E+02

F.153 – Oil Spill Risk Assessment for FPSO

Reported incidents of oil pipeline leaks in the Gulf of Mexico were taken from the USCG spill database for the years 1992 to 1998. The data are summarized below:

Total Pipeline Miles in GOM federal and state waters estimated from MMS and Lousiana data making the following assumptions:

Federal Waters Sum: Include "unknown" mileage in all years

State Waters Sum: Start with 2,500 miles from Mariano Hinojosa (Louisiana) in 2000; Maintain constant State/Federal Percentage for Earlier Years

Percent Inactive: Assume 17 percent today, 0 percent in 1948 and increase it linearly with time

Total Active: Reduce both federal and state together with same percentage inactive

Total Active Liquid: Assume 30 percent of pipeline length is liquid versus gas (NRC Marine Board Study 1994)

Result - 44,715 mile-years from 1992 to 1998

As a check, Marine Board Study in 1994 reported 17,000 total miles with 30 % oil/condensate, giving 5,100 miles for 7 years or 35,700 mile-years.

Total Mile Years in Data:

Expected Value	44715
Coefficient of Uncertainty	0.33
Standard Deviation	14756

Spill Size Range (bbl)	Count	Frequency (per mile-yr)	k"	n" (mile-yr)	Expected Value (per mile-yr)	Std. Dev. (per mile-yr)	C.O.V.
1 - 10	14	3.1E-04	15	44715	3.7E-04	1.5E-04	0.40
10 - 100	12	2.7E-04	13	44715	3.2E-04	1.3E-04	0.41
100 - 1,000	4	8.9E-05	5	44715	1.2E-04	6.8E-05	0.55
1,000 - 10,000	4	8.9E-05	5	44715	1.2E-04	6.8E-05	0.55
10,000 - 100,000	0	0.0E+00	1	44715	2.5E-05	2.7E-05	1.08
100,000 - 500,000	0	0.0E+00					
500,000 - 1,000,000	0	0.0E+00					

Statistically Estimated Frequency (no prior information)

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because flowliness for study systems will be similar to pipelines in database, although they will be in deeper water than average pipelines in database.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the historical data since most of the pipelines in the historical database are in shallower water than the flowlines for the study system. The deepwater effect may lead to a reduction in the frequency of spills (fewer anchor drags and dropped objects), but the difference was not considered to be significant enough (an EQE 1998 study estimated the frequency of spills for deepwater segments of pipeline would be approximately 70-percent of that for shallow water pipeline segments) to be reflected in the expected bias.

- Limit maximum possible spill size per incident to 10,000 bbl because (1) flowline inventory is small (< 10,000 bbl total in parallel lines) and (2) safety systems should shut production in within 45 minutes of a leak occurring (5 hours at 2,000 bbl/hr total in both lines gives 10,000 bbl).

Study System Exposure:

Length per Line (miles)	6
Number of Initial Lines	4
Service Life (yrs)	20
Number of Added Lines	2
Service Life (yrs)	12
Exposure (mile-years)	624

	(Source, USCO - Marine Casuality and Fonduon Database with input from Wivis)													
				1 - 10 bbl			10 - 100 bb	1	1	100 - 1,000 bbl		1,0	1,000 - 10,000 bbl	
		Total		Total			Total			Total			Total	
	Total	Volume		Volume	Average		Volume	Average		Volume	Average		Volume	Average
	Number	Spilled	Number	Spilled	Spill Size	Number	Spilled	Spill Size	Number	Spilled	Spill Size	Number	Spilled	Spill Size
Year	of Spills	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)	of Spills	(bbl)	(bbl)
1992	10	3055	3	10	3.3	4	123	30.8	2	922	461.0	1	2000	2000.0
1993	2	5	2	5	2.5									
1994	2	4554				1	10	10.0				1	4544	4544.0
1995	5	32	3	8	2.7	2	24	12.0						
1996	2	28	1	2	2.0	1	26	26.0						
1997	5	223	2	9	4.5	2	51	25.5	1	163	163.0			
1998	8	10214	3	9	3.0	2	39	19.5	1	743	743.0	2	9423	4711.5
TOTAL	34	18111	14	43	3.1	12	273	22.8	4	1828	457.0	4	15967	3991.8

Spills from Pipelines in the GoM and its Waterways (Source: USCG - Marine Casuality and Pollution Database with input from MMS)

FPSO - Import Flowline Risers Exposure (riser-years)

104

2.3E+02

Input Information									
		Combined (Exper	ombined (Expert+Data) Estimate Expert-Based Extrapolation Bias Data-Based Estimate						
		Expected	Coefficient		Coefficient	Expected	Coefficient		
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty		
(bbl)	(bbl)	(per riser-year)	for Frequency	Bias	for Bias	(per riser-year)	for Frequency		
1 - 10	3	2.2E-03	1.15	1.0E+00	1.00	2.2E-03	0.58		
10 - 100	32	1.9E-03	1.15	1.0E+00	1.00	1.9E-03	0.58		
100 - 1,000	320	6.2E-04	1.15	1.0E+00	1.00	6.2E-04	0.58		
1,000 - 10,000	3200	6.2E-04	1.15	1.0E+00	1.00	6.2E-04	0.58		
10,000 - 30,000	32000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00		
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00		
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00		

Results for 20-year Life:

Std. Dev. in Max (bbl)

Expected Total (bbl)	2.4E+02
Std. Dev. in Total (bbl)	2.4E+02
Expected Max (bbl)	2.3E+02

Use Parloc 93 information for leak frequency from risers, normalized by riser-years: 2 leaks in 565 riser-years for risers with a diameter greater than 8 inches.

Statistical Analysis:

Exposure (riser-years)	565
Leaks	2
k"	3
n" (riser-years)	565
Expected Rate (per riser-year)	5.31E-03
Coefficient of Uncertainty in Rate	0.577

Distribute spill sizes from risers using the flowline spill-size distribution (see Flowline worksheet for details).

	Expected		Expected	
	Flowline		Riser	Coefficient of
Spill Size Range	Frequency	Flowline Leak	Frequency	Uncertainty in
(bbl)	(per mile-year)	Distribution	(per riser year)	Frequency
1 - 10	3.13E-04	41%	2.19E-03	0.58
10 - 100	2.68E-04	35%	1.87E-03	0.58
100 - 1,000	8.95E-05	12%	6.25E-04	0.58
1,000 - 10,000	8.95E-05	12%	6.25E-04	0.58
10,000 - 100,000	0.00E+00	0%	0.00E+00	0.00
100,000 - 500,000	0.00E+00	0%	0.00E+00	0.00
500,000 - 1,000,000	0.00E+00	0%	0.00E+00	0.00

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias because import risers will be in deeper water (which may increase the frequency) but more modern (which may decrease the frequency) than the risers in the database.

- Apply a coefficient of uncertainty of 1.0 in extrapolating the historical data since the risers in the historical database are not very representative of import risers on floating production systems in deepwater.

- Limit maximum possible spill size per incident to 10,000 bbl because (1) flowline inventory is small (< 10,000 bbl total in parallel lines) and (2) safety systems should shut production in within 45 minutes of a leak occurring (5 hours at 2,000 bbl/hr total in both lines gives 10,000 bbl).

Study System Import Risers:	
4 Initial Flowlines	4
Years of Service	20
2 Added Flowlines	2
Years of Service	12
Total Riser-Years:	104

FPSO - Topsides

Exposure (bbl produced) 7.19E+08

Input Information								
		Combined (Expe	rt+Data) Estimate	Expert-Based Ext	rapolation Bias	Data-Base	d Estimate	
		Expected	Coefficient		Coefficient	Expected	Coefficient	
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty	
(bbl)	(bbl)	(per bbl)	for Frequency	Bias	for Bias	(per bbl)	for Frequency	
1 - 10	3	3.0E-09	0.35	1.0E-01	0.33	3.0E-08	0.10	
10 - 100	32	7.8E-09	0.39	1.0E+00	0.33	7.8E-09	0.20	
100 - 1,000	320	1.3E-09	0.50	1.0E+00	0.00	1.3E-09	0.50	
1,000 - 10,000	3200	0.0E+00	0.00	0.0E+00	0.00	3.3E-10	1.00	
10,000 - 100,000	32000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00	
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00	
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00	

Expected Total (bbl)	4.9E+02
Std. Dev. in Total (bbl)	1.7E+02
Expected Max (bbl)	2.1E+02
Std. Dev. in Max (bbl)	5.9E+01

F.160 – Oil Spill Risk Assessment for FPSO

Reported incidents of oil spills from "platforms" in the Gulf of Mexico were taken from the MMS pipeline and platform spill database (provided by Cheryl Anderson of MMS) for the years 1980 to 1999. The data are summarized below. Use only data from 1990 to present to account for changes in operating procedures due to implementation of API RP14C.

Process equipment included in data: separators, flare line systems, heaters/treaters, sump systems, pumps, storage tanks, compressors, pig launchers, valves and piping.

Substances included in spill data: oil, condensate, fuel, glycol.

Incidents involving supply vessels and barges (e.g., transfer of fluids to/from a vessel) have been filtered out and are not included in this analysis. The USCG data base is considered to be a more comprehensive source of information about these incidents and activities (included in Supply Vessels worksheet).

Assume risk is proportional to the volume of production - total production data are available for GOM from 1985-1998.

Total GOM Production bbls in Data:	
Expected Value (bbl)	3.1E+09
Coefficient of Uncertainty	0
Standard Deviation (bbl)	0

			Statistically Estimated Frequency (no prior information)					
Spill Size Range		Frequency		n"	Expected Value	Std. Dev.	Coefficient of	
(bbl)	Count	(per bbl)	k"	(bbl)	(/bbl)	(/bbl)	Uncertainty	
1 - 10	90	2.9E-08	91	3.1E+09	3.0E-08	3.1E-09	0.105	
10 - 100	23	7.5E-09	24	3.1E+09	7.8E-09	1.6E-09	0.204	
100 - 1,000	3	9.8E-10	4	3.1E+09	1.3E-09	6.5E-10	0.500	
1,000 - 10,000	0	0.0E+00	1	3.1E+09	3.3E-10	3.3E-10	1.000	
10,000 - 100,000	0	0.0E+00						
100,000 - 500,000	0	0.0E+00						
500,000 - 1,000,000	0	0.0E+00						

Expert-Based Adjustment to Raw Data:

- Reduce spill frequency for the 1 to 10 bbl category by ten due to (1) capability to contain spills on deck due to the solid decking and combing and (2) location of fuel tanks in hull. Assume no extrapolation bias for spills between 10 and 1,000 bbl because estimated frequencies are for similar types of process systems. Limit maximum possible spill size per incident to 1,000 bbl because there is limited inventory of product and other fluids in the topsides that can be spilled at any one time.

- Apply a coefficient of uncertainty of 0.33 in extrapolating the data for the spill sizes less than 100 bbl because there are no data from FPSO process systems in the historical database.

Exposure for Study System:

Total Production (bbl)	7.19E+08
Production from Subsea Wells (bbl)	7.19E+08
Production from Platform Wells (bbl)	0.00E+00

	(Source: MMS - TIMS Database)																		
	í		í			1 - 10 bb	1	1	0 - 100 b	bl	10	0 - 1,000	bbl	1,00	0 - 10,000	0 bbl	10,00	0 - 100,0	00 bbl
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Production (bbl)	Barrels Spilled per 1E6 bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)									
1980	27	1678			23	73	3.2	3	149	49.7				1	1456	1456.0			
1981	21	135			19	62	3.3	2	73	36.5									<u> </u>
1982	26	79			25	67	2.7	1	12	12.0									
1983	48	280			43	127	3.0	5	153	30.6									-
1984	39	172			38	122	3.2	1	50	50.0									
1985	34	141	351133870	0.40	32	100	3.1	2	41	20.5									-
1986	24	75	356398376	0.21	24	75	3.1												-
1987	19	84	328243087	0.26	17	49	2.9	2	35	17.5									
1988	12	103	301704812	0.34	10	33	3.3	2	70	35.0									
1989	12	355	281160011	1.26	10	44	4.4	1	11	11.0	1	300	300.0						-
1990	15	91	274955773	0.33	13	47	3.6	2	44	22.0									
1991	11	477	295129769	1.62	7	33	4.7	3	94	31.3	1	350	350.0						-
1992	9	32	305282682	0.10	9	32	3.6												
1993	9	42	309229380	0.14	8	23	2.9	1	19	19.0									
1994	6	16	314743342	0.05	6	16	2.7												-
1995	16	594	345525211	1.72	11	41	3.7	4	118	29.5	1	435	435.0						
1996	21	271	369309647	0.73	15	52	3.5	6	219	36.5									<u> </u>
1997	13	260	411795024	0.63	10	33	3.3	2	57	28.5	1	170	170.0			ļ			
1998	16	314	444466377	0.71	11	35	3.2	5	279	55.8						ļ			
1999	10	78			7	25	3.6	3	53	17.7									<u> </u>
TOTAL	388	5277	4.69E+09	6.09E-01	338	1089	3	45	1477	33	4	1255	314	1	1456	1456	0	0	0

Spills from Oil/Gas Process Activities in the GoM

FPSO - Shuttle Tanker

Exposure (port calls) 3196

			Input Informati	ion							
 Combined (Expert+Data) Estimate Expert-Based Extrapolation Bias Data-Based Estimate											
		Expected	Coefficient		Coefficient	Expected	Coefficient				
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty				
(bbl)	(bbl)	(per call)	for Frequency	Bias	for Bias	(per call)	for Frequency				
1 - 10	3	5.4E-04	0.51	1.0E+00	0.33	5.4E-04	0.39				
10 - 100	32	2.0E-04	0.61	1.0E+00	0.33	2.0E-04	0.52				
100 - 1,000	320	1.4E-04	0.68	1.0E+00	0.33	1.4E-04	0.60				
1,000 - 10,000	3200	3.4E-05	1.13	1.0E+00	0.33	3.4E-05	1.08				
10,000 - 100,000	32000	4.7E-06	1.16	1.0E+00	0.33	4.7E-06	1.11				
100,000 - 500,000	171000	3.1E-06	1.19	1.0E+00	0.33	3.1E-06	1.15				
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00				

Expected Total (bbl)	2.7E+03
Std. Dev. in Total (bbl)	2.1E+03

Expected Max (bbl)	2.6E+03
Std. Dev. in Max (bbl)	2.1E+03

F.164 – Oil Spill Risk Assessment for FPSO

Risk of a spill from a shuttle tanker is assumed to be proportional to the number of docking or port calls (in field and at the terminal) because this is where most spills occur due to the number of operations (including offloading) and difficulties in navigation (traffic and shore).

The USCG database of spills from tank ships was used to estimate the frequency of different spill sizes. Data from the years 1992-1999 were used in this analysis. Data earlier than 1992 were not included due to the effect of OPA 90 on tanker risks in the Gulf of Mexico. A comparison of data for for the period 1985-1991 with those for the period 1992-1999 shows a significant decrease in spill frequencies and sizes in the 1992-1999 period.

The data base was searched for petroleum spills from tank ships. Substances considered included crude oil, fuel, diesel and lubricating oil. Incidents related to bunkering are excluded since fuel will not be supplied to the FPSO like it is to VLCC and ULCC tankers in the lightering zone.

Incidents were included from the following locations to represent the "Gulf of Mexico": Gulf of Mexico, Sabine/Neches River, Corpus Christi Ship Channel and Harbor, Galveston Bay, Houston Ship Channel, Lower and Upper Mississippi River, and Intercoastal Waterway - Gulf.

The database includes incidents related to tanker transit, discharging at terminals and refineries, and offloading from VLCCs and ULCCs to shuttle tankers in lightering zones. As a rough picture of annual Gulf of Mexico tanker activities in the 1990's, about 1,300 non-VLCC and non-ULCC tankers import oil directly to port, about 500 VLCC and ULCC tankers import oil to the lightering zones, about 1,300 shuttle tankers bring oil from the lightering zones to port. This activity gives about 1,300 lightering lifts and 2,600 port discharges per year. Since the FPSO offloading/shuttle tanker/discharge operations will be very similar in nature to existing operations in the Gulf of Mexico, it is assumed that these data can be applied to the Study FPSO in accordance with the estimated number of docking calls that will be required. Therefore, a rough approximation of the number of docking calls (a call to a VLCC or ULCC is included) per year by shuttle-tanker like tankers is 2,600 (port) + 1,300 (lightering) = 3,900 calls. In addition, there are about 200 docking calls by VLCC and ULCC tankers to LOOP. Hence, the incidents in the USCG database correspond to approximately 4,100 docking calls per year by tankers. This estimate was checked

(Note: These numbers were obtained from information about the average imports to the US (7.5 million bbl per day), imports to the GOM (60 percent of US imports), US imports lightered (15 percent), lightering percentage in GOM (95 percent), and percentage of US imports into LOOP (12.5 percent). In order to get docking calls, the average VLCC/ULCC cargo was assumed to be 2 million bbls and the average shuttle-tanker like cargo was assumed to be 500,000 bbls.)

Data includes spills both from shuttle tankers and from VLCC and ULCC tankers offloading in lightering zones and at LOOP. Therefore, these frequencies are assumed to incorporate spills both from the shuttle tanker and from the FPSO during offloading.

Total Exposure (docking calls) in GOM Data:	
Years (1992-1999)	8
Expected Docking Calls per Year	4100
Expected Total Docking Calls	32800
Coefficient of Uncertainty	0.33
Standard Deviation	10824

Gulf of Mexico Data

Spill Size Range	Data	Exposure	Number of	Expected	Statistically-Based Estimates for Frequencies based on Raw Data				
(bbl)	Source	Years	Incidents	Docking Calls	k _{GOM}	n _{GOM} (calls)	Expected (/call)	Std Dev (/call)	C.O.V.
1 - 10	USCG	8 (1992-1999)	15	32800	16	32800	5.4E-04	2.1E-04	0.39
10 - 100	USCG	8 (1992-1999)	5	32800	6	32800	2.0E-04	1.1E-04	0.52
100 - 1,000	USCG	8 (1992-1999)	3	32800	4	32800	1.4E-04	8.1E-05	0.60
1,000 - 10,000	USCG	8 (1992-1999)	0	32800	1	32800	3.4E-05	3.7E-05	1.08
10,000 - 100,000	USCG	8 (1992-1999)	0	32800	GOM Data Combined with World Data to Develop a Realistic Estimate				
100,000 - 500,000	USCG	8 (1992-1999)	0	32800	GOM Data Combined with World Data to Develop a Realistic Estimate				
500,000 - 1,000,000									

Since there are no incidents in the Gulf of Mexico for spill-sizes greater than 10,000 bbl, the estimated frequencies for these spill sizes are based on a combination of Gulf of Mexico data (no spills between 1992 and 1999) and world-wide data. Data obtained from ITOPF for all tanker operations world-wide for the years 1992-1999 are used. There have been 10 incidents world-wide with spills between 10,000 and 100,000 bbls and 6 incidents world-wide with spills greater than 100,000 bbls between 1992 and 1999. Note that these 6 incidents include spills greater than 500,000 bbls, but they are included in this category because (1) they are representative of catastrophic types of events and (2) this approach is conservative. In addition, there are approximately 90,000 docking calls per year for tankers world-wide (neglecting the small percentage of docking calls in the Gulf of Mexico). A coefficient of uncertainty of 0.33 is applied to this estimated number of world-wide docking calls.

Tanker operations in the rest of the world are not considered to be representative to those in the Gulf of Mexico for the following reasons, in order of importance: 1) The Regulatory Environment in the Gulf of Mexico is more restrictive than that world wide on average; 2) The Environmental Conditions in the Gulf of Mexico are less severe than those world wide on average; 3) The Consequences of Grounding are significantly less in the Gulf of Mexico compared to those world wide on average due to the lack of rocky coasts in the Gulf of Mexico; 4) The shuttle tankers to be used in the Gulf of Mexico will have a Smaller Parcel Size than those used world wide on average; 5) The Gulf of Mexico has Less Congested Waterways than those in other ports world wide on average; and 6) Newer Vessels will be used in the Gulf of Mexico (due to requirements for double hulls and the Jones Act) compared to those used world wide on average.

In order to account for the differences in tanker operations between the Gulf of Mexico and the world, the statistically-estimated frequencies based on world-wide data have been adjusted down. The statistically-based value for the expected frequency was reduced by a factor of 1/3. The basis for this factor of 1/3 is that the frequencies of spills in the Gulf of Mexico in smaller spill-size categories (50-5,000 bbls and >5,000 bbls) were both approximately 40 percent of the world-wide frequencies between 1992 and 1999. A coefficient of uncertainty of 1.0 was applied to this reduction factor to account for the uncertainty in estimating this reduction factor from data for smaller spill sizes because values as small as 1/10 and smaller were considered to be possible values for this adjustment factor.

Total Exposure (docking calls) in World Data:	
Years (1992-1999)	8
Expected Docking Calls per Year	90000
Expected Total Docking Calls	720000
Coefficient of Uncertainty	0.33
Standard Deviation	237600

World Data for Large Spills

					S	Statistically-Based Es	stimates for Frequ	encies based on Ra	w Data
Spill Size Range			Number of	Expected Docking			Expected	Std Dev	
(bbl)	Data Source	e Exposure Years	Incidents	Calls	k _{world}	n _{world} (calls)	(per call)	(per call)	Coeff. of Uncertainty
1 - 10									
10 - 100									
100 - 1,000									
1,000 - 10,000									
10,000 - 100,000	ITOPF	8 (1992-1999)	10	720000	11	720000	1.5E-05	4.6E-06	0.30
100,000 - 500,000	ITOPF	8 (1992-1999)	6	720000	7	720000	9.7E-06	3.7E-06	0.38
500.000 - 1.000.000									

	Expert-Bas Ra	ed Adjustment to aw Data					
Spill Size (bbl)	Expected Bias	Coefficient of Uncertainty in Bias	Expected (per call)	Expert-Adjuste Std Dev (per call)	<u>d Estimates for F</u> Coeff. of Uncertainty	requencies k* _{world}	n* _{world} (calls)
1 - 10 10 - 100 100 - 1,000 1,000 - 10,000 10,000 - 100,000 100,000 - 500,000 500,000 - 1,000,000	0.33 0.33	1.0 1.0	5.1E-06 3.2E-06	5.3E-06 3.5E-06	1.04 1.07	0.9 0.9	180000 270000

The Gulf of Mexico data for spills greater than 10,000 bbls (no spills) are then statistically combined with the adjusted data from the world to obtain the estimated frequency for large spills in the Gulf of Mexico.

Combined GOM and Adjusted World Data for Large Spills

Combined GOM and World Data for Large Spills							
Spill Size Range (bbl)	k _{total}	n _{total} (calls)	Coefficient of Uncertainty in n _{total}	Expected (per call)	Std Dev (per call)	Coeff. of Uncertainty	
1 - 10 10 - 100 100 - 1,000 1,000 - 10,000							
10,000 - 100,000 100,000 - 500,000 500,000 - 1,000,000	0.9 0.9	212800 302800	0.28 0.30	4.7E-06 3.1E-06	5.2E-06 3.6E-06	1.11 1.15	

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias.

- Apply a coefficient of uncertainty of 0.33 in extrapolating the historical data since there are no historical data available for the performance of

FPSO's in the Gulf of Mexico.

- For the largest spill-size category, it is considered to be much more likely that the spill size will be near 100,000 bbl versus 500,000 bbl since a total loss of the vessel will occur if between 100,000 and 200,000 bbls are spilled. Therefore, the representative spill-size for the largest category (100,000 to 500,000 bbls) is obtained by assuming that the logarithm of the spill size has a triangular distribution (versus a uniform distribution) with the maximum likelihood at 100,000 bbls and the minimum likelihood at 500,000 bbls, giving a representative value of 171,000 bbls. (Note that this same approach is used for the largest spill-size category for oil pipelines.)

Exposure for Study System (docking calls):	
Shuttle Tanker Cargo (bbl)	450000
Total Production (bbl)	7.19E+08
Total Docking Calls (2 per trip)	3196

Gulf of Mexico Spills:

Gulf of Mexico Spill Data Used in Analysis:

	Spills from Tank Ship (Data Filtered by Cargo Spilled*) in the GoM and its Waterways													
	(Source: USCG - Marine Casuality and Pollution Database)													
								-	-					
				1 - 10 bbl		10	- 100 bb	1	10	0 - 1,000	bbl	1,00	0 - 10,000) bbl
Year	Total Number of Spills	Total Volume Spilled (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1992	2	20	1	2	1.8	1	18	18.0	0	0				
1993	10	241	7	26	3.7	2	72	35.8	1	144	143.7			
1994	1	5	1	5	5.0	0	0		0	0				
1995	2	802	0	0		0	0		2	802	401.0			
1996	2	16	1	3	2.7	1	13	13.0	0	0		0	0	
1997	2	11	2	11	5.4	0	0		0	0				
1998	3	23	2	2	1.0	1	21	21.3	0	0				
1999	1	9	1	9	8.9				0	0				
TOTAL	23	1127	15	57	4	5	124	25	3	946	315	0	0	

*Note: Data to include only spills associated with tankers carrying crude oil.

Voor		Numbe	er of "Crude Carrier*"	Spills for eac	ch Spill Size (bbl))
rear	1-10	10-100	100-1,000	1,000-10,000	10,000-100,000	Total Volume (bbl)
1985	0	1	0	0	0	30
1986	2	1	0	0	0	28
1987	4	0	0	0	0	5
1988	5	1	0	0	1	15401
1989	3	1	2	0	0	1146
1990	7	2	1	0	0	266
1991	5	0	0	0	0	17
Sub-Total	26	6	3	0	1	16893
1992	0	0	0	0	0	0
1993	2	1	1	0	0	191
1994	2	0	0	0	0	8
1995	0	0	1	0	0	179
1996	0	0	0	0	0	0
1997	1	0	0	0	0	2
1998	1	1	0	0	0	22
1999	1	0	0	0	0	9
Sub-Total	7	2	2	0	0	411

Comparison of Pre-1992 and Post-1992 Data Sets for Gulf of Mexico:

*Note: Crude carriers represent a subset of all tank ships that carry crude oil because other tank ship classifications periodically carry crude oil.

Gulf of Mexico Port Calls: Estimates for Tanker Activity in the GOM

Annual Number of Total Tanker Port Calls	4072	
Annual Number of VLCC/ULCC Trips Into LOOP	171	
Annual Number of VLCC/ULCC Trips Into GOM	496	Already included as a port call for the Shuttle Tanker
Total Annual Number of ST Port Calls	3901]
Annual Number of ST Trips from Lightering Zone to Port	1300	
Annual Number of ST Trips into GOM and to Port	1300	
Typical Shuttle Tanker (ST) Capacity (bbl)	5.00E+05	
Typical VLCC/ULCC Capacity (bbl)	2.00E+06	
Direct to Port (bbl)	6.50E+08	
Offload to LOOP (bbl)	3.42E+08	
Lightered (bbl)	6.50E+08	
Annual Import to GOM Total (bbl)	1.64E+09	
Percentage of US Imports to LOOP in GOM	12.5%	Source: NRC Lightering Study (1998)
Percentage of US Lightering in GOM	95%	Source: NRC Lightering Study (1998)
Percentage of US Imports Lightered	25%	Source: NRC Lightering Study (1998)
Percentage of US Imports in GOM	60%	Source: NRC Lightering Study (1998)
US Imports (bbl/day)	7 50E+06	Source: NRC Lightering Study (1998)

World Spills:

	World Wide Crude Oil Spills Greater than 10,000 bbls (from ITOPF)							
DATE	VESSEL NAME	LOCATION	PORT	TONNES Released	Approximate bbl Released	Age (years)	Flag	Cause
12/3/92	Aegean Sea	Spain, North Coast	La Coruna	73,500	514,500	19	Greek	Grounding
1/5/93	Braer	UK, North Coast	Garths Ness, Shetland	84,000	588,000	18	Liberian	Grounding
1/21/93	Maersk Navigator	Indonesia, Malacca Straits	Northern Entrance	25,000	175,000	4	Singapore	Collision
3/13/94	Nassia	Turkey		33,000	231,000	18	Cypress	Collision
3/30/94	Seki	United Arab Emirates	Fujairah	16,000	112,000	1	Panama	Collision
2/15/96	Sea Empress	UK, West Coast	Milford Haven	72,360	506,520	20	Liberian	Grounding
5/3/92	Geroi Chernomorya	Greece, East Coast	Off Skyros Island	1,600	10,500	Not Reported	Romanian	Collision
9/20/92	Nagasaki Spirit	Indonesia, Malacca Straits	Off Belwan Delhi	13,000	84,000	Not Reported	Liberian	Collision
8/17/93	Lyria	France, South Coast	Marseille	2,000	14,000	Not Reported	Liberian	Collision
12/17/93	Hua Hai 1	China	Qingdao	2,200	15,000	Not Reported	Chinese Rep.	Fire/explosion
10/2/94	Cercal	Portugal	Leixoes	1,700	14,000	Not Reported	Panamanian	Grounding
12/21/94	New World	Portugal		11,000	70,000	Not Reported	Liberian	Collision
7/23/95	Sea Prince	South Korea	Yosu	5,035	35,000	Not Reported	Cypriot	Grounding
2/8/97	San Jorge	Uruguay	Punta del Este	5,200	36,000	Not Reported		Grounding
2/28/97	Nissos Amorgos	Venezuela	Maracaibo	3,600	25,000	Not Reported	Greek	Grounding
3/15/99	Estrella Pampeana	Argentina		4,077	30,900	Not Reported	Liberian	Collision

Comparison of Gulf of Mexic	co with Rest of World (1992-	-1999)				
	Spill Size					
	50-5,000 bbl	>5,000 bbl				
Gulf of Mexico						
Total Calls	32800	32800				
Number of Spills	3	(
Estimated Frequency (per call)	1.22E-04	3.05E-05				
Rest of World						
Total Calls	720000	720000				
Number of Spills	193	52				
Estimated Frequency (per call)	2.69E-04	7.36E-05				
Ratio of Frequencies: GOM/Rest of World	0.45	0.41				

									-				
		Total Number of Tankers World Wide by Year											
Tanker Size (dwt)	Voyages/yr	Year: 1990	Year: 1991	Year: 1992	Year: 1993	Year: 1994	Year: 1995	Year: 1996	Year: 1997	Year: 1998	Year: 1999	Year: 2000	10-year Average
50-80	27	367	379	383	373	378	371	261	263	261	260	320	329
80-120	23	432	454	469	486	496	487	481	492	503	527	561	490
120-200	13	207	215	234	249	252	247	309	312	314	316	257	265
200-300	0	322	340	353	357	362	355	355	368	365	260	361	345
300+	0	84	84	84	86	86	84	73	73	72	68	40	76
Total V	oyages/yr	22,536	23,470	24,170	24,486	24,890	24,429	22,127	22,473	22,698	23,249	24,884	<mark>23,583</mark>
		Ave # port of	calls/voyag	e [50M to 1	20M dwt]=		Ave # port	calls/voyag	e [120M dw	/t and up]=			
			4.1					3.5			<u> </u>		
Total Po	ort Calls/yr	90,783	94,550	97,272	98,450	100,083	98,232	88,311	89,706	90,613	92,856	100,020	94,625

World Port Calls:

FPSO - Cargo TankExposure (years)20

		Combined (Esti	Expert+Data) imate	Expert-Based E	Extrapolation Bias	Data-Ba	sed Estimate
		Expected	Coefficient		Coefficient	Expected	Coefficient
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty
(bbl)	(bbl)	(per year)	for Frequency	Bias	for Bias	(per year)	for Frequency
1 - 10	3	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
10 - 100	32	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
100 - 1,000	320	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00
1,000 - 10,000	3200	9.0E-05	1.41	4.5E-02	1.00	2.0E-03	1.00
10,000 - 100,000	32000	9.0E-05	1.41	4.5E-02	1.00	2.0E-03	1.00
100,000 - 500,000	350000	1.0E-05	1.41	5.0E-03	1.00	2.0E-03	1.00
500,000 - 1,000,000	707000	1.0E-05	1.41	5.0E-03	1.00	2.0E-03	1.00

Expected Total (bbl)	2.7E+02
Std. Dev. in Total (bbl)	2.4E+02
Expected Max (bbl)	2.7E+02

Expected Max (bbl)	2.7E+02
Std. Dev. in Max (bbl)	2.4E+02

This category represents a catastrophic, structural failure of the FPSO due to a hurricane or a high-energy collision with a vessel other than the shuttle tanker. All other spills from the FPSO cargo tanks are accounted for in the Shuttle Tanker category (from lightering data).

No known incidents of this type have occurred for FPSO operations to-date worldwide (approximately 500 FPSO-years).

Statistical Analysis:

Exposure (years)	500
Major Accidents	0
k"	1
n" (years)	500
Expected Rate (per yr)	0.002
Coefficient of Uncertainty in Rate	1

(Note that this expected rate is identical to that estimated by MacDonald et al. (1999) for the collision frequency of an FPSO in the Gulf of Mexico.)

Expert-Based Adjustment to Raw Data:

- Reduce frequency of occurrence by a factor of ten because the estimated collision rate of 0.002 per year in MacDonald et al. (1999) is considered to be overly conservative. MacDonald's estimate is based on the frequency of ships crossing a given point (representing the FPSO location) based on historical ship passage data for the Gulf. That estimate is considered to be overly conservative because it does not account for the effect that the presence of the FPSO would have on shipping lanes and patterns, nor the effects of collision avoidance measures, nor the manning and human intervention on both the FPSO and passing ships. A reduced frequency is consistent with the raw data in that there have been no collisions of this type in world-wide FPSO operations.

- Distribute the total frequency of total system failure across the different spill size categories according to the storage present in the cargo tank and the likelihood of a partial versus complete loss of the cargo:

- 1,000 – 10,000 bbl: 45% chance if total system failure occurs (assume 90% chance that spill is less than 100,000 bbl and divide evenly between the 1,000 -10,000 and 10,000 - 100,000 bbl categories);

- 10,000 – 100,000 bbl: 45% chance if total system failure occurs (assume 90% chance that spill is less than 100,000 bbl and divide evenly between the 1,000 -10,000 and 10,000 - 100,000 bbl categories);

- 100,000 – 500,000 bbl: 5% chance if total system failure occurs (assume 10% chance that spill is greater than 100,000 bbl and divide evenly between the 100,000 - 500,000 and 500,000 - 1,000,000 bbl categories), use an average volume of 350,000 bbl to reflect the most common operating condition;

- 500,000 – 1,000,000 bbl: 5% chance if total system failure occurs (assume 10% chance that spill is greater than 100,000 bbl and divide evenly between the 100,000 - 500,000 and 500,000 - 1,000,000 bbl categories).

- Apply a coefficient of uncertainty of 1.0 to the expert-based adjustment due to lack of relevant data on this type of a failure.

Exposure for Study System: Production Life (years)

20

F.176 – Oil Spill Risk Assessment for FPSO

FPSO - Supply Vessels Exposure (docking calls) 8487

Input Information							
		Combined (Expe	ert+Data) Estimate	Expert-Based Ext	rapolation Bias	Data-Bas	sed Estimate
		Expected	Coefficient		Coefficient	Expected	Coefficient
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty
(bbl)	(bbl)	(per call)	for Frequency	Bias	for Bias	(per call)	for Frequency
1 - 10	3	2.2E-05	0.32	1.0E+00	0.00	2.2E-05	0.32
10 - 100	32	1.2E-05	0.34	1.0E+00	0.00	1.2E-05	0.34
100 - 1,000	320	1.0E-06	0.67	1.0E+00	0.00	1.0E-06	0.67
1,000 - 10,000	3200	0.0E+00	0.00	0.0E+00	0.00	3.4E-07	1.08
10,000 - 100,000	32000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00
100,000 - 500,000	225000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00
500,000 - 1,000,000	707000	0.0E+00	0.00	0.0E+00	0.00	0.0E+00	0.00

Expected Total (bbl)	6.7E+00
Std. Dev. in Total (bbl)	2.2E+00

Expected Max (bbl)	6.4E+00
Std. Dev. in Max (bbl)	2.1E+00

F.178 – Oil Spill Risk Assessment for FPSO

Risk of a spill from a supply vessel is assumed to be proportional to the number of docking or port calls (in field and at the terminal) because this is where most spills occur due to the number of operations (including offloading) and difficulties in navigation (traffic and shore).

The USCG database of spills from offshore supply vessels (OSVs) was used to estimate the frequency of different spill sizes. Data from the years 1985-1999 were used in this analysis.

The data base was searched for petroleum spills from supply vessels. Substances considered included crude, fuel, diesel, lubricating oil and drilling mud.

Incidents were included from the following locations to represent the "Gulf of Mexico": Gulf of Mexico, Sabine/Neches River, Corpus Christi Ship Channel and Harbor, Galveston Bay, Houston Ship Channel, Lower and Upper Mississippi River, and Intercoastal Waterway - Gulf.

The database includes incidents related to vessel transit and docking calls at platorms and ports. A rough picture of supply vessel activity in the GOM (based on discussions with Edison Chouest): 300 boats making an average of 2 dock calls per day = 300x2x365 = 219,000 docking calls per year.

Total Docking Calls in Data (15 yrs):	
Expected Value	3285000
Coefficient of Uncertainty	0.33
Standard Deviation	1084050

		Statistically Estimated Frequency (no prior information)						
Spill Size Range		Frequency			n"	Expected Value	Std. Dev.	
(bbl)	Count	(per call)	k"		(calls)	(/call)	(/call)	C.O.V.
1 - 10	65	2.0E-05		66	3285000	2.2E-05	7.2E-06	0.32
10 - 100	36	1.1E-05		37	3285000	1.2E-05	4.3E-06	0.34
100 - 1,000	2	6.1E-07		3	3285000	1.0E-06	6.8E-07	0.67
1,000 - 10,000	0	0.0E+00		1	3285000	3.4E-07	3.6E-07	1.08
10,000 - 100,000	0	0.0E+00						
100,000 - 500,000	0	0.0E+00						
500,000 - 1,000,000	0	0.0E+00						
Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias.

- Apply a coefficient of uncertainty of 0.33 in extrapolating the historical data because supply vessels for these systems will be larger and more modern (dynamically-positioned) than the typical vessels that comprise the historical data.

- Limit maximum possible spill size to 1,000 bbl to be consistent with cargo capacity for typical supply vessels (less than 1,000 bbl).

Exposure	for	Study	System:	
	~		•	

1 trip per 3 days during production	0.333333333
Days of Production (20 years)	7300
Trips	2433
1 trip per 3 days during drilling/workover	0.3333333333
6 Subsea Wells (20 years)	
Drilling & Completion (3*90 + 120 days)	390
Coiled Tubing (1/4 per well-yr @ 20 days)	600
Hydraulic (1/5 per well-yr @ 20 days)	480
Change out (1/8 per well-yr @ 50 days)	750
Recompletion (1/10 per well-yr @ 50 days)	600
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520
Replace Wellhead (1/12 per well-yr @ 65 days)	650
Trips	1330
3 Subsea Wells (12 years)	
Drilling & Completion (3*90 + 90 days)	360
Coiled Tubing (1/4 per well-yr @ 20 days)	180
Hydraulic (1/5 per well-yr @ 20 days)	144
Change out (1/8 per well-yr @ 50 days)	225
Recompletion (1/10 per well-yr @ 50 days)	180
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156
Replace Wellhead (1/12 per well-yr @ 65 days)	195
Trips	480
Docking calls (trips*2)	8487

	Spills from OSV Activities in the GoM and its Waterways (Source: USCG - Marine Casuality and Pollution Database)																
	1 - 10 bbl 10 - 100 bbl 100 - 1,000 bbl 1,000 - 10,000 bbl 10,0										00 - 100.000 bbl						
Voor	Total Number	Total Volume Spilled	Number of Spills	Total Volume Spilled	Average Spill Size	Number of Spills	Total Volume Spilled	Average Spill Size	Number of Spills	Total Volume Spilled	Average Spill Size	Number	Total Volume Spilled	Average Spill Size	Number	Total Volume Spilled	Average Spill Size
1985	0	0	0	0	0.0	0	0	0.0	0	0	0.0	0	0		0	0	0.0
1986	7	34	6	17	2.8	1	17	17.0	0	0	0.0	0	0	0.0	0	0	0.0
1987	4	42	3	6	2.0	1	36	36.0	0	0	0.0	0	0	0.0	0	0	0.0
1988	3	40	2	10	5.0	1	30	30.0	0	0	0.0	0	0	0.0	0	0	0.0
1989	5	30	4	9	2.3	1	21	21.0	0	0	0.0	0	0	0.0	0	0	0.0
1990	10	78	7	24	3.4	3	54	18.0	0	0	0.0	0	0	0.0	0	0	0.0
1991	11	78	9	37	4.1	2	41	20.5	0	0	0.0	0	0	0.0	0	0	0.0
1992	3	39	2	7	3.5	1	32	32.0	0	0	0.0	0	0	0.0	0	0	0.0
1993	8	191	3	9	3.0	5	182	36.4	0	0	0.0	0	0	0.0	0	0	0.0
1994	10	21	10	21	2.1	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0
1995	10	534	3	9	3.0	6	211	35.2	1	314	314.0	0	0	0.0	0	0	0.0
1996	9	161	5	18	3.6	4	143	35.8	0	0	0.0	0	0	0.0	0	0	0.0
1997	10	103	6	26	4.3	4	77	19.3	0	0	0.0	0	0	0.0	0	0	0.0
1998	9	257	4	11	2.8	4	116	29.0	1	130	130.0	0	0	0.0	0	0	0.0
1999	4	193	1	3	3.0	3	190	63.3	0	0	0.0	0	0	0.0	0	0	0.0
TOTAL	103	1801	65	207	3	36	1150	32	2	444	222	0	0	0	0	0	0

FPSO - Drilling and Intervention

Exposure (man-days) 137952

	Input Information										
		Combined (Exper	t+Data) Estimate	rapolation Bias	Data-Based Estimate						
		Expected	Coefficient		Coefficient	Expected	Coefficient				
Spill Size Range	Spill Size	Frequency	of Uncertainty	Expected	of Uncertainty	Frequency	of Uncertainty				
(bbl)	(bbl)	(per man-day)	for Frequency	Bias	for Bias	(per man-day)	for Frequency				
1 - 10	3	4.4E-06	0.46	1.0E+00	0.33	4.4E-06	0.31				
10 - 100	32	7.7E-07	0.51	1.0E+00	0.33	7.7E-07	0.39				
100 - 1,000	320	3.0E-07	0.59	1.0E+00	0.33	3.0E-07	0.49				
1,000 - 10,000	3200	4.3E-08	1.13	1.0E+00	0.33	4.3E-08	1.08				
10,000 - 100,000	32000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00				
100,000 - 500,000	225000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00				
500,000 - 1,000,000	707000	0.0E+00	0.00	1.0E+00	0.00	0.0E+00	0.00				

Results for 20-year Life:

Expected Total (bbl)	3.7E+01
Std. Dev. in Total (bbl)	2.3E+01

Expected Max (bbl)	3.6E+01
Std. Dev. in Max (bbl)	2.2E+01

Basis:

Risk of a spill from drilling and well intervention is assumed to be proportional to the number of man-days of operations. This approach means that operations that require a larger crew will have a greater risk of oil spill because more activities and difficulties are involved. It is also used here because information about man-days of drill crew operations in the GOM is available from IADC, an average of 1.3 million man-days per year in the 1990's. One concern is that the IADC information includes activities in state waters while the MMS data may only include OCS waters, therefore the denominator may be overestimated slightly.

The MMS platform data base (1980-1999) was used to identify drilling activity-related incidents. These incidents include exploratory drilling, development drilling and well workovers and completions. Substances reported in the data base include crude, fuel, diesel, drilling fluids and drilling mud. Rig types include both platform and MODU rigs.

Total man-days in Data (20 yrs):	
Expected Value	2600000
Coefficient of Uncertainty	0.33
Standard Deviation	8580000

			Sta	atistically Estimate	d Frequency (no p	rior information)	
Spill Size Range		Frequency		n"	Expected Value	Std. Dev.	
(bbl)	Count	(per man-day)	k"	(man-day)	(per man-day)	(per man-day)	C.O.V.
1 - 10	103	4.0E-06	104	26000000	4.4E-06	1.4E-06	0.31
10 - 100	17	6.5E-07	18	26000000	7.7E-07	3.0E-07	0.39
100 - 1,000	6	2.3E-07	7	26000000	3.0E-07	1.5E-07	0.49
1,000 - 10,000	0	0.0E+00	1	26000000	4.3E-08	4.6E-08	1.08
10,000 - 100,000	0	0.0E+00					
100,000 - 500,000	0	0.0E+00					
500,000 - 1,000,000	0	0.0E+00					

Expert-Based Adjustment to Raw Data:

- Assume no extrapolation bias.

- Apply a coefficient of uncertainty of 0.33 in extrapolating the historical data because there are relatively few historical data available for deep-water drilling in the Gulf of Mexico (compared to shallow-water drilling).

- Although they have not occurred in the data record, the possiblity for spills larger than 10,000 bbl was evaluated. The estimated frequency was considered to be negligibly small because the reservoir characteristics will be relatively well known since significant exploration and development drilling will have taken place before the production life begins.

Exposure for Study System:

6 Subsea Wells (20 years)	days	crew	man-days
Drilling & Completion (3*90 + 120 days)	390	40	15600
Coiled Tubing (1/4 per well-yr @ 20 days)	600	4	2400
Hydraulic (1/5 per well-yr @ 20 days)	480	8	3840
Change out (1/8 per well-yr @ 50 days)	750	8	6000
Recompletion (1/10 per well-yr @ 50 days)	600	40	24000
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	520	40	20800
Replace Wellhead (1/12 per well-yr @ 65 days)	650	40	26000
3 Subsea Wells (12 years)			
Drilling & Completion (3*90 + 90 days)	360	40	14400
Coiled Tubing (1/4 per well-yr @ 20 days)	180	4	720
Hydraulic (1/5 per well-yr @ 20 days)	144	8	1152
Change out (1/8 per well-yr @ 50 days)	225	8	1800
Recompletion (1/10 per well-yr @ 50 days)	180	40	7200
Sidetrack/Deepening (1/15 per well-yr @ 65 days)	156	40	6240
Replace Wellhead (1/12 per well-yr @ 65 days)	195	40	7800

Total (man-days):	137952
-------------------	--------

				Spills	s from Drillir	ng Activitie	es in the G	oM					
				(Source: MM	S - TIMS I	Database)						
						> 10 b	bl & <= 1	00 bbl	100 - 1,000 bbl				
Year	Total Number of Spills	Total Volume Spilled (bbl)	Total Production	Barrels Spilled per 1E6 bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1980	8	353			6	17	2.8	1	50	50.0	1	286	286.0
1981	4	253			1	4	4.0	2	39	19.5	1	210	210.0
1982	13	50			13	50	3.8						
1983	14	77			13	52	4.0	1	25	25.0			
1984	2	6			2	6	3.0						
1985	13	98	351133870	0.28	12	48	4.0	1	50	50.0			
1986	7	31	356398376	0.09	7	31	4.4						
1987	10	106	328243087	0.32	7	18	2.6	3	88	29.3			
1988	0	0	301704812	0.00									
1989	7	184	281160011	0.65	4	11	2.8	2	56	28.0	1	117	117.0
1990	4	127	274955773	0.46	3	17	5.7				1	110	110.0
1991	4	14	295129769	0.05	4	14	3.5						
1992	2	102	305282682	0.33	1	2	2.0	1	100	100.0			
1993	1	3	309229380	0.01	1	3	3.0						
1994	1	3	314743342	0.01	1	3	3.0						
1995	4	8	345525211	0.02	4	8	2.0						
1996	4	19	369309647	0.05	3	7	2.3	1	12	12.0			
1997	2	3	411795024	0.01	2	3	1.5						
1998	5	32	444466377	0.07	4	11	2.8	1	21	21.0			
1999	2	7			2	7	3.5						
TOTAL	107	1476	4.69E+09	1.56E-01	90	312	3	13	441	34	4	723	181

	Spills from Completion/Workover Activities in the GoM												
				(Source: MM	S - TIMS I	Database)						
	<u>.</u>		<i>i</i>		<	> 10 b	bl & <= 1	l00 bbl	>100 bbl				
Year	Total Number of Spills	Total Volume Spilled	Total Production	Barrels Spilled per 1E6 bbl Produced	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)	Number of Spills	Total Volume Spilled (bbl)	Average Spill Size (bbl)
1980	0	0											
1981	3	68			2	4	2.0	1	64	64.0			
1982	1	3			1	3	3.0						
1983	1	2			1	2	2.0						
1984	0	0											
1985	1	5	351133870	0.01	1	5	5.0						
1986	0	0	356398376	0.00									
1987	1	3	328243087	0.01	1	3	3.0						
1988	0	0	301704812	0.00									
1989	1	6	281160011	0.02	1	6	6.0						
1990	1	8	274955773	0.03	1	8	8.0						
1991	0	0	295129769	0.00									
1992	0	0	305282682	0.00									
1993	0	0	309229380	0.00									
1994	3	172	314743342	0.55	1	6	6.0	1	25	25.0	1	141	141.0
1995	1	4	345525211	0.01	1	4	4.0						
1996	1	5	369309647	0.01	1	5	5.0						
1997	2	3	411795024	0.01	2	3	1.5						
1998	3	276	444466377	0.62				2	106	53.0	1	170	170.0
1999	0	0											
TOTAL	19	555	4.69E+09	1.03E-01	13	49	4	4	195	49	2	311	156