
1

CERES Software Bulletin 97-08
Revision 1 - January 13, 1998

 How to Write Metadata for a Granule Using the Wrapper

Alice Fan (t.f.fan@larc.nasa.gov)
Maria Vallas Mitchum (m.v.mitchum@larc.nasa.gov)

1.0 Purpose
This bulletin describes how to use the CERESlib metadata wrapper subroutine, WriteMeta, to
generate the required metadata for a Hierarchical Data Format (HDF) or Direct Access output
product header record and to create the metadata load file (.met) forall output products. The term
HDF used in this bulletin represents both HDF and HDF-EOS files. This discussion will include
the requirements of the Process Control File (PCF) and Metadata Configuration File (MCF) for
metadata creation as defined in the ECS Toolkit Version 5.2.1 and the CERES metadata require-
ments at the time of this writing. Please refer to the Computer Bulletin 97-06, CERES Metadata
Approach, for a detailed description of the CERES metadata policy, approach, and metadata
which is produced. This is a living document and will be updated if either the Toolkit require-
ments or the CERES metadata requirements change.

2.0 Metadata Wrapper
The metadata wrapper is a Fortran 90 module, named meta_util, that has three public
subroutines: WriteMeta, ReadMeta, and ReadHeader. This bulletin describes how to use the
subroutine WriteMeta, which is the access routine used to produce the metadata required by the
Earth Observation System Data Information System Core System (ECS) and CERES. It
produces three types of metadata: 1) Object Description Language (ODL) format metadata
which reside on HDF and .met files, 2) ASCII format metadata which reside on Direct Access
files, and 3) Vdata format metadata which reside on HDF files. Subroutine ReadMeta reads
metadata in ODL format and subroutine ReadHeader reads metadata in ASCII format.
Subroutines ReadMeta and ReadHeader will be described in a later computer bulletin.

Included in the meta_util module are eight public data types: Bounding_type, Bounding_null,
GRing_type, GRing_null, Meta_type, Meta_null, Pointer_type, and Pointer_null. These data
types will be described in more detail in later sections of this document.

3.0 Minimum Calling Sequence to the WriteMeta Subroutine
The WriteMeta subroutine must be called for all stored output products. At a minimum, the meta-
data will be written to the metadata load file (.met) for each output product. A header record (in
ODL and Vdata format) is also written to all HDF files. A header record for non-HDF files is
written using an optional parameter of the WriteMeta subroutine. This option should be used for
Direct Access files. All other non-HDF file types, such as sequential binary files and ASCII files,
should not use the header record option.

2

The minimum requirement to call the WriteMeta subroutine for a nonHDF file is:
CALL WriteMeta(MCF_LID, Output_LID, & !required
 BeginDT, EndDT, & !required*
 QAFlag, QAFlagExplain, & !required
 BoundingRect, & !required**
 LoadFile_LID, & !required
 WriteHead) !optional
or
CALL WriteMeta(MCF_LID, Output_LID, & !required
 BeginWholday, BeginFracday, EndWholday, EndFracday, & !required*
 QAFlag, QAFlagExplain, & !required
 BoundingRect, & !required**
 LoadFile_LID, & !required
 WriteHead) !optional

The minimum requirement to call the WriteMeta subroutine for an HDF file is:

CALL WriteMeta(MCF_LID, Output_LID, & !required
 BeginDT, EndDT, & !required*
 QAFlag, QAFlagExplain, & !required
 BoundingRect, & !required**
 NumberOfRec) !required
or
CALL WriteMeta(MCF_LID, Output_LID, & !required
 BeginWholday, BeginFracday, EndWholday, EndFracday, & !required*
 QAFlag, QAFlagExplain, & !required
 BoundingRect, & !required**
 NumberOfRec) !required

Note: required* - ‘BeginDT, EndDT’ or ‘BeginWholday, BeginFracday, EndWholday, EndFracday’
 time notation is required.
 required** - ‘BoundingRect’ or ‘GRing’ geometric description is required

The input parameters are described below:

1. MCF_LID : the Logical ID (LID) for the MCF file, an integer.
2. Output_LID : the Logical ID for the output file, an integer.
3. BeginDT and EndDT: the beginning and ending data date and time in 27 character Consultative

Committee Space Data Systems (CCSDS) format, which is YYYY-MM-DDTHH:MM:
SS.xxxxxxZ. BeginDT and EndDT can be replaced byBeginWholday, BeginFracday, End-
Wholday, andEndFracday in Julian format, where all values can be 4 byte (or all values can be
8 byte) real numbers. Although the user can input the datetime values in the Julian format, these
values are converted to the CCSDS format in the wrapper before the metadata is produced.

4. QAFlag: Automatic Quality Flag, 64 character string. The valids are: Passed, Fail ed, and Sus-
pect, which are defined as QA_PASS, QA_FAIL, and QA_SUSPECT in the ‘ceres_status’ mod-

3

ule of CERESlib.
5. QAFlagExplain: Automatic Quality Flag Explanation, 255 character string.
6. BoundingRect: the four corner CERES bounding coordinates for the produced data file.

 CERES Data Envelope

The data type which describes the Bounding Rectangle, Bounding_type, is defined in the
meta_util module as:

TYPE Bounding_type
REAL :: North
REAL :: South
REAL :: East
REAL :: West

END TYPE Bounding_type

The Bounding_NULL data type is defined as follows in the meta_util module:

 TYPE (Bounding_type), PARAMETER:: &
 Bounding_NULL = Bounding_type(REAL4_DFLT, REAL4_DFLT, REAL4_DFLT, REAL4_DFLT)

Use the Bounding_NULL data type to initialize the Bounding_type data structure.

The CERES coordinate ranges are 0 degrees for North to 180 degrees for South, and 0 to 360
degrees for East and West. The North and South coordinates are converted to 90 to -90
degrees and the East and West coordinates are converted to -180 to 180 degrees in the wrapper
in order to comply with the ECS valid ranges. The wrapper will expect the range of data lon-
gitude values to fall between the West to East longitude coordinates. See example below.

GRing: The parameter BoundingRect can be replaced by the parameter GRing, which is of

0 360
E = 20 W=300

0 360
W=20 E=300

4

data type GRing_type. Its data structure, defined in the meta_util module, is listed below.
The GRing polygon is currently defined as a five point GRing and may be changed later
depending on the CERES GRing definition:

TYPE GRing_type
REAL ::Latitude(5)
REAL ::Longitude(5)
INTEGER ::SeqNo(5)
CHARACTER (LEN=1) ::Flag
CHARACTER (LEN=3) ::dummy !needed to pad record size to 4 bytes

END TYPE Gring_type
 where:
 the Latitude(5), Longitude(5) - represent a rectangular, 4 corner, polygon, using
 the CERES (colatitude, longitude) coordinate values (the 5th point finishes
 the connectivity of the ring)
 SeqNo - sequence number of each point
 Flag - Y (yes - Lat/Long starting point defined at inner (exclusion) GRing) or
 - N (no - Lat/Long starting point defined at outer GRing)
 Note: CERES typically will NOT have exclusion GRings

The GRing_NULL data type is defined as follows in the meta_util module:

 TYPE (GRing_type), PARAMETER:: &

 GRing_NULL = GRing_type(REAL4_DFLT, REAL4_DFLT, INT4_DFLT,"N")

Use the GRing_NULL data type to initialize the GRing_type data structure.

7. LoadFile_LID : the .met file LID, an integer, required only for non-HDF output files.
8. NumberOfRec: Number of records, an integer, required for an HDF file as part of the auto-

matically generated Vdata structure. NumberOfRec is an optional parameter for a non-HDF
file. If provided, it is written to the archive group of the ODL formatted metadata (reside in
HDF and .met files) and to the ASCII header of a Direct Access file.

9. WriteHead: an integer, optional parameter, where the valids are 1 or 0. The WriteHead
parameter flag controls the creation of the CERES ASCII header record. The value 1 pro-
duces a header record on a non-HDF Direct Access file; the value 0 will not write the header
record. The default value for this parameter is 0. It is recommended that all QC reports and
sequential binary files use the default value of 0, no header record. Note: this parameter is not
needed and it is ignored for an HDF file, where the header information is automatically writ-
ten.

4.0 Examples of Minimum Calling Sequence

4.1 Example 1: for a Direct Access output file
USE ceres_status, ONLY : QA_PASS
USE meta_util, ONLY : WriteMeta, Bounding_type, Bounding_NULL
TYPE(Bounding_type) :: Bounding

5

CHARACTER (LEN=27) :: BeginDT, EndDT ! 27 character CCSDS ASCII format
CHARACTER (LEN=64) :: QAFlag
CHARACTER (LEN=255) :: QAFlagExplain
INTEGER :: WriteHeader

Bounding = Bounding_NULL !initialization
BeginDT = “1996-01-15T15:00:00.000000Z” EndDT = “1996-01-15T15:59:59.423645Z”
QAFlag = QA_PASS QAFlagExplain = “no error detected”
Bounding%East = 220.0 Bounding%North = 0.0
Bounding%West = 60.0 Bounding%South= 180.0
WriteHeader = 1

CALL WriteMeta(11101, 254, BeginDT, EndDT, QAFlag, QAFlagExplain, &
 BoundingRect= Bounding, LoadFile_LID = 2541, WriteHead = WriteHeader)

The three LIDs (11101, 254, and 2541) must be listed in the PCF. The first two LIDs indicate a
direct access output file with LID = 254 and its corresponding MCF with LID = 11101. The LID
= 2541 is the load file LID which is described in Section 6. The metadata created by the above
example for the Bounding Rectangle is shown in Appendix A in ASCII format and Appendix B in
ODL format.

4.2 Example 2: for an HDF output file
USE ceres_status, ONLY : QA_PASS
USE meta_util, ONLY : WriteMeta, GRing_type, GRing_NULL
REAL(real4) :: Begin_Wday, Begin_Fday, End_Wday, End_Fday !could be real8
TYPE(GRing_type) :: GRing_SSF

GRing_SSF = GRing_NULL !initialization
Begin_Wday = 2450098.0 Begin_Fday = 0.125
End_Wday = 2450098.0 End_Fday = 0.1667
QAFlag = QA_PASS QAFlagExplain = “no error detected”
GRing_SSF%Latitude(1) = 50.0 GRing_SSF%Longitude(1) = 210.0
GRing_SSF%Latitude(2) = 110.0 GRing_SSF%Longitude(2) = 210.0
GRing_SSF%Latitude(3) = 110.0 GRing_SSF%Longitude(3) = 160.0
GRing_SSF%Latitude(4) = 50.0 GRing_SSF%Longitude(4) = 160.0
GRing_SSF%Latitude(5) = 50.0 GRing_SSF%Longitude(5) = 210.0
GRing_SSF%SeqNo(1) = 1 GRing_SSF%SeqNo(2) = 2
GRing_SSF%SeqNo(3) = 3 GRing_SSF%SeqNo(4) = 4
GRing_SSF%SeqNo(5) = 5 GRing_SSF%flag=”N”

CALL WriteMeta(11102, 253, Begin_Wday, Begin_Fday, End_Wday, End_Fday,
 QAFlag, QAFlagExplain, GRing = GRing_SSF, NumberOfRec= 9876)

The two LIDs (11102, 253) must be listed in the PCF. The two LIDs indicate an HDF output file
with LID = 253 and its corresponding MCF with LID = 11102. Note: for HDF files, the load file
LID is not a required input to the WriteMeta subroutine. The .met file for an HDF file is an auto-
matic output product from the Toolkit metadata functions. The metadata created by the above
example for the GRing is shown in Appendix C in ASCII format and a partial listing in Appendix
D in ODL format.

6

5.0 Close Data File Requirement
Close each file before calling the WriteMeta subroutine. If an HDF file is left open, the last data
record will be lost. In the case of a Direct Access file, it must be closed because the wrapper
reopens the data file with a record length of 80 bytes for the metadata header record.

6.0 PCF Requirements
There are certain required entries in the Product Input Files, Product Output Files, and User
Defined Runtime Parameters sections of the PCF.

1. PRODUCT INPUT FILES section
1.a > The two entries (with LID 10252 and 10254) in the Product Input Files section are
required by the Toolkit, as shown in the example below. They are scratch files used by the
metadata Tools and should be placed under a scratch file directory.

1.b> Each non-temporary file (data product or QC report) requires an MCF identification
entry in the Product Input File section of the PCF. The last two entries in the following exam-
ple show sample entries of two MCF files. The LIDs 11101 and 11102 are user-defined LID
values, within the Toolkit constraints, where LID values {10000..11000} are reserved for the
TK, and passed into the WriteMeta subroutine through the first required parameter MCF_LID.

? PRODUCT INPUT FILES
10252|AttrGet.temp|/disk2/thunder/fan/Meta1/scr||||1 /*LID should not be changed*/
10254|WriteMCF.temp|/disk2/thunder/fan/Meta1/scr||||1 /*LID should not be changed*/
11101|cgflatab.mcf|/disk2/thunder/fan/Meta1/rcf||||1 /*your choice of LID for MCF*/
11102|cgssf_ab.mcf|/disk2/thunder/fan/Meta1/rcf||||1 /*your choice of LID for MCF*/

2. PRODUCT OUTPUT FILES section
Each output file requires an entry in the Product Output Files section of the PCF. The follow-
ing are sample entries for two output files. The LID (253, or 254) is passed into the Write-
Meta subroutine through the second required parameter Output_LID.

? PRODUCT OUTPUT FILES
253|CER_SSF_TRMM-PFM-VIRS_PreFlight_00001.1996011515|||||1 /*output HDF file */
254|CER_SSFB_TRMM-PFM-VIRS_PreFlight_00001.1996011515||||1 /*output Direct Access file*/

3. USER DEFINED RUNTIME PARAMETERS section
There are several required entries in the User Defined Runtime Parameters section due to the
Toolkit requirements and the CERES metadata approach. The entries listed below illustrate
them:

?USER DEFINED RUNTIME PARAMETERS
10220|Toolkit version string|SCF B.0 TK5.2.1 /*do not change*/
2541|CER_SSFB_TRMM-PFM-VIRS_PreFlight_00001.1996011515.met|254:1 /*for nonHDF*/
#
141|PGEName|”4.6.1P1” /* from Production request */
142|SamplingStrategyOutput|”TRMM-PFM-VIRS” /* from Production Request */

7

143|CERHRofDay|”15” /* from Production Request */
144|ProductionStrategyOutput|”AtLaunch” /* from Production Request */
145|CERDataDateYear|”1996” /* from Production Request */
146|CERDataDateMonth|”01” /* from Production Request */
147|CERDataDateDay|”15” /* from Production Request */
148|CERHRofMonth|”352” /* from Production Request */
149|ConfigurationCode|”00001” /* from LaTIS database */
150|SWsccr|”00013” /* from LaTIS database */.
151|DATAsccr|”00015” /* from LaTIS database */
152|<ProductSpecificAttributeName>|<”User’s value”> /* from Production Request*/

3.a> Toolkit requirements: The first entry, LID 10220, is a new required entry since TK5.2; it
must exist on all PCF files and may not be changed.

3.b> Non-HDF output file requirement: The second entry, LID 2541, is required for each non-
HDF output file, where the LID value is unique for each non-HDF Output Product. This entry
is NOT needed for an HDF output file. The first field, 2541, is the user’s choice, within the
TK constraints, and is passed into the wrapper through the parameter LoadFile_LID. It is
used to generate the .met file for a non-HDF file. The second field is ignored by the Toolkit
and can therefore contain any user’s comment. The third field, 254:1, is the necessary and
essential element that connects the .met file with its associated output file specified in the
PRODUCT OUTPUT FILES section. The value “254” is the LID and “:1” is the file_index or
version number of the output non-HDF file. Restated, 254:1 is the first and the last field of a
Product Output non-HDF file entry.

3.c> CERES metadata requirements: The entries (from LID 141 to 151) are required by the
CERES metadata approach and not by the Toolkit. These LIDs are the user’s choices. The
second field must be the same as shown above. If any of the above entries is not applicable
(i.e. CERDataDateDay, CERHRofMonth) to a particular product, then the third field could be
left blank as ““ or the entire entry may be eliminated.

3.d> Product Specific metatdata: A Production Generation Executable (PGE) may require
additional Product Specific Attributes, which should be entered in locations 152 and beyond
as Runtime Parameters, which may then be read into the wrapper for processing.

7.0 MCF Requirements
An MCF file template resides in the /CERES/lib/rcf directory on the thunder computer. The user
should copy this template to the rcf directory and change the value of the ShortName object to the
corresponding output product ShortName which is listed in the CERES internal document
“CERES ESDT ShortName”. An example MCF structure of the ShortName object is shown
below. The only line to be changed is the line starting with ‘Value = “XXXXXXXX”’, where
XXXXXXXX is the 8 character CERES ShortName.

 OBJECT = ShortName
 Data_Location = “MCF”
 NUM_VAL = 1
 TYPE = “STRING”

8

 Mandatory = “FALSE”
 Value = “XXXXXXXX”
 END_OBJECT = ShortName

An MCF has two major groups: Inventory and Archive. A user will not change or add objects to
the Inventory group of the MCF. If a new entry is desired, the user must contact the authors of
this bulletin for specific instructions. A user is allowed to add as many Product Specific Attributes
(PSA) as desired to the Archive group of the MCF template. These attributes are written to the
data file header record but are not entered into the Planning and Data Production System (PDPS)
database.

Note: If there is a Toolkit upgrade that effects the MCF or a change in the CERES metadata
requirements, a new version of the template may be required. If this occurs, it will be announced
through proper channels, and users will be required to use the updated MCF template.

8.0 Full Set of Parameters for the WriteMeta Subroutine:
There are three additional optional parameters: SpecificAttr, InputPointer, and Output_index
available to a user in the WriteMeta subroutine. The calling sequence is as follows:

WriteMeta(MCF_LID, Output_LID, & !required
 BeginDT, EndDT, & !required*
 QAFlag, QAFlagExplain, & !required
 BoundingRect, Gring, & !required**
 Loadfile_LID, WriteHead, & !required (for non-HDF file)
 NumberOfRec, & !required (for Vdata - HDF)
 SpecificAttr, & !optional
 InputPointer, & !optional
 Output_index) !optional

Note: required* - ‘BeginDT, EndDT’ or ‘BeginWholday, BeginFracday, EndWholday,
 EndFracday’ time notation is required.
 required** - ‘BoundingRect’ or ‘GRing’ geometric description is required

The usage of the three optional parameters is described in the following sections.

8.1 Parameter SpecificAttr

There are two groups of Product Specific Attributes (PSA): 1) CERES-Required PSAs as dis-
cussed in Section 8.1.2, and 2) Working Group selected PSAs. The parameter SpecificAttr is pro-
vided for the user to input any number of Working Group selected PSAs to be stored by the
wrapper. It is a variable length array of data type meta_type which has five fields:

 TYPEmeta_type
 CHARACTER (LEN=PGSd_MET_NAME_L) :: Name
 INTEGER :: IntVal
 REAL :: RealVal

9

 REAL(real8) :: doubleVal
 CHARACTER (LEN= 256) :: StringVal
 END TYPEmeta_type

The meta_NULL data type is defined as follows in the meta_util module:

 TYPE (meta_type), PARAMETER:: &

 meta_NULL = meta_type(““,INT4_DFLT, REAL4_DFLT, REAL8_DFLT, ““)

Use the meta_NULL data type to initialize the meta_type data structure.

The data type “meta_type” has been structured to allow users the flexibility to store metadata of
any data format (integer, 4 byte real, 8 byte real, and character string). In order to use this param-
eter properly, the user is required to:

1. Declare an array of any size with the data type as meta_type and initialize the array with the
meta_NULL data type.
2. Enter the attribute name field with a recommended maximum length of 30 characters.
3. Enter one of the 4 data fields (IntVal, RealVal, DoubleVal, or StringVal) data value.

The following example shows the steps of initializing and assigning values to the array.

USE ceres_status, ONLY : QA_PASS
USE meta_util, ONLY : meta_type, meta_NULL
TYPE (meta_type) :: SSFFile_Attr(3) !could be any size
INTEGER :: WriteHeader
DO i = 1, 3
 SSFFile_Attr(i) = meta_NULL !initialization
END DO
SSFFile_Attr(1)%Name = “PercentCrosstrackFOV”
SSFFile_Attr(1)%RealVal = 69.8
SSFFile_Attr(2)%Name = “PercentRapsFOV”
SSFFile_Attr(2)%RealVal = 30.2
SSFFile_Attr(3)%Name = “PercentOtherFOV”
SSFFile_Attr(3)%RealVal = 0.0
Writeheader = 1

When calling the WriteMeta subroutine with the PSA parameter SSFFile_Attr, the Percent-
CrosstrackFOV, PercentRapsFOV, and PercentOtherFOV will be written in the metadata of the
.met file and in the header record.

 CALL WriteMeta(11102, 253, &
 BeginDT, EndDT, QAFlag= QA_PASS, QAFlagExplain=”no error detected”, &
 BoundingRect= Bounding, WriteHead = WriteHeader, NumberofRec = 9876, &
 SpecificAttr=SSFFile_Attr)

8.1.1 Where do PSAs reside in the metadata?

Any number of PSAs can be passed into the wrapper through the optional parameter, “Specifi-
cAttr”. These parameters may or may not have been predefined within the MCF template. The

10

wrapper will not have the knowledge of the location destination of these parameters on the MCF.
There are three options or locations where the parameters could reside, 1) if the PSA has been reg-
istered through the metadata ECS registration process, then the PSA will exist as a unique field in
the MCF template in the Inventory Group, 2) if the user chooses to predefine a PSA in the Archive
Group of the MCF template, the destination of the PSA will be on the header record of the output
product and the .met file for non-HDF files, and 3) otherwise the PSA will be placed in the Addi-
tionalAttributes location of the Inventory Group. The wrapper will proceed through the following
logical steps for each attribute:

1. The wrapper first tries to locate the PSA in the Inventory Group. If an attribute exists in the
Inventory Group, then it will be set.
2. If the attempt to set the PSA in the Inventory Group fails, it tries to set the PSA under the
Archive Group. If a PSA exists in the Archival Group, it will be set.
3. If both attempts fail and the PSA does not exist in either the Inventory or the Archival Group in
the MCF, then the parameter will be set in the AdditionalAttributes location of the Inventory
Group.

8.1.2 CERES Product Specific Attributes

There are seven CERES Product Specific attributes: PGEName, SamplingStrategy, Production-
Strategy, CERDataDateYear, CERDataDateMonth, CERDataDateDay, and CERHRofMonth. At
the time of this writing, these parameters are not registered parameters in the ECS data model and
do not exist on the MCF template. Therefore, they must be stored in the AdditionalAttribute loca-
tion of the Inventory Group. The wrapper will read these parameters from the PCF, perform any
special calculations and write them out. See the Appendix B for examples of AdditionalAt-
tributes.

8.2 Parameter InputPointer

The attribute “InputPointer” in the MCF template is designed to store the input files used by a
PGE during execution. The Object declaration on the MCF template is listed below:

 GROUP =InputGranule
 OBJECT =InputPointer
 Data_Location = “PGE”
 NUM_VAL = 800
 TYPE = “STRING”
 Mandatory = “TRUE”
 END_OBJECT = InputPointer
 END_GROUP =InputGranule

The NUM_VAL = 800 is the maximum number of possible input files at this time. This parame-
ter is used to reserve space in memory and must be modified to a number which is proper for the
output granule. Below is a sample of the InputPointer attribute in ODL format on a .met file:

OBJECT = INPUTPOINTER
 NUM_VAL = 2
 VALUE = (“/disk2/thunder/fan/Meta1/CER_SSFI_TRMM-PFM-VIRS_AtLaunch_00001. 1996011515”,

11

 “/disk2/thunder/fan/Meta1/CER_LWSM_TRMM-PFM_AtLaunch_00014.1996Winter”)
END_OBJECT = INPUTPOINTER

Below is a sample of the InputPointer attribute in ASCII format in the header record of a Direct
Access file:

InputPointer.1 =/disk2/thunder/fan/Meta1/CER_SSFI_TRMM-PFM-VIRS_AtLaunch_00001.1996011515

InputPointer.2 =/disk2/thunder/fan/Meta1/CER_LWSM_TRMM-PFM_AtLaunch_00014.1996Winter

In order to address the usage of the InputPointer parameter of the WriteMeta subroutine, it is
important to know the possible sources where this attribute may be obtained.

8.2.1 Sources for the InputPointer Parameter

1) Subroutine OpenFile: (for nonHDF files) If a PGE uses the OpenFile (or C_OpenFile)
CERESlib subroutine, available for opening nonHDF input files, the OpenFile subroutine records
the opened input file in the I/O module of CERESlib. The wrapper takes this information and fills
in the value for the InputPointer parameter, thus no direct interface with the wrapper is required
by the user in this scenario.

2) Subroutine AddInputPointer : (for HDF files and nonHDF files) An HDF file cannot be
opened by the OpenFile or C_OpenFile subroutines. The user can access the subroutine: AddIn-
putFile(LID, version), from CERESlib, in order to log the Logical ID and version number for
each of the opened HDF input files. The wrapper will then access this log at the time the metadata
is written.

If the user does not wish to use the OpenFile subroutine to open nonHDF files, then the AddInput-
File subroutine may also be used to record nonHDF files. The calling sequence is: Call AddInput-
File(LID, version), where: LID is the Logical ID, and version is the file_index.

3) Parameter InputPointer: If the OpenFile and AddInputFile subroutines are not accessed, the
user can enter the input file listing in the optional parameter “InputPointer” of the WriteMeta sub-
routine. This parameter contains an array of LIDs and corresponding file index numbers of the
input files. The wrapper will then access the PCF with the Logical ID and file index parameters to
retrieve the file path and filename. There are two data types: Pointer_type and Pointer_NULL,
defined in the meta_util module. They are shown as below:

TYPE Pointer_Type
 INTEGER :: LogicID
 INTEGER :: File_index
 END TYPE Pointer_Type

 The Pointer_NULL data type is defined as follows in the meta_util module:

TYPE (Pointer_type), PARAMETER :: Pointer_NULL = Pointer_type(INT4_DFLT, 1)

 Use the Pointer_NULL data type to initialize the Pointer_type data structure.

12

The user is required to initialize the Pointer_type array with the Pointer_NULL default values
before setting any values. The wrapper depends on checking for the default value in the LogicID
field to stop the population of the InputPointer field. After the initialization, the only field that is
required to fill is the LogicID field. The default value for the file_index is set to 1 at initialization,
unless the user replaces this value. An sample calling sequence to the wrapper is shown below:

USE ceres_status, ONLY : QA_PASS

 USE meta_util, ONLY :: Pointer_type, Pointer_NULL
TYPE(Pointer_type) :: SSF_input(10) !could be any size

 INTEGER :: WriteHeader
DO i = 1, 10
 SSF_input(i) = Pointer_NULL !initialization
END DO

 WriteHeader = 1
SSF_input(1)%LogicID = 1112 !LID of an input data file
SSF_input(1)%File_index = 2 !file index (=version) of an input data file
SSF_input(2)%LogicID = 1110 !LID of another input data file

CALL WriteMeta(11102, 253, &
 BeginDT, EndDT, QAFlag= QA_PASS, QAFlagExplain=”no error detected”, &
 WriteHead = WriteHeader, NumberofRec= 9876, BoundingRect= Bounding, &
 SpecificAttr= SSFFile_Attr,InputPointer = SSF_input)

4) Parameter SpecificAttr: The optional parameter “SpecificAttr” may be used as an alternate
method to provide the input file listing to the wrapper. Since there are no rules for the name field
of the SpecificAttr array, it is possible for the user to enter ‘InputPointer” in the name field. If this
occurs, the wrapper will collect these values and build the InputPointer parameter. Although this
alternate method is available, users are discouraged from using this parameter to provide Input file
information.

8.3 Parameter Output_Index
Output_Index, an integer, optional parameter, is the index (or version) number for an output file.
If not provided, the default value is 1. The parameter Output_LID, discussed in Section 3.0, and
the parameter Output_Index comprise the required ‘file identification entities’ for the Toolkit out-
put file functions.

9.0 Future Implementation: InputPointer for Multiple Output Files in One
PGE
As stated in Section 8.1, the metadata wrapper concatenates the information from four sources.
Then the wrapper calls the Toolkit function PGS_MET_SetAttr_S once to set the values for the
InputPointer attribute. There are cases where not all the opened files are used to generate a partic-
ular output file in a PGE which produces more than one output product.

Although the optional parameters InputPointer and SpecificAttr can be used to provide the differ-
ent input file information to the WriteMeta subroutine for different output products, the input files
recorded in the I/O module have no way of discriminating the output source. There are cases
where not all the input files recorded in the I/O module are used to generate a particular output

13

product. For now we will live with the fact that all the input files recorded are used for this PGE
but not necessarily for this particular output product.

In order to remedy this kind of situation, a way to allow the user to remove input files from the
input file list collected by the I/O module could be implemented. The suggested implementation
is adding a field (i.e. inout) to the data type Pointer_type. Since the parameter InputPointer is of
data type Pointer_type, it can be used to add or remove input files from the list collected in the I/O
module. If this field is set to “I”, add this file to the value of the InputPointer attribute. If this field
is set to “O”, omit, or remove, the file from the Input file list gathered by the I/O module and the
wrapper will not include this file in the InputPointer parameter. The original input file list gath-
ered by the I/O module should stay unchanged, so it can be used as the baseline information for
the other output files. This option will not be implemented until there is a need.

14

Appendix A: ASCII header with Bounding Rectangle Example

BEGIN_HEADER
ShortName = CGFLATAB
VersionID = 1
CERPGEName = 4.6P1
SamplingStrategy = TRMM-PFM-VIRS
ProductionStrategy = AtLaunch
CERDataDateYear = 1996
CERDataDateMonth = 01
CERDataDateDay = 15
CERHrOfMonth = 352
RangeBeginningDate = 1996-01-15
RangeBeginningTime = 15:00:00.000000
RangeEndingDate = 1996-01-15
RangeEndingTime = 16:00:00.000000
AssociatedPlatformShortName.1 = TRMM
AssociatedInstrumentShortName.1 = PFM
LocalGranuleID = CER_SSFB_TRMM-PFM-VIRS_AtLaunch_00001.1996011515
PGEVersion = 00001
CERProductionDateTime = 1998-01-08T12:32:21.000000Z
LocalVersionID = Clib-19971230 TK5.2.1 HDF-4.1r1 HDFEOS- 2.0 SW00013 ANC00015
ProductGenerationLOC = NASA Langley Research Center, HOST - thunder1-f OS -IRIX64
NumberOfRecords = 9876
WestBoundingCoordinate = 60.000000
NorthBoundingCoordinate = 90.000000
EastBoundingCoordinate = -140.000000
SouthBoundingCoordinate = -90.000000
CERWestBoundingCoordinate = 60.000000
CERNorthBoundingCoordinate = 0.000000
CEREastBoundingCoordinate = 220.000000
CERSouthBoundingCoordinate = 180.000000
AutomaticQualityFlag.1 = Passed
AutomaticQualityFlagExplanation.1 = no error detected
ImagerShortName = VIRS
CERHrOfDay = 15
InputPointer.1 = /disk2/thunder/fan/Meta1/CER_SSFI_TRMM-PFM-VIRS_AtLaunch_00001.1996011515
InputPointer.2 = /disk2/thunder/fan/Meta1/CER_LWSM_TRMM-PFM_ArLaunch_00014.1996Winter
END_HEADER

15

Appendix B: ODL Metadata with Bounding Rectangle Example

GROUP = INVENTORYMETADATA
GROUPTYPE = MASTERGROUP

 GROUP = ECSDATAGRANULE
OBJECT = LOCALGRANULEID
NUM_VAL = 1
VALUE = “CER_SSFB_TRMM-PFM-VIRS_AtLaunch_00001.1996011515”
END_OBJECT = LOCALGRANULEID

OBJECT = LOCALVERSIONID
NUM_VAL = 1
VALUE = “Clib-19971230 TK5.2.1 HDF-4.1r1 HDFEOS- 2.0 SW00013 ANC00015”
END_OBJECT = LOCALVERSIONID

OBJECT = PRODUCTIONDATETIME
NUM_VAL = 1
VALUE = “1998-01-08T17:32:21.000Z”
END_OBJECT = PRODUCTIONDATETIME

 END_GROUP = ECSDATAGRANULE

 GROUP = MEASUREDPARAMETER
 OBJECT = MEASUREDPARAMETERCONTAINER

CLASS = “1”

OBJECT = PARAMETERNAME
CLASS = “1”
NUM_VAL = 1
VALUE = “GranuleParameters”
END_OBJECT = PARAMETERNAME

GROUP = QAFLAGS
CLASS = “1”
OBJECT = AUTOMATICQUALITYFLAG
NUM_VAL = 1
CLASS = “1”
VALUE = “Passed”
END_OBJECT = AUTOMATICQUALITYFLAG

OBJECT = AUTOMATICQUALITYFLAGEXPLANATION
NUM_VAL = 1
CLASS = “1”
VALUE = “no error detected”
END_OBJECT = AUTOMATICQUALITYFLAGEXPLANATION
END_GROUP = QAFLAGS

 END_OBJECT = MEASUREDPARAMETERCONTAINER
 END_GROUP = MEASUREDPARAMETER

 GROUP = COLLECTIONDESCRIPTIONCLASS

OBJECT = SHORTNAME
NUM_VAL = 1
VALUE = “CGFLATAB”
END_OBJECT = SHORTNAME

16

OBJECT = VERSIONID
NUM_VAL = 1
VALUE = 1
END_OBJECT = VERSIONID

 END_GROUP = COLLECTIONDESCRIPTIONCLASS

 GROUP = INPUTGRANULE
OBJECT = INPUTPOINTER
NUM_VAL = 800
VALUE = (“/disk2/thunder/fan/Meta1/CER_SSFI_TRMM-PFM-VIRS_AtLaunch_00001.1996011515”,

 “/disk2/thunder/fan/Meta1/CER_LWSM_TRMM-PFM_AtLaunch_00014.1996Winter”)
END_OBJECT = INPUTPOINTER

 END_GROUP = INPUTGRANULE

 GROUP = SPATIALDOMAINCONTAINER
 GROUP = HORIZONTALSPATIALDOMAINCONTAINER
 GROUP = BOUNDINGRECTANGLE

 OBJECT =WESTBOUNDINGCOORDINATE
 NUM_VAL = 1
 VALUE = 60.000000
 END_OBJECT = WESTBOUNDINGCOORDINATE

 OBJECT = NORTHBOUNDINGCOORDINATE
 NUM_VAL = 1
 VALUE = 90.000000
 END_OBJECT = NORTHBOUNDINGCOORDINATE

 OBJECT = EASTBOUNDINGCOORDINATE
 NUM_VAL = 1
 VALUE = -140.000000
 END_OBJECT = EASTBOUNDINGCOORDINATE

 OBJECT = SOUTHBOUNDINGCOORDINATE
 NUM_VAL = 1
 VALUE = -90.000000
 END_OBJECT = SOUTHBOUNDINGCOORDINATE

 END_GROUP = BOUNDINGRECTANGLE
 END_GROUP = HORIZONTALSPATIALDOMAINCONTAINER
 END_GROUP = SPATIALDOMAINCONTAINER

 GROUP = RANGEDATETIME
OBJECT = RANGEBEGINNINGTIME
NUM_VAL = 1
VALUE = “15:00:00.000000”
END_OBJECT = RANGEBEGINNINGTIME

OBJECT = RANGEENDINGTIME
NUM_VAL = 1
VALUE = “16:00:00.000000”
END_OBJECT = RANGEENDINGTIME

OBJECT = RANGEBEGINNINGDATE
NUM_VAL = 1
 VALUE = “1996-01-15”
END_OBJECT = RANGEBEGINNINGDATE

17

OBJECT = RANGEENDINGDATE
NUM_VAL = 1
VALUE = “1996-01-15”
END_OBJECT = RANGEENDINGDATE

 END_GROUP = RANGEDATETIME

 GROUP = PGEVERSIONCLASS
OBJECT = PGEVERSION
NUM_VAL = 1
VALUE = “00001”
END_OBJECT = PGEVERSION

 END_GROUP = PGEVERSIONCLASS

 GROUP = ADDITIONALATTRIBUTES

 OBJECT = ADDITIONALATTRIBUTESCONTAINER
 CLASS = “1”

OBJECT = ADDITIONALATTRIBUTENAME
CLASS = “1”
NUM_VAL = 1
VALUE = “CERPGEName”
END_OBJECT = ADDITIONALATTRIBUTENAME

GROUP = INFORMATIONCONTENT
CLASS = “1”
OBJECT = PARAMETERVALUE

NUM_VAL = 1
CLASS = “1”
VALUE = “4.6P1”

END_OBJECT = PARAMETERVALUE
END_GROUP = INFORMATIONCONTENT

 END_OBJECT = ADDITIONALATTRIBUTESCONTAINER

 OBJECT = ADDITIONALATTRIBUTESCONTAINER
 CLASS = “2”

OBJECT = ADDITIONALATTRIBUTENAME
CLASS = “2”
NUM_VAL = 1
VALUE = “SamplingStrategy”
END_OBJECT = ADDITIONALATTRIBUTENAME

GROUP = INFORMATIONCONTENT
CLASS = “2”
OBJECT = PARAMETERVALUE

NUM_VAL = 1
CLASS = “2”
VALUE = “TRMM-PFM-VIRS”

END_OBJECT = PARAMETERVALUE
END_GROUP = INFORMATIONCONTENT

 END_OBJECT = ADDITIONALATTRIBUTESCONTAINER

 OBJECT = ADDITIONALATTRIBUTESCONTAINER
 CLASS = “3”

OBJECT = ADDITIONALATTRIBUTENAME
CLASS = “3”

18

NUM_VAL = 1
VALUE = “ProductionStrategy”
END_OBJECT = ADDITIONALATTRIBUTENAME

GROUP = INFORMATIONCONTENT
CLASS = “3”
OBJECT = PARAMETERVALUE

NUM_VAL = 1
CLASS = “3”
VALUE = “AtLaunch”

END_OBJECT = PARAMETERVALUE
END_GROUP = INFORMATIONCONTENT

 END_OBJECT = ADDITIONALATTRIBUTESCONTAINER

 OBJECT = ADDITIONALATTRIBUTESCONTAINER
 CLASS = “4”

OBJECT = ADDITIONALATTRIBUTENAME
CLASS = “4”
NUM_VAL = 1
VALUE = “CERDataDateYear”
 END_OBJECT = ADDITIONALATTRIBUTENAME

 GROUP = INFORMATIONCONTENT
 CLASS = “4”
OBJECT = PARAMETERVALUE

NUM_VAL = 1
CLASS = “4”
VALUE = “1996”

END_OBJECT = PARAMETERVALUE
END_GROUP = INFORMATIONCONTENT

 END_OBJECT = ADDITIONALATTRIBUTESCONTAINER

 OBJECT = ADDITIONALATTRIBUTESCONTAINER
 CLASS = “5”

OBJECT = ADDITIONALATTRIBUTENAME
CLASS = “5”
NUM_VAL = 1
VALUE = “CERDataDateMonth”
END_OBJECT = ADDITIONALATTRIBUTENAME

 GROUP = INFORMATIONCONTENT
CLASS = “5”
OBJECT = PARAMETERVALUE

NUM_VAL = 1
CLASS = “5”
VALUE = “01”

END_OBJECT = PARAMETERVALUE
END_GROUP = INFORMATIONCONTENT

 END_OBJECT = ADDITIONALATTRIBUTESCONTAINER

 OBJECT = ADDITIONALATTRIBUTESCONTAINER
 CLASS = “6”

OBJECT = ADDITIONALATTRIBUTENAME
CLASS = “6”
NUM_VAL = 1
VALUE = “CERDataDateDay”
END_OBJECT = ADDITIONALATTRIBUTENAME
GROUP = INFORMATIONCONTENT

19

CLASS = “6”
OBJECT = PARAMETERVALUE

NUM_VAL = 1
CLASS = “6”
VALUE = “15”

END_OBJECT = PARAMETERVALUE
END_GROUP = INFORMATIONCONTENT

 END_OBJECT = ADDITIONALATTRIBUTESCONTAINER

 OBJECT = ADDITIONALATTRIBUTESCONTAINER
CLASS = “7”
OBJECT = ADDITIONALATTRIBUTENAME
CLASS = “7”
NUM_VAL = 1
VALUE = “CERHRofMonth”
END_OBJECT = ADDITIONALATTRIBUTENAME

GROUP = INFORMATIONCONTENT
CLASS = “7”
OBJECT = PARAMETERVALUE

NUM_VAL = 1
CLASS = “7”
VALUE = “352”

END_OBJECT = PARAMETERVALUE
END_GROUP = INFORMATIONCONTENT

 END_OBJECT = ADDITIONALATTRIBUTESCONTAINER

 OBJECT = ADDITIONALATTRIBUTESCONTAINER
CLASS = “8”
OBJECT = ADDITIONALATTRIBUTENAME
CLASS = “8”
NUM_VAL = 1
VALUE = “CERHRofDay”
END_OBJECT = ADDITIONALATTRIBUTENAME

GROUP = INFORMATIONCONTENT
CLASS = “8”
OBJECT = PARAMETERVALUE

NUM_VAL = 1
CLASS = “8”
VALUE = “15”

END_OBJECT = PARAMETERVALUE
END_GROUP = INFORMATIONCONTENT

 END_OBJECT = ADDITIONALATTRIBUTESCONTAINER

 OBJECT = ADDITIONALATTRIBUTESCONTAINER
 CLASS = “9”

OBJECT = ADDITIONALATTRIBUTENAME
CLASS = “9”
NUM_VAL = 1
VALUE = “ImagerShortName”
END_OBJECT = ADDITIONALATTRIBUTENAME

GROUP = INFORMATIONCONTENT
CLASS = “9”
OBJECT = PARAMETERVALUE

NUM_VAL = 1
CLASS = “9”
VALUE = “VIRS”

20

END_OBJECT = PARAMETERVALUE
END_GROUP = INFORMATIONCONTENT

 END_OBJECT = ADDITIONALATTRIBUTESCONTAINER

 END_GROUP = ADDITIONALATTRIBUTES

 GROUP = ASSOCIATEDPLATFORMINSTRUMENTSENSOR

 OBJECT = ASSOCIATEDPLATFORMINSTRUMENTSENSORCONTAINER
 CLASS = “1”

OBJECT = ASSOCIATEDPLATFORMSHORTNAME
CLASS = “1”
NUM_VAL = 1
VALUE = “TRMM”
END_OBJECT = ASSOCIATEDPLATFORMSHORTNAME

OBJECT = ASSOCIATEDINSTRUMENTSHORTNAME
CLASS = “1”
NUM_VAL = 1
VALUE = “PFM”
END_OBJECT = ASSOCIATEDINSTRUMENTSHORTNAME

OBJECT = ASSOCIATEDSENSORSHORTNAME
CLASS = “1”
NUM_VAL = 1
VALUE = “NOT SET”
END_OBJECT = ASSOCIATEDSENSORSHORTNAME

 END_OBJECT = ASSOCIATEDPLATFORMINSTRUMENTSENSORCONTAINER

 END_GROUP = ASSOCIATEDPLATFORMINSTRUMENTSENSOR

END_GROUP = INVENTORYMETADATA

GROUP = ARCHIVEDMETADATA
 GROUPTYPE = MASTERGROUP

 OBJECT = CEREASTBOUNDINGCOORDINATE
NUM_VAL = 1
VALUE = 220.000000

 END_OBJECT = CEREASTBOUNDINGCOORDINATE

 OBJECT = CERNORTHBOUNDINGCOORDINATE
NUM_VAL = 1
VALUE = 0.000000

 END_OBJECT = CERNORTHBOUNDINGCOORDINATE

 OBJECT = CERSOUTHBOUNDINGCOORDINATE
NUM_VAL = 1
VALUE = 180.000000

 END_OBJECT = CERSOUTHBOUNDINGCOORDINATE

 OBJECT = CERWESTBOUNDINGCOORDINATE
NUM_VAL = 1
VALUE = 60.000000

 END_OBJECT = CERWESTBOUNDINGCOORDINATE

21

 OBJECT = CERPRODUCTIONDATETIME
NUM_VAL = 1
VALUE = “1998-01-08T12:32:21.000000Z”

 END_OBJECT = CERPRODUCTIONDATETIME

 OBJECT = NUMBEROFRECORDS
NUM_VAL = 1
VALUE = 9876

 END_OBJECT = NUMBEROFRECORDS

 OBJECT = PRODUCTGENERATIONLOC
NUM_VAL = 1
VALUE = “NASA Langley Research Center, HOST - thunder OS - IRIX64”

 END_OBJECT = PRODUCTGENERATIONLOC

END_GROUP = ARCHIVEDMETADATA

END

22

Appendix C: ASCII header with GRing Example

BEGIN_HEADER
ShortName = CGFLATAB
VersionID = 1
CERPGEName = 4.6P1
SamplingStrategy = TRMM-PFM-VIRS
ProductionStrategy = AtLaunch
CERDataDateYear = 1996
CERDataDateMonth = 01
CERDataDateDay = 15
CERHrOfMonth = 352
RangeBeginningDate = 1996-01-15
RangeBeginningTime = 15:00:00.000000
RangeEndingDate = 1996-01-15
RangeEndingTime = 16:00:00.000000
AssociatedPlatformShortName.1 = TRMM
AssociatedInstrumentShortName.1 = PFM
LocalGranuleID = CER_SSFB_TRMM-PFM-VIRS_AtLaunch_00001.1996011515
PGEVersion = 00001
CERProductionDateTime = 1998-01-08T14:08:52.000000Z
LocalVersionID = Clib-19971230 TK5.2.1 HDF-4.1r1 HDFEOS- 2.0 SW00013 DATA00015
ProductGenerationLOC = NASA Langley Research Center, HOST - thunder1-f OS -IRIX64
NumberOfRecords = 9876
GRingPointLatitude.1 = 40.00 -20.00 -20.00 40.00 40.00
GRingPointLongitude.1 = -150.00 -150.00 160.00 160.00 -150.00
GRingPointSequenceNo.1 = 1 2 3 4 5
ExclusionGRingFlag.1 = N
CERGRingPointLatitude.1 = 50.00 110.00 110.00 50.00 50.00
CERGRingPointLongitude.1 = 210.00 210.00 160.00 160.00 210.00
CERGRingPointSequenceNo.1 = 1 2 3 4 5
 CERExclusionGRingFlag.1 = N
AutomaticQualityFlag.1 = Passed
AutomaticQualityFlagExplanation.1 = no error detected
ImagerShortName = VIRS
CERHrOfDay = 15
InputPointer.1 = /disk2/thunder/fan/Meta1/CER_SSFI_TRMM-PFM-VIRS_AtLaunch_00001.1996011515
InputPointer.2 = /disk2/thunder/fan/Meta1/CER_LWSM_TRMM-PFM_AtLaunch_00014.1996Winter
END_HEADER

23

Appendix D: ODL metadata with GRing Example

Note: This is a partial listing of a .met file - reference Appendix B, the only difference shown here
is the SpatialDomainContainer.

GROUP = SPATIALDOMAINCONTAINER
GROUP = HORIZONTALSPATIALDOMAINCONTAINER

GROUP = GPOLYGON
OBJECT = GPOLYGONCONTAINER

CLASS = “1”
GROUP = GRING
CLASS = “1”

OBJECT = EXCLUSIONGRINGFLAG
NUM_VAL 1
CLASS = “1”
VALUE = “N”

END_OBJECT = EXCLUSIONGRINGFLAG
END_GROUP = GRING

GROUP = GRINGPOINT
CLASS = “1”

OBJECT = GRINGPOINTLATITUDE
NUM_VAL = 5
CLASS = “1”
VALUE = (40.000000, -20.000000, -20.000000, 40.000000, 40.000000)

END_OBJECT = GRINGPOINTLATITUDE

OBJECT = GRINGPOINTLONGITUDE
NUM_VAL = 5
CLASS = “1”
VALUE = (-150.000000, -150.000000, 160.000000, 160.000000, -150.000000)

END_OBJECT = GRINGPOINTLONGITUDE

OBJECT = GRINGPOINTSEQUENCENO
NUM_VAL = 5
CLASS = “1”
VALUE = (1, 2, 3, 4, 5)

END_OBJECT = GRINGPOINTSEQUENCENO
END_GROUP = GRINGPOINT

END_OBJECT = GPOLYGONCONTAINER
END_GROUP = GPOLYGON

END_GROUP = HORIZONTALSPATIALDOMAINCONTAINER
END_GROUP = SPATIALDOMAINCONTAINER

 .
 .
 GROUP = ARCHIVEDMETADATA
 GROUPTYPE = MASTERGROUP

GROUP = CERGPOLYGON
OBJECT = CERGPOLYGONCONTAINER

CLASS = “1”

OBJECT = CERGRINGPOINTLATITUDE
CLASS = “1”

24

NUM_VAL = 5
VALUE = (50.000000, 110.000000, 110.000000, 50.000000, 50.000000)

END_OBJECT = CERGRINGPOINTLATITUDE

OBJECT = CERGRINGPOINTLONGITUDE
CLASS = “1”
NUM_VAL = 5

VALUE = (210.000000, 210.000000, 160.000000, 160.000000, 210.000000)
END_OBJECT = CERGRINGPOINTLONGITUDE

 END_OBJECT = CERGPOLYGONCONTAINER
END_GROUP = CERGPOLYGON

 .
 .
 .
 END_GROUP = ARCHIVEDMETADATA
END

