CERES Software Bulletin 97-02
February 12, 1997

An Overview of ECS Metadata, MCF, and ESDT

Alice Fan (t.f.fan@larc.nasa.gov)
Joe Stassi (j.c.stassi@larc.nasa.gov)

1.0 Purpose

This bulletin is written for the purpose of sharing metadata knowledge with members of the
CERES Data Management Team. It begins by explaining ECS metadata terminology. It then
gives some details about the Metadata Configuration File (MCF) and Earth Science Data Type
(ESDT). The information in this bulletin was extracted from the ECS metadata documents listed
in Appendix A. These documents can be accessed at the following web location:
http://edhs1.gsfc.nasa.gov

2.0 Metadata Terms Used by ECS

Metadata are information about data. They are used for search, production, distribution, and other
services required by users of ECS. Metadata identify the data and describe characteristics such as
the origin, quality, and condition of the data.

There is a lot of terminology associated with ECS metadata. Below is a summary of some of the
terms, along with a brief description of what they mean.

2.1 Core and Product-specific Metadata
The two major categories of ECS metadatacare andproduct-specific

* Core metadata consist of a fixed number of attributes common to all earth science data sets.
A certain subset of core metadata is required by every product in the ECS. Thmastze
tory metadata.

* Product-specific metadata are data which pertain to a particular data product or multiple
products, but not to all.

2.2 Discipline, Granule and Collection Level Metadata
Metadata can also be classified at the following lewvéilscipline, granule, andcollection.
* Discipline level metadata are attributes which associate data with a certain discipline.

» Granule level metadata are metadata associated with a granule, where a granule is the small-
est accumulation of data that is individually managed, archived, and distributed. Within the
CERES project, a granule can be thought of as an individual instance of a data file. There are
a few exceptions to this, such as the input geostationary narrowband radiance data which is
received as multi-file granules.

» Collection level metadata are metadata associated with a collection, where a collection con-
sists of one or more related granulessirgle-type collectioncontains only one kind of

granule type. Anulti-type collection contains differing types of granules. Examples of col-
lections in CERES include all the files of a certain data product type, such as the SSF. There
could also be more than one collection associated with a data product type. For example,
there could be one collection of TRMM SSFs and another collection of AM-1 SSFs.

Granule and collection level metadata will include both core and product-specific metadata.

2.3 Inventory and Archive Metadata

Another way of categorizing metadata is in termmedéntory, archive, andstructural meta-
data. Only inventory metadata are required for each product.

* Inventory metadata include all core metadata and the searchable product-specific metadata.
During PGE processing, these data are written directly to the data product. They are also writ-
ten to an ASCII file for input into the inventory database.

 Archive metadata are stored only on the data product and consist of the non-searchable prod-
uct-specific metadata.

Inventory and archive metadata are written to either HDF-EOS or HDF output files by Toolkit
calls in the PGE science software. For non-HDF output files, the current plan is to store meta-
data on the files in a header format similar to that used for ERBE products.

» Structural metadata describe information about particular components within the granule
such as geolocation information and variable name, type, and dimension. These are some-
times called sub-granule information and are in contrast to both inventory and archive meta-
data which contain information about the entire granule. Structural metadata are used for
subsetting and subsampling of components by parameter and location. They apply only to
HDF-EOS files. HDF-EOS tools automatically generate the structural metadata for swath,
grid, and point structures. The user does not need to take any special action to produce them.

3.0 Metadata Control File

During PGE processing, each output file type requires a Metadata Configuration File (MCF). The
MCFs list the metadata attributes to be associated with the outputs. They also list the location
where the value for each attribute can be found. Since no dynamic information is expected to be
kept within the MCFs, they should remain relatively constant from run to run.

An MCF template is supplied with the SDP toolkit and lists the various possible metadata
attributes. The template is located in the toolkit runtime directory: $PGSDIR/runtime.

The format of the MCF is Object Description Language (ODL), a human-readable format. An
explanation of ODL is given below for informational purposes. However, keep in mind that con-
structingan MCF is largely a matter of taking the template provided and editing it for a specific
product. Editing must be in line with the rules for mandatory and non-mandatory metadata
attributes laid down in Appendix B of DID311. There is also related information in Appendix J of
the Toolkit User's Guide. Beware that DID311 is still under review, and the current version of the
Toolkit User’s Guide applies to Release A only.

3.1 ODL Format Overview

The three basic components of ODL formatgmaips, objects, andparameters Metadata
attributes are stored in the MCF as objects. The components of objects are parameters. Col-
lection of objects are groups. ODL also allows for superset groups containing nested groups.
Any time any of these words (“group”, “object”, “parameter”) occur in this bulletin, the ODL-
meaning for the word should be assumed rather than any other specific or general meaning

which the word may have.

Three other concepts covered in this sectiomaster groups multiple-class objects and
self-describing objects.A master group is a special superset grouping used to distinguish
between inventory, archive, and structural metadata. A multiple-class object structure allows
two or more metadata attributes to have the same attribute name. Self-describing attributes
are used for supplying product-specific metadata.

3.2 Master Groups

A master group is the smallest unit of metadata that is written to output. Therefore, all the
metadata attributes on an MCF must be contained within master groups.

There are two possible master groups found on the MCF: one for inventory metadata and one
for archive metadata. The inventory metadata master group contains attributes which are writ-
ten to both the inventory database and to the data product. These metadata are required for
each MCF. The archive metadata master group contains attributes which are written only to
the data product. These metadata are optional. A third master group is for the structural meta-
data, but this is not handled on the MCF.

Table 1 below shows a high-level, master group view of the MCF.

Group = INVENTORYMETADATA
GroupType = MASTERGROUP
[objects and/or nested groups]

End_Group = INVENTORYMETADATA

[Group = ARCHIVEMETADATA
GroupType = MASTERGROUP
[objects and/or nested groups]

End_Group = ARCHIVEMETADATA]

Table 1: An MCF consists of one or two Master
Groups

The statemenGroup = INVENTORYMETADATAs the identification format used by all
groups in the MCF. To distinguish master groups from the other groups, the statement,
GROUPTYPE = MasterGrqy must follow the GROUP statement.

3.3 Groups

In general, groups associate related attributes together. We've already seen a special case of
groups with the master groups.

A group begins with the stateme@aROUP = GroupNamand ends with the statement
END_GROUP = GroupNamgéhe keywords and values in these statements are case-insensi-

tive). Between th&ROUPandEND_GROUPstatements are objects and/or nested groups.
The format for ODL groups is shown in Table 2 below.

Group = GroupName
[objects and/or nested groups]
End_Group = GroupName

Table 2: ODL Group Format

Keep in mind when creating an MCF that the grouping structure and names should be copied
from the template.

3.4 Objects

The object is the basic component of the MCF. Each object defines a metadata attribute. The
object structure must start wi@BJECT = ObjectNamand end wittEND_OBJECT =
ObjectName The ObjectName relates directly to the attribute name. The general format for
the object structure is shown in Table 3 below.

Object= ObjectName
Data_Location = {"MCF", "PCF, "PGE", or "NONE"}
Type = {'INTEGER", "UNSIGNEDINT", "DOUBLE",
"STRING",or "DATETIME"}
Num_Val= {1, 2, ...}
Mandatory = {"TRUE", or "FALSE"}
[Class ="M"]
[Value ="xxxx"]
End_Object = ObjectName

Table 3: ODL Object Format

A list of mandatory attributes can be found in Appendix B of the ECS document DID311 or in
Appendix J of the Toolkit User’s Guide.

3.5 Parameters

In each object, there are only six possible parameters (as seen in Table 3). They are (1)
Data_Location, (2) Type, (3) Num_Val, (4) Mandatory, (5) Class and (6)Value. The first

four parameters should appear in every object. The Class parameter is required only for mul-
tiple class objects. The Value parameter is required only if the attribute value is defined within
the MCF itself. The parameter keywords are case-insensitive. The order of the parameters
within the objects is not critical.

Notes on object parameters:

1) Data_Location: The Data_Location parameter has only four possible valid€F" |
“PCF” , "PGE”, and“NONE”. These values must be capitalized and in quotes.
* “MCF” implies that the value is defined within the object using the Value parameter.
Only constant-valued attributes are stored in the MCF (e.g. product ShortName).
« “PCF” implies that the Process Control File (PCF) has an entry for the attribute.
* “PGE” implies that the PGE will assign a value to the attribute during runtime.
* “NONE” is valid only for containment objects of multiple class objects (see Section
3.6). TheClass = “M” parameter must be set in this case.

2) Type: The Type parameter allows the metadata tools to cast the data type of the attribute.
Currently, there are five available typetNTEGER”, “UNSIGNEDINT”, “DOUBLE”",
“STRING”, and“DATETIME” . These values must be capitalized and in quotes.

3) Num_Val: The Num_Val parameter allows an attribute to contain an array of values rather
than just a single value. Num_Val should be set to the maximum number of values to be
held by the attribute. This value sets a limit only, and any number up to the maximum will
be acceptable.

4) Mandatory: The Mandatory parameter has possible valusSRJE” or“FALSE”. The
values must be capitalized and in quotes. Pre-defined attributes specified as mandatory in
DID311 should all be flagged &BRUE” . If a mandatory attribute has not had a value
assigned to it before the metadata are written, an error message will be written to the
LogStatus file.

5) Class The Class parameter should only be present for multiple-class objects. It has only
one possible valuéM” , which stands for multiple class object. The Class parameter is
explained in more detail in the next section.

6) Value: The Value parameter is present only wbatta_Location = “MCF”. Currently,
certain mandatory attributes, e.g. ShortName, are required to be defined within the MCF.

3.6 Multiple Class Objects

A multiple-class object is a way to allow two or more metadata attributes to have the same
attribute name. A multiple-class object is created by including the Class parameter and setting
it equal to “M”. Table 4 shows an example of the multiple class objects, SensorShortName
and InstrumentShortName.

Group = SensorCharacteristic

Object = SensorCharacteristicContainer
Class = "M"
Data_Location = "NONE"
Mandatory = "FALSE"

Object = SensorShortName
Data_Location = "PGE"

Class = "M"
Type = "STRING"
Num_Val =1

Mandatory = "FALSE"
End_Object = SensorShortName

Object = InstrumentShortName
Data_Location = "PGE"

Class = "M"
Type = "STRING"
Num_Val =1

Mandatory = "FALSE"
End_object = InstrumentShortName

End_Object = SensorCharacteristicContainer

End_Group = SensorCharacteristic

Table 4: Two Multiple Class Objects (SensorShortName and
InstrumentShortName) with Containment Object
(SensorCharacteristicContainer) and Bounding Group
(SensorCharacteristic)

Multiply defined objects are usually bounded by a containment object, and they must be
bounded by a group name. In the example above, the containment object is SensorCharacter-
isticContainer and the bounding group is SensorCharacteristic.

The container object does not represent a specific metadata attribute in the sense that normal
objects do, and it should therefore contain the pararDetier Location = “NONE”. The

class parameter must be seCloASS = “M” for both the container object and the objects

within the container.

3.7 Self-Describing Objects

There is a category of objects in the MCF template which have been labelled as “self-describ-
ing.” These objects will house attributes relating to Parameter, AdditionalAttribute, Sensor-
Characteristics, and PlatformCharacteristics, and to a lesser extent VerticalSpatialDomain,
Locality, and RegularPeriodic time. Two self-describing objects, AdditionalAttribute and
Parameter, are of particular interest to us because they can be used to supply product specific

metadata to the MCF. Only Parameter, a multiple-class object located in the InformationCon-
tent group, is supported in Release A. This group is shown in Table 5.

GROUP = InformationContent

OBJECT = InformationContentContainer
CLASS ="M"
Mandatory = "FALSE"
Data_Location = "NONE"

OBJECT = ParameterName
Data_Location = "PGE"
TYPE ="STRING"
CLASS ="M"
NUM_VAL =1
Mandatory = "FALSE"
END_OBJECT = ParameterName

OBJECT = ParameterValue
Data_Location ="PGE"
CLASS ="M"
TYPE ="STRING"
NUM_VAL =1
Mandatory = "FALSE"
END_OBJECT = ParameterValue

END_OBJECT = InformationContentContainer
END_GROUP = InformationContent

Table 5: Examples of self-describing objects

As an example of how we can use self-describing objects, in CERES we will want to include
production date/time information in our granule metadata. This attribute is not currently
available on the MCF template, so we will have to use self-describing objects to get this infor-
mation into the metadata. This can be done with ParameterName and ParameterValue, setting
ParameterName to “productiontime” and ParameterValue to a string representation of the
date/time. Specifics on how to write multi-class objects is handled in CERES Software Bulle-
tin 97-03.

4.0 Earth Science Data Type

An Earth Science Data Type (ESDT) is required for every product stored within the Data Server.

It has many functions, but as relating to metadata, it is the mechanism by which core and product-
specific metadata attributes for each data collection and granule are made known to the Science
Data Server. Each collection needs one ESDT.

There are two components which define an ESDT: a Descriptor File and a Dynamic Link Library
(DLL). The Descriptor File is an ASCII file which contains collection level metadata in addition

to the granule level metadata described in the MCF. It also contains the ECS Data Server services
which can be invoked for the collection. Examples of the granule level services are insert,
acquire, subsetting, subsampling, and averaging. Examples of the collection level services are
search and retrieve. The DLL consists of C++ code which implements the services defined in the
Descriptor File. The contents of the Descriptor File and the Dynamic Link Library are stored in

the Data Server.

The Science Data Server, however, does not make direct use of the attribute information contained
in the Descriptor. The granule level metadata stored in the Data Server, both core and product-
specific, are used by the Planning Subsystem to create the MCF file for each production run.

Collection level metadata are not searchable via the Science Data Server. Collection level infor-
mation is passed from the Data Server to the Client, Interoperability, Data Management, and
Advertising Subsystems to be searched.

ronNE

o

Appendix A: Reference Documents

Release A SCF Toolkit Users Guide, November 1996

An ECS Data Provider’'s Guide to Metadata, August 1996

The Population Process for ECS Metadata in Release A, August 1996

Science Data Processing Segment (SDPS) Database Design and Database Schema
Specifications for the ECS Project, December 1995

Thoughts on HDF-EOS Metadata, December 1995

