
September 18, 1995 1

CERES Software Bulletin 95-13

CERESlib Access and the CERES makemake Utility, September 18, 1995
-Joe Stassi (j.c.stassi@larc.nasa.gov)

1.0 Purpose:
This bulletin has a dual purpose. First, it describes how to load the CERESlib library routines

into Fortran 90 programs. This requires adding proper flags and object files to the code compile
and link commands.

This bulletin also explains the CERES makemake utility which automates the creation of For-
tran 90 Makefiles. These Makefiles automatically include the compilation and link requirements
for the CERESlib interface. A simple example with an exercise is provided at the end of the bulle-
tin to illustrate the simplicity of using makemake. For those who do not particularly care about the
other details, it is permissible at this time to jump directly to the example and exercise in
Section 4.0.

2.0 Accessing CERESlib Libraries
The procedures outlined in Sections 2.2 and 2.3 below are automated by the makemake utility

described in Section 3.0.

2.1 Checking for $CERESLIB Directory Visibility
The CERES project system administrators have set up directories, mounts, and environ-

ment variables so that any machine needing visibility to CERESlib will have it without
requiring any special procedures by the user of that machine.

The CERESlib routines are located under the $CERESLIB directory. To test whether
your machine has $CERESLIB visibility, type the following command.

ls $CERESLIB

If you get “Undefined variable,” or any response other than a directory listing which
includes the makemake and cereslib.a files, then your machine has not been configured for
CERESlib. Please direct any questions to your system administrator or to the e-mail address
at the top of this memo.

2.2 Compilation Flag
To USE CERESlib modules, the compiler needs the CERESlib module interface infor-

mation at compilation. This information is located in the $CERESLIB/Mod subdirectory.
To make this information available to the compiler, add the -I$CERESLIB flag to thecom-
pilation command.

f90 -I$CERESLIB/Mod ...

September 18, 1995 2

This flag is required whenever compiling files which contain references to CERESlib
modules.

2.3 Linking Object Libraries
If a program USEs CERESlib modules, then the linker needs to know where to find the

object code for those modules. The CERESlib object code is contained within three sepa-
rate library files within the $CERESLIB directory: data_products.a, toolkit.a, and cereslib.a.
The CERESlib contents and documentation are still under development and will be avail-
able soon under the ASD Home Page on WWW.

To make the object libraries available at link time, add them to the end of the f90link
command. Here is how the libraries should be listed on the link command line.

$CERESLIB/data_products.a

$CERESLIB/toolkit.a

$CERESLIB/cereslib.a

Only the libraries which contain modules used in the program need be added at link time,
though it doesn’t hurt to include all three. Whenever all three are listed, they should be
listed in the order shown above. The order is important because of interdependencies
between the libraries; the data_products.a library uses the toolkit.a library, and both of these
use the cereslib.a module.

f90 -o myprog.exe myprog.f90 ... $CERESLIB/cereslib.a

3.0 Using makemake

3.1 What is a Makefile?
A Makefile is like a script file in that it defines a sequence of shell commands to be exe-

cuted. What distinguishes a Makefile is that it allows the user to define dependencies so that
certain commands are performed only if their “target” has been outdated.

The natural and most common application for Makefiles is code compilation. With a
Makefile, a user can list the sequence of commands necessary for creating an executable
program from a collection of source code files. The Makefile will not only contain the
instructions for compiling the individual parts and then linking them together--this can be
done with a script file--but it will also define the interdependencies between the parts and
update only those portions which have been outdated. Thus, if a program consists of 100
different routines separated into individual source code files, and one routine is modified,
the Makefile will recompile only the modified routine and any routines which are dependent
upon it. This is more elegant than a compilation script which would recompile all 100 rou-
tines regardless of whether or not they were affected by the change.

3.2 What is makemake?
Makemake is a perl script, retrieved from the Fortran Market on the Internet, which cre-

ates Makefiles for f90 programs. Unlike f77 programs where compilation order of the indi-

September 18, 1995 3

vidual parts is irrelevant, the USE facility in f90 requires that USE’d modules get compiled
before any routines or modules which USE them. In a program consisting of several differ-
ent modules, the interdependencies between modules can get complicated, and the effort
required to construct a Makefile which properly describes these interdependencies can be
quite significant. Makemake automates this process for you.

The CERES makemake script, available in the $CERESLIB directory, is actually a mod-
ified version of the one retrieved from Internet. Modifications have been made to handle
some peculiarities of the NAG 90 compiler related to the .mod files. But more significantly,
the makemake script has been modified to automatically add compilation and link flags nec-
essary for loading CERESlib routines.

3.3 Aliasing the makemake Command
To alias the makemake command, add the following line to the .cshrc file in the top

directory of your account.
alias makemake ‘$CERESLIB/makemake’

This will define a “makemake” command on your account which points to the makemake
script in the $CERESLIB directory. This command will be automatically defined whenever
you begin a new session or open a new window, though it will be necessary for you to
source your .cshrc file in order to activate the command in any current sessions.

3.4 Creating an Executable with a makemake Makefile
Here are procedures for creating and using makemake Makefiles.

a) Place all source files associated with a particular program into aseparate directory.
(Note: the makemake utility will not work properly if more than one (main) program
is present in the directory.)

b) Create a Makefile by invoking the makemake command in that directory. In the fol-
lowing example, the Makefile target is called prog1.exe.

makemake prog1.exe

c) A Makefile should now exist in the directory. Use it to create the executable file
prog1.exe.

make

The above procedures work for any f90 program regardless of its dependency on
CERESlib routines. This, of course, is contingent upon the availability of a f90 compiler on
your workstation, as well as code which is free from syntax errors.

3.5 A Word about ECS Toolkit INCLUDE Files
ECS Toolkit INCLUDE files have been given the “.f” extension, which was an unfortu-

nate choice since the makemake utility interprets these files as compilable f77 files. If these
files are within your source code directory when you execute makemake, then the resulting
Makefile will attempt to compile these files into object code.

Solution: Remove from the Makefile all “.o” references corresponding to ECS Tool-
kit “.f” INCLUDE files. These references will be found near the top of the Makefile on the
line starting with “OBJS_F = “.

September 18, 1995 4

4.0 A Simple Example: Approximating the Earth’s surface area.
In this section, an example is given which specifically uses the CERESlib interface. As a sug-

gested exercise, the reader should use makemake to compile and run this program on his/her
machine. The steps for this exercise are outlined in Section 4.4.

4.1 Algorithm

The test_area program was written to validate the region_area function found in the
CERESlib reference_grid module. It uses the following algorithm.

a) Using the region_area function, sum the area of all 26,410 regions on the globe.

b) Calculate an independent estimate of the earth’s total surface area using the spheri-
cal area formula, A = 4πR2, where R = the mean radius of the earth.

c) Compare the region area sum to the surface area estimate. Find the percent error of
the region area sum, assuming that the surface area estimate is correct.

4.2 Program Area_test.f90
Here is the source code for the area_test program.

!--!
PROGRAM area_test

USE ceres_constants , only : PI, EARTH_RADIUS_MEAN
USE f90_kind , only : real8
USE reference_grid , only : number_of_zones, &

number_of_regions, region_area
IMPLICIT NONE
REAL(real8) :: region_area_sum, earth_surface_area
REAL(real8) :: error, percent_error
INTEGER :: zone_no

!*** sum the areas from all regions on the globe
region_area_sum = 0._real8
DO zone_no = 1, number_of_zones()

region_area_sum = region_area_sum + &
number_of_regions(zone_no) * region_area(zone_no)

END DO

!*** estimate earth surface area using spherical formula
earth_surface_area = 4 * PI * EARTH_RADIUS_MEAN ** 2

!*** output the results
WRITE(*,'(/)')
WRITE(*,'(/a,f15.4,a)') 'Earth surface area = ',&

earth_surface_area, ' sq km'
WRITE(*,'(a,f15.4,a)') 'Sum of region areas = ', &

region_area_sum, ' sq km'

!*** calculate and output the error
error = earth_surface_area - region_area_sum
percent_error = error / earth_surface_area * 100.

September 18, 1995 5

WRITE(*,'(a)') '---'
WRITE(*,'(a,f15.4,a)') 'error = ', error, ' sq km'
WRITE(*,'(a,f15.4,a)') 'percentage error = ', &

percent_error, '%'
WRITE(*,'(/)')

STOP
END PROGRAM area_test

!--!

4.3 CERESlib Routines and PARAMETERS in Area_test
The area_test program uses the following CERESlib PARAMETERS and routines.

a) From ceres_constants module: PI and EARTH_RADIUS_MEAN

b) From f90_kind module : real8

c) From reference_grid module: number_of_zones,region_area, and
number_of_regions

4.4 Exercise
This exercise demonstrates the “invisible to the user” interface to CERESlib provided by

the CERES makemake utility.

Preliminary “one time” pr ocedures

a) Verify $CERESLIB directory visibility. (see Section 2.1)

b) Alias the makemake command. (see Section 3.3)

Exercise steps

a) Place the file area_test.f90 into a separate directory in your account. The file can be
obtained from the subdirectory $CERESLIB/Source/Example.

b) Type makemake at.exe (to create a Makefile)

c) Typemake (to create the executable file at.exe)

d) Typeat.exe (to run the program)

