
CERES Software Bulletin 95-11

Link Editing Basics, September 5, 1995

1.0 Purpose
To provide programmers with a simplified, quick overview and reference of how libraries are
searched during compile, linking, and run times.

2.0 Originator
Marsha Sherland (m.m.sherland@larc.nasa.gov)

3.0 Description
Linking programs which rely on symbol resolution from libraries other than those supplied with
the primary programming language in which it was written can be confusing and frustrating. The
rules that the compilers and linkers follow for such symbol resolution are outlined here in a sim-
plified form for reference. For a more thorough discussion of this subject, see the man page for
‘ld’ and the AnswerBook discussion in the “Utilities and Libraries” section.

When you compile and link a program, the output can be either object code or executable code.
The executable code will be complete or incomplete depending on how symbols are resolved, and
runnable or non-runnable depending on the existance of an initial entry point. The code is com-
plete if it does not need symbols during run-time; otherwise, it is incomplete. The code is runna-
ble if it contains an initial entry point; otherwise, it is non-runnable. The actual code plus the
options on the command line for the compiler or the ‘ld’ command will determine which type of
output is produced.

The command line for compiling and/or linking specifies a list of code in source or object form
and can specify libraries and directories to search for unresolved symbol resolution. Source or
object code is processed in the order specified on the command line. Each piece processed is
concatenated to the last to create an executable file, a.out by default. As each piece of code is pro-
cessed, any unresolved symbols are resolved in some way if possible.. If static linking is in effect,
then the resolution produces code concatenated directly into the executable file. If dynamic link-
ing is in effect, then the resolution is handled by marking the executable file with information so
that the symbol can be resolved or shared during run-time. With dynamic linking, the symbol res-
olution information actually contained in the executable file varies depending on how the appro-
priate library for that symbol was found. If the appropriate library was found via the -L options or
found in one of the standard libraries, then directory and library information is noted. If the
appropriate library was found due to the LD_LIBRARY_PATH variable, then only library infor-
mation is noted. At run-time, if only library information has been noted, then thecurrent
LD_LIBRARY_PATH directories are searched. This creates a very flexible, controllable environ-
ment for the programmer but adds a layer of complexity that can easily be misunderstood. The
two flowcharts on the next 2 pages gives asimplified overview of this process.

Note that the command line can specify some modules to be linked statically and other modules

to be linked dynamically by using several -B options on the line, thus toggling the -B option from
static to dynamic as desired.

Some definitions are included here for clarity.

.a file:
Archive format library file. Modules are often in object code. Library names are
of the form lib<x>.a where <x> is the name of the library as referred to by the -l
option. These libraries must be used when code is being statically linked.

a.out file:
File in executable format. May or may not be complete or runnable. It is
complete if all symbols are resolved statically; otherwise it is incomplete. It
is runnable if it has an initial entry point; otherwise it is nonrunnable.

dynamically linked file:
An executable in which some symbols remain unresolved until run-time. Specified on
the command line with the -B (-Bdynamic) option. See ld.so.

ld:
The static link editor. ‘ld’ combines a variety of object files to produce an exeutable
a.out formatted file.

ld.so:
The dynamic link editor. ‘ld.so’ is used when running an executable that is not complete
and therefore needs symbol resolution or code sharing. Performs link editing operations
that were not done by ‘ld’. Maps in and binds the required shared object file.

.o file:
Object code. Produced by a compiler command (f90, acc, etc.) with the -C option.
Also produced by a link edit command (ld) with a -r option.

.so files:
Shared object library. Modules are in a.out format but are not runnable since they lack
an initial entry point. Library names are of the form lib<x>.so.<ver> where <x> is the
name of the library as referred to in the -l option, and <ver> is a major/minor version
number combination.

statically linked file:
An executable which has all processed object modules concatenated directly into the
executable file. Specified on the command line with the -B (-Bstatic) option.

 Start

Process

 Get -l option
 name, <x>

Error
 Form library
 filename

Search directo-
ries for filename

 Search for
 symbol

 Is file
 found
 ?

 Is
symbol
 found

 Next
 -l
exists

Yes

No

Yes

No

No

Yes

if -Bstatic, search for lib<x>.a
if -Bdynamic, search for lib<x>.a OR
 lib<x>.so.<ver>.
if -Bdynamic, and BOTH .a and .so
 libraries are found in same directory,
 use the .so form
NOTE: Dynamic is the default

(1) search directories specified via
 -L options in the order specified.
(2) search directories specified
 via LD_LIBRARY_PATH in the
 order specified.
(3) search the standard default
 libraries, /usr/lib, /usr/5lib, and
 /usr/local/lib.

PROCESS

End

 Concatenate object to
 a.out

Record directory location and
library information for sharing/
resolution at execution time
See NOTE below.

Record information for search
of LD_LIBRARY_PATH
directories at execution
time. See NOTE below.

Symbol
from .a
form of
library ?

LD_
LIBRAR
Y_PATH
library ?

Yes

No

No

Yes

NOTE: An incomplete but runnable a.out file will use ld.so to resolve and bind
shared code. For any unresolved symbols that do NOT have location
and library information, ld.so will FIRST check the directories in LD_LIBRARY_
PATH, then the directories listed with the -L option, and then the standard
default libraries, /usr/lib, /usr/5lib, and /usr/local/lib. NOTE: this is a DIFFERENT
order of search from the order used during the linking process.

[using .so
lib form]

