Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

Final Report: Elimination of VOC's in the Synthesis and Application of Polymeric Materials Using Atom Transfer Radical Polymerization

EPA Grant Number: R826735
Title: Elimination of VOC's in the Synthesis and Application of Polymeric Materials Using Atom Transfer Radical Polymerization
Investigators: Matyjaszewski, Krzysztof
Institution: Carnegie Mellon University
EPA Project Officer: Karn, Barbara
Project Period: October 1, 1998 through September 30, 2001
Project Amount: $330,000
RFA: Technology for a Sustainable Environment (1998)
Research Category: Pollution Prevention/Sustainable Development

Description:

Objective:

Atom transfer radical polymerization (ATRP) uses a transition metal catalyst to prepare well-defined (co)polymers with controlled molecular weight, polydispersity, composition, and functionalities. This innovative technique enables facile synthesis of novel environmentally friendly materials such as polar thermoplastic elastomers, coatings with the reduced amount of VOCs, or even solventless coatings. Other specialty materials such as efficient non-ionic surfactants, dispersants, lubricants, and adhesives, also are readily achievable. Thus, ATRP has a potential strong impact on various environmental aspects, and can help to reduce or eliminate VOCs from chemical processes and to lower hazardous waste costs.

The proposed research was focused on further improvement of ATRP by performing fundamental studies to develop: next generation catalysts (lower the amount of catalyst required and develop solid-supported catalysts); use of water-borne polymerization systems (suspensions, emulsion, homogeneous polymerizations); and environmentally friendly polymerization processes and products.

Summary/Accomplishments (Outputs/Outcomes):

We have focused on three areas:
  1. Environmentally friendly products. A number of well-defined water-soluble homopolymers, amphiphilic block copolymers, and gradient copolymers have been synthesized. These products potentially can be applied as non-ionic surfactants and blend compatibilizers. In addition, we prepared polar thermoplastic elastomers (based on [meth]acrylates), telechelic products for solventless coatings, and self-plasticizing PVC.

  2. Water and CO2 as reaction medium for ATRP. We have successfully performed ATRP in CO2 by application of fluorinated ligands to complex Cu catalysts. Polymerization in water was carried out under homogeneous conditions (2-hydroxyethyl acrylate) and in heterogeneous systems (suspensions, emulsions, and miniemulsions). The water-borne ATRP led to stable latexes for various acrylates, methacrylates, and styrenes. Moreover, the first block copolymerization also was successful for water-borne systems. A better mechanistic understanding of the novel system was achieved in terms of kinetics, molecular weight control, and colloidal stability. A key for the control in water is a proper choice of ligands (strongly hydrophobic) and surfactants (non-ionic). Stable latexes with particle size below micrometer were obtained using conventional radical initiators or miniemulsion processes. These latexes potentially can be used as water-based coatings.

  3. Improvement on the catalytic system. Fundamental studies were carried out to gain a deeper understanding of the catalyst structures and correspondingly the activity in ATRP. The metal complex remaining in the polymer product can be effectively removed using ion- exchanging resins. More efficient catalysts were developed. We have used Cu-catalysts complexed with polydentate and tripodal ligands. These more efficient catalysts allowed the reduction of their concentrations from 1 percent to 0.01 percent versus monomer. Ligands such as TREN are excellent for polymerization of various acrylates. In addition, we have used various immobilized and hybrid catalysts for their easier recovery.

We have accomplished the planned activity that was summarized in more than 30 publications and one patent; and we also presented at several national and international meetings. The research funded by EPA has been relevant not only to academia, but also to industry, because ATRP and other controlled/living radical polymerizations should be commercialized this year.


Journal Articles on this Report : 23 Displayed | Download in RIS Format

Other project views: All 46 publications 23 publications in selected types All 23 journal articles

Type Citation Project Document Sources
Journal Article Davis KA, Charleux B, Matyjaszewski K. Preparation of block copolymers of polystyrene and poly (t-butyl acrylate) of various molecular weights and architectures by atom transfer radical polymerization. Journal of Polymer Science Part A-Polymer Chemistry 2000;38(12):2274-2283 R826735 (2000)
R826735 (Final)
not available
Journal Article Destarac M, Boutevin B, Matyjaszewski K. Polychloroalkanes as ATRP initiators: Application to the synthesis of block copolymers from the combination of conventional radical polymerization and ATRP. Abstracts of Papers of the American Chemical Society 1999;218(POLY Pt 2):290 R826735 (Final)
not available
Journal Article Gaynor SG, Qiu J, Shipp D, Matyjaszewski K. Controlled/living radical polymerization applied to water-borne systems.. Polymeric Materials Science And Engineering Preprints. 1998;31(17):5954-5954. R826735 (1999)
R826735 (Final)
not available
Journal Article Kickelbick G, Paik HJ, Matyjaszewski K. Immobilization of the copper catalyst in atom transfer radical polymerization. Macromolecules 1999;32:2941-2947. R826735 (1999)
R826735 (Final)
not available
Journal Article Matyjaszewski K, Qiu J, Shipp D, Gaynor S. Controlled living radical polymerization applied to water-borne systems. Macromolecular Symposia 1999. R826735 (1999)
R826735 (Final)
not available
Journal Article Matyjaszewski K, Gaynor SG. Controlled/'living' radical polymerization: The next frontier in polymer science?. Abstracts of Papers of the American Chemical Society 1999;218(POLY Pt 2):320 R826735 (Final)
not available
Journal Article Matyjaszewski K. Transition metal catalysis in controlled radical polymerization: atom transfer radical polymerization. Chemistry - A European Journal 1999;5:3095-3102. R826735 (1999)
R826735 (Final)
not available
Journal Article Matyjaszewski K. Environmental aspects of controlled radical polymerization. Macromolecular Symposia 2000;152(1):29-42. R826735 (1999)
R826735 (Final)
R824995 (Final)
not available
Journal Article Matyjaszewski K, Qiu J, Tsarevsky N, Charleux B. Atom transfer radical polymerization of n-butyl methacrylate in aqueous dispersed systems: a miniemulsion approach. Journal of Polymer Science Part A - Polymer Chemistry 2000;38:4724-4734. R826735 (2000)
R826735 (Final)
not available
Journal Article Matyjaszewski K, Qiu J, Shipp DA, Gaynor SG. Controlled/'living' radical polymerization applied to water-borne systems. Macromolecular Symposia. 2000;155:15-29. R826735 (2000)
R826735 (Final)
not available
Journal Article Matyjaszewski K, Ziegler M, Arehart S, Greszta D, Pakula T. Gradient copolymers by atom transfer radical copolymerization. Journal of Physical Organic Chemistry 2000;13:775-786. R826735 (2000)
R826735 (Final)
not available
Journal Article Matyjaszewski K, Pintauer T, Gaynor S. Removal of copper-based catalyst in atom transfer radical polymerization using ion exchange resins. Macromolecules 2000;33:1476-1478. R826735 (2000)
R826735 (Final)
not available
Journal Article Matyjaszewski K, Shipp DA, Qiu J, Gaynor SG. Water-borne block and statistical copolymers synthesized using atom transfer radical polymerization. Macromolecules, 2000, Volume: 33 , Number: 7 (APR 4) , Page: 2296-2298. R826735 (2000)
R826735 (Final)
not available
Journal Article Matyjaszewski K, Pintauer T, Gaynor S. Removal of catalyst in atom-transfer radical polymerization using cross-linked polystyrene ion-exchange resins. Abstracts of Papers of the American Chemical Society 1999;218(POLY Pt 2):497 R826735 (Final)
not available
Journal Article Matyjaszewski K. Transition-metal-catalyzed atom-transfer radical polymerization. Abstracts of Papers of the American Chemical Society 2000;219(POLY Pt 2):263 R826735 (Final)
not available
Journal Article Paik HJ, Kickelbick G, Matyjaszewski K. Immobilization of the copper catalyst in atom-transfer radical polymerization. Abstracts of Papers of the American Chemical Society 1999;218(POLY Pt 2):503 R826735 (Final)
not available
Journal Article Patten TE, Matyjaszewski K. Copper(I)-catalyzed atom transfer radical polymerizations. Accounts of Chemical Research 1999;32:895-903. R826735 (1999)
R826735 (Final)
not available
Journal Article Pintauer T, Jasieczek CB, Matyjaszewski K. Electrospray ionization mass spectrometric study of Cu-I and Cu-II bipyridine complexes employed in atom transfer radical polymerization. Journal of Mass Spectrometry 2000;35(11):1295-1299 R826735 (2000)
R826735 (Final)
not available
Journal Article Qiu J, Shipp D, Gaynor SG, Matyjaszewski K. The effect of ligands on atom transfer radical polymerization in water-borne systems. ACS Polymer Preprints 1999;40(2):418-419. R826735 (1999)
R826735 (Final)
not available
Journal Article Qiu J, Pintauer T, Gaynor S, Matyjaszewski K, Charleux B, Vairon J-P. Mechanistic aspect of reverse atom transfer radical polymerization of n-butyl methacrylate in aqueous dispersed system. Macromolecules 2000;33:7310-7320. R826735 (2000)
R826735 (Final)
not available
Journal Article Qiu J, Shipp D, Gaynor S, Matyjaszewski K. Effect of ligands on atom-transfer radical polymerization in waterborne systems. Abstracts of Papers of the American Chemical Society 1999;218(POLY Pt 2):495 R826735 (Final)
not available
Journal Article Shipp DA, McMurtry GP, Gaynor SG, Qiu J, Matyjaszewski K. Waterborne block copolymer synthesis and a simple and effective one-pot synthesis of acrylate-methacrylate block copolymers by atom-transfer radical polymerization. Abstracts of Papers of the American Chemical Society 1999;218(POLY Pt 2):510 R826735 (1999)
R826735 (Final)
not available
Journal Article Xia JH, Johnson T, Gaynor SG, Matyjaszewski K, DeSimone J. Atom transfer radical polymerization in supercritical carbon dioxide. Macromolecules 1999;32(15):4802-4805 R826735 (1999)
R826735 (Final)
not available
Supplemental Keywords:

water, air, chemicals, solvents, heavy metals, VOC, waste minimization, green chemistry, waste reduction, innovative technology. , Sustainable Industry/Business, Scientific Discipline, RFA, Technology for Sustainable Environment, Sustainable Environment, Environmental Chemistry, heavy metals, chemical reaction systems, cleaner production, environmentally-friendly chemical synthesis, Volatile Organic Compounds (VOCs), catalysts, green chemistry, alternative chemical synthesis, environmentally benign solvents, polymer design, alternative materials, solvent substitute, atom transfer radical polymerization
Relevant Websites:

http://polymer.chem.cmu.edu Exit EPA icon

Progress and Final Reports:
1999 Progress Report
2000 Progress Report
Original Abstract

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.