Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

New Methods for Assessment of Pollution Prevention Technologies: Integration of Failure Modes and Effects Analysis (FMEA), Life Cycle Analysis (LCA), and Petri Net Modeling

EPA Grant Number: R828541
Title: New Methods for Assessment of Pollution Prevention Technologies: Integration of Failure Modes and Effects Analysis (FMEA), Life Cycle Analysis (LCA), and Petri Net Modeling
Investigators: He, David , Olson, Walter
Institution: University of Illinois at Chicago
Current Institution: University of Illinois at Chicago , University of Toledo
EPA Project Officer: Karn, Barbara
Project Period: August 21, 2000 through August 20, 2003 (Extended to September 30, 2004)
Project Amount: $250,000
RFA: Technology for a Sustainable Environment (1999)
Research Category: Pollution Prevention/Sustainable Development

Description:

The understanding of environmental sustainability has been greatly enhanced by examining the Life Cycle Analysis and Assessment (LCA) of various products. The studies provided important answers to what materials and energies are used, how they are used and contribute to stability of the system. However, LCA techniques applied to products and processes implicitly assume that the systems concerned are functioning day to day at stable and operational levels. When these systems fail, the findings of current LCA studies are valueless because the assumed stability of the systems has been disrupted. Often, a failure can create an environmental impact significantly greater than could ever be imagined by investigators attempting to perform impact assessment based on normal operating conditions. One only has to remember the incidents of Bhopal, India, or Chernobyl, Ukraine, to understand the validity of this statement. The inability of current methodologies to account for the unstable variations greatly underestimates the impact of potential material and energy consumption as well as pollution generation. It is hypothesized that new methods are needed which build on current technologies to estimate these impacts. The overall objective of this research is to develop new methods by integrating LCA, Failure Modes and Effects Analysis (FMEA), and Petri Net modeling.

Approach:

The approach taken in the project is to augment LCA with the knowledge that can be developed from FMEA and modeled using Petri nets. FMEA is a proven and well-used method for predicting complex system and component failures and their effects on system usability and safety. When combined with LCA, FMEA provides the ability to predict system failures and therefore potential requirement for increased material and energy as well as the potential for adverse environmental impacts including pollution generation increase. The use of Petri nets augments the ability to understand interaction between different failure modes and provides the ability to access the environmental impacts caused by combinations of the failure modes. The research in this project consists of three phases. The first phase will involve developing general algorithms and procedures that convert different types of FMEA representations into Petri net models. The second phase will be to develop general computational methods to effectively and efficiently quantify environmental impacts of failures, identify and evaluate pollution prevention solution alternatives. The final phase will involve testing and verifying the methods with industrial case studies and developing a computing system that implement the developed methodologies.

Expected Results:

The failure of our system, in terms of the scientific and engineering definition of sustainability, are perturbations that may lead to instabilities achieving sustainability. The inability of current methodologies to account for the unstable variations in systems greatly underestimates the impact of potential material and energy consumption as well as pollution generation. The overall value of this research is to address this problem to sustainability and provide a feasible methodology that enables scientists to predict and perhaps prevent the instabilities which inhibit reaching sustainable development. By knowing what are the possible failures, the environmental stressors that the failures create, and what means exist to prevent the failures, we are more likely to reach the Brundtland Commission's definition of sustainable development: "meet the needs of the present without compromising the ability of future generations to meet their own needs."

Publications and Presentations:

Publications have been submitted on this project: View all 8 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 3 journal articles for this project

Supplemental Keywords:

life cycle analysis, environmentally conscious manufacturing, failure modes and effects analysis, Petri net modeling. , Sustainable Industry/Business, Scientific Discipline, RFA, Technology for Sustainable Environment, Sustainable Environment, Environmental Engineering, Environmental Chemistry, technology assessment, cleaner production, life cycle analysis, sustainable development, Failure Modes and Effects Analysis, environmentally conscious manufacturing, Petri Net Modeling, industrial innovations, life cycle assessment, innovative technology, impact assessment, industrial case studies

Progress and Final Reports:
2001 Progress Report
Final Report

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.