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Abstract: The Larch Mountain salamander (Plethodon larselli Burns, 1954) is an endemic species in the Pacific north-
western United States facing threats related to habitat destruction. To facilitate development of conservation strategies,
we used DNA sequences and RAPDs (random amplified polymorphic DNA) to examine differences among populations
of this species. Phylogenetic analyses of cytochrome b revealed a clade of haplotypes from populations north of the
Columbia River derived from a clade containing haplotypes from the river’s southwestern region. Haplotypes from
southeastern populations formed a separate clade. Nucleotide diversity was reduced in northern populations relative to
southern populations. These results were corroborated by analyses of RAPD loci, which revealed similar patterns of
clustering and diversity. Network analyses suggested that northern populations were colonized following a range expan-
sion mediated by individuals from populations located southwest of the river. Changes in the Columbia River’s location
during the Pliocene and Pleistocene likely released distributional constraints on this species, permitting their northern
range expansion. Based on the barrier presented by the Columbia River’s present location and differences in haplotype
diversity and population structure observed between northern and southern populations, we suggest that designation of
separate management units encompassing each region may assist with mitigating different threats to this species.

Résumé : La salamandre de Larch Mountain (Plethodon larselli Burns, 1954) est une espèce endémique de la région
du nord-ouest pacifique des États-Unis qui est menacée par la destruction de son habitat. Les séquences d’ADN et les
RAPD (amplifications aléatoires d’ADN polymorphe) nous ont servi à étudier les différences entre les populations de
l’espèce, afin de faciliter la mise au point de stratégies de conservation. Les analyses phylogéniquea du cytochrome b
indiquent l’existence d’un clade d’haplotypes provenant des populations au nord du Columbia dérivés d’un clade conte-
nant des haplotypes provenant de la région du sud-ouest du fleuve. Les haplotypes de la région sud-est forment un
clade séparé. La diversité des nucléotides est plus faible dans les populations du nord que dans celles du sud. Les ana-
lyses des locus RAPD confirment les résultats et présentent des patrons similaires de regroupement et de diversité. Des
analyses de réseau laissent croire que les populations du nord ont fait leur colonisation après une extension d’aire réa-
lisée par des individus provenant des populations établies au sud-ouest du fleuve. Les déplacements du lit du Columbia
durant le pliocène et le pléistocène ont réduit certaines contraintes biogéographiques pour l’espèce et ont permis
l’expansion d’aire vers le nord. Compte tenu de la barrière que forme le Columbia dans son emplacement actuel et des
différences de diversité des haplotypes et de structure de population entre les populations du nord et du sud, nous pro-
posons l’établissement d’unités de gestion distinctes pour chacune des régions pour atténuer les diverses menaces aux-
quelles fait face cette espèce.

[Traduit par la Rédaction] Wagner et al. 406

Introduction

Phylogeographic studies aid in identifying historical barri-
ers to dispersal and gene flow. Such analyses can substan-
tially contribute to our understanding of the effects of
natural and anthropogenic impacts on habitat and population

fragmentation (Avise 1994). Amphibians often have specific
ecological requirements and low dispersal rates that make
them susceptible to fragmentation by historical and current
processes (Blaustein et al. 1994). Indeed, genetic studies of
amphibians frequently reveal substantial cryptic genetic di-
versity attributable to the influence of vicariant events
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(Good and Wake 1992; Highton 1995; Jockusch 1996; Til-
ley and Mahoney 1996; Miller et al. 2005). Therefore, to aid
amphibian conservation efforts, it is important to understand
the role of fragmentation in population differentiation and
implement management plans that preserve within-species
genetic diversity.

The Larch Mountain salamander (Plethodon larselli Burns,
1954) is a completely terrestrial species associated with a
variety of habitat types in the Pacific northwestern United
States (Crisafulli 1999). This species is considered to be one
of the rarest amphibian species in the Pacific Northwest be-
cause of its restricted range along a narrow corridor of the
Columbia River Gorge and patchy distribution in the north-
ern Oregon Cascade Range and south and central Washing-
ton Cascade Range (Howard et al. 1983; Kirk 1983;
Herrington and Larsen 1985; Crisafulli 1999). As of 2004,
there are only 137 extant sites. They occur in isolated patches
of forested, steep talus within the Columbia River Gorge
(Burns 1954, 1962, 1964; Herrington and Larsen 1985) and
at rock outcrops, cave entrances, and a wide variety of forest
and shrub habitats in the Cascade Mountains (Aubry et al.
1987; Darda and Garvey-Darda 1995; Crisafulli 1999).
These regions have a substantial disturbance history primar-
ily because of volcanism, glaciation, and flooding during the
late Pliocene Epoch (McGroder 1991) and the Quaternary
Period (Harris 1988) that could influence contemporary pat-
terns of genetic diversity and population genetic structure in
Larch Mountain salamanders.

Major threats to this species include habitat loss and pop-
ulation fragmentation caused by logging, recreational activi-
ties, and housing development (Herrington and Larsen
1985). Larch Mountain salamanders are considered a species
of concern by federal and state agencies. They are listed by
Oregon State as a Sensitive species, Vulnerable status, and
by Washington State as a Sensitive species. In Oregon and
Washington the species receives special management consid-
eration from the US Forest Service as a Sensitive species
and the US Bureau of Land Management as an Assessment
species (US Forest Service and US Bureau of Land Manage-
ment 1994). The Nature Conservancy has classified this spe-
cies as both globally imperiled and subnationally imperiled.
Furthermore, the species is listed in the IUCN Red List (In-
ternational Union for the Conservation of Nature 2004) as
Near Threatened. Thus, given contemporary management
concerns over the Larch Mountain salamander, we examined
population differentiation and genetic structure (both nuclear
and mitochondrial) of 15 Larch Mountain salamander popu-
lations throughout their range. Furthermore, we evaluate
possible historical biogeographical factors that may also in-
fluence Larch Mountain salamander genetic structure.

We used mtDNA cytochrome b sequences and RAPD
(random amplified polymorphic DNA) markers to assess
patterns of genetic diversity across the salamander’s range.
Cytochrome b sequences have been used in a wide variety of
taxa for designating conservation units (e.g., Baker et al.
1995; Lento et al. 1997; Mundy et al. 1997; Castilla et al.
1998; Walker et al. 1998) and in several salamander species
to infer intraspecific phylogenies (e.g., Hedges et al. 1992;
Moritz et al. 1992; Tan and Wake 1995; Jackman et al.
1997). The RAPD technique, a procedure that permits exam-
ination of large numbers of segregating, putative nuclear loci

from the genome, has been frequently used in vertebrate
conservation studies (e.g., Haig et al. 1994; Fleischer et al.
1995; Haig et al. 1996; Kimberling et al. 1996; Nusser et al.
1996; Haig et al. 1997; Haig 1998) and in herpetological
studies (e.g., Gibbs et al. 1994; Prior et al. 1997).

Materials and methods

Tissue sampling and DNA isolation
Larch Mountain salamanders were hand-captured at 15

sites throughout their range (Fig. 1). The distal 1 cm of tail
was removed from each individual and stored in liquid nitro-
gen or on dry ice until it was transferred to an ultra-cold
freezer (–80 °C). Salamanders from 7 of the sites were re-
turned to their exact collection location after tissue sam-
pling. Individuals captured at the remaining 8 sites were
killed with chlorotone solution, fixed in formalin, and stored
in buffered ethanol for use as voucher specimens and for
studies of salamander morphology and diet. All sampling
was performed in accordance with approved Institutional
Animal Care and Use Committee protocols under collection
permits issued by the US Forest Service. DNA was isolated
from each sample using standard phenol–chloroform extrac-
tion protocols (Sambrook et al. 1989). The quantity and
quality of each DNA sample were determined by fluorimetry
and agarose gel electrophoresis, respectively.

Mitochondrial DNA sequencing and analyses
The polymerase chain reaction (PCR) was used to amplify

an ~850 bp fragment of the cytochrome b gene, using
the following primers designed for vertebrates: MVZ-15
(5′-GAACTAATGGCCCACACWWTACGNAA-3′) and
MVZ-16 (5′-AAATAGGAAATATCATTCTGGTTTAAT-3′) (Moritz
et al. 1992). Three individuals from each of 14 sampling lo-
cations and two individuals from an additional location were
randomly selected for sequence analysis (Table 1). Frag-
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Fig. 1. Map showing the locations of Larch Mountain salaman-
der (Plethodon larselli) populations examined in this study.



ments were amplified using the following thermalcycling pa-
rameters: initial denaturation for 10 min at 93 °C, followed
by 40 cycles of 1 min at 93 °C, 1 min at 52 °C, and 2 min at
72 °C. A final extension at 72 °C for 10 min completed the
reaction. Each 50-µL reaction was conducted using 100 ng
of template, 0.5 U (1 U ≈ 16.67 nkat) of AmpliTaq Gold®

DNA polymerase (Perkin-Elmer) with the supplied reaction
buffer, 2 mmol/L MgCl2, 1 µmol/L of each primer, and
100 µmol/L of each dNTP. PCR amplicons were extracted
from a 1% agarose gel using 0.45-µm Ultrafree-MC centrif-
ugal filters (Millipore); supernatants were transferred to 50-
µm filters (Millipore) to prepare templates for sequencing. A
~400 bp section of the PCR product was sequenced using
the primers MVZ-15 and cytb2 (5′-AAACTGCAGCCC-
CTCAGAATGATATTTGTCCTCA-3′; Kocher et al. 1989)
and run on an Applied Biosystems 373A DNA sequencer.
Sequences from fragments were aligned by eye using the
Genetic Data Environment (Smith et al. 1992) and compared
with a GenBank archived cytochrome b sequence of
Plethodon elongatus Van Denburgh, 1916 (accession No.
L75821; Moritz et al. 1992).

We used Molecular Evolutionary Genetic Analysis
(MEGA) version 2.1 (Kumar et al. 2001) to perform prelimi-
nary sequence data explorations and to obtain simple de-
scriptive statistics (average pairwise genetic distances and
standard errors) from the haplotypic data. In addition, we
used three methods to infer phylogenetic relationships among
haplotypes observed in this study. First, we reconstructed
a neighbor-joining phylogeny (Saitou and Nei 1987) of hap-
lotypes using PAUP* 4.0b10 (Swofford 1998). Pairwise
Jukes–Cantor genetic distances calculated for the haplotypes
detected in our analyses were all small (0.002–0.054
substitutions/site) and clearly suggested that relatively short-
term evolutionary processes were being observed within
P. larselli. This indicated that use of more complicated nu-
cleotide substitution models (with their associated greater
variances) to account for multiple hits at nucleotide sites was
not necessary (Nei and Kumar 2000, p. 112). As a result, we

relied on Jukes–Cantor genetic distances for the neighbor-
joining analysis. Second, we used PAUP* to perform maxi-
mum parsimony based analyses of our data. Trees were
evaluated using a heuristic search and the tree bisection–
reconnection algorithm with starting trees obtained from 10
replicates of a random stepwise addition procedure. Boot-
strap support for both neighbor-joining and maximum parsi-
mony topologies was obtained from 1000 bootstrap
replicates (Felsenstein 1985). A cytochrome b sequence
from P. elongatus (GenBank accession No. L75821; Moritz
et al. 1992) was used to root each phylogenetic tree. Finally,
we used the computer program TCS (Clement et al. 2000) to
produce a haplotype network from the set of sequences ob-
served in P. larselli. This procedure, based on the statistical
parsimony approach of Templeton et al. (1992), allowed us
to infer the genealogy of the set of haplotypes observed
among populations.

RAPD procedure and data analyses
RAPD profiles were generated as described in Aagaard et

al. (1995). PCR was performed using the following reagent
concentrations (25 µL volume): 1× PCR buffer (Promega),
1.8 mmol/L MgCl, 100 µmol/L of each dNTP, 0.2 µmol/L
primer, 2 ng of template DNA, and 1 U of Taq DNA Poly-
merase (Promega). Thermalcycling was performed using the
following parameters: denaturation for 3 min at 93 °C, fol-
lowed by 45 cycles of denaturation for 1 min at 93 °C, an-
nealing for 1 min at 45 °C, and elongation for 2 min at
72 °C. A final 10-min elongation at 72 °C completed the re-
action. Fifteen microlitres of each reaction were loaded in a
2.0% agarose gel and electrophoresed for 4 h (100 V) in
TBE (90 mmol/L Tris Base, 90 mmol/L boric acid,
2 mmol/L EDTA, pH 8.0). Amplification products were
sized by comparison with a 1-kb DNA ladder (Gibco BRL).
The gels were then stained with ethidium bromide (l µg/mL)
for 30 min and destained for 2 h in deionized water.

Two salamanders from each of four different populations
(Straight Creek, Cape Horn, Herman Creek, and Multnomah

© 2005 NRC Canada

398 Can. J. Zool. Vol. 83, 2005

UTM

Site number Site name M/R Haplotype Northing Easting

1 Bridal Veil Falls, Oreg. 3/7 A 5044609 564084
2 Multnomah Falls, Oreg. 3/23 B 5047459 569864
3 Herman Creek, Oreg. 3/6 C 5060052 593158
4 Wyeth Campground, Oreg. 3/7 D 5060141 595314
5 Starvation Falls, Oreg. 3/7 C 5060132 602222
6 Cape Horn, Wash. 3/13 E 5047071 563095
7 Dog Creek, Wash. 3/0 F 5062753 603369
8 Lower Copper Creek, Wash. 3/18 G 5070324 560795
9 Zig Zag Creek, Wash. 3/22 H 5077306 569269

10 Ole’s Cave, Wash. 3/6 J 5103836 560258
11 Straight Creek, Wash. 3/20 I 5119422 590086
12 Quartz Creek, Wash. 3/19 K 5117283 592217
13 Packwood Palisades, Wash. 3/19 L 5171614 610412
14 Lake Kachess, Wash. 3/0 M 5236995 638500
15 Box Canyon, Wash. 2/0 M 5251500 628100

Note: M and R are the number of individuals used for mtDNA sequence and RAPD analyses, respectively. Site number
corresponds to map location in Fig. 1.

Table 1. Locations and abbreviations for Larch Mountain salamander (Plethodon larselli) populations sampled
for genetic analyses.



Falls; Fig. 1, Table 1) were used to perform preliminary
screening of 235 RAPD primers (Oligonucleotide Synthesis
Laboratory, University of British Columbia, Vancouver;
www.biotech.ubc.ca). This preliminary screening allowed us
to identify RAPD primers that yielded distinct, well-
separated, and reproducible bands, which were subsequently
chosen for final analyses. Reproducibility was assessed in
side-by-side RAPD reactions and over multiple RAPD runs.
Negative controls were run with all amplifications to check
for contamination. Ultimately, 14 RAPD primers that pro-
duced a total of 34 distinct, reproducible bands were used
for analysis of the complete data set. Information on the spe-
cific RAPD primers used for analysis can be obtained from
Wagner (2001). Sample sizes from each location for the fi-
nal data set are provided in Table 1.

We used two congruent approaches for our analyses of the
RAPD data. First, owing to the dominant nature of RAPD
markers (Lynch and Milligan 1994; Zhivotovsky 1999), we
obtained estimates of allele frequencies from the dominant
marker data at each locus using the allele frequency estima-
tor of Lynch and Milligan (1994). For purposes of these esti-
mates, each RAPD marker was assumed to be a Mendelian
locus whose underlying genotypes corresponded to Hardy–
Weinberg expectations. Using these allele frequency esti-
mates, we quantified the extent of genetic differentiation
among sampling locations using the FST analog θ (Weir and
Cockerham 1984) with the computer program TFPGA
(Miller 1998a). Estimates of θ were obtained for all popula-
tions simultaneously (θT) as well as separately for groups of
populations found north (θN) and south (θS) of the Columbia
River. Ninety-five percent confidence limits for each θ value
were obtained through the use of a bootstrap procedure over
loci consisting of 1000 resampling replications. In addition,
we used TFPGA to calculate pairwise genetic distances be-
tween populations using the coancestry distance measure of
Reynolds et al. (1983; a logarithmic transformation of
pairwise θ estimates), which were subsequently used to per-
form a UPGMA (unweighted pair group method with arith-
metic means) analysis of the interpopulational genetic distance
matrix. Node support for the resulting UPGMA dendrogram
was obtained through the use of a bootstrap procedure over
loci (sensu Felsenstein 1985) based on 1000 replicates.

Second, we performed a congruent set of analyses based
solely on variation in RAPD marker phenotypes. Rather than
relying on potentially biased allele frequencies estimated from
dominant marker data (Lynch and Milligan 1994;
Zhivotovsky 1999), in these analyses we used only informa-
tion on the presence or absence of RAPD markers within
and among populations. For these analyses, we used the
computer program AMOVA-PREP (Miller 1998b) to help
prepare input files that were subsequently analyzed using
Arlequin 2.001 (Schneider et al. 2000). In Arlequin, we per-
formed an analysis of molecular variance (AMOVA; Excoffier
et al. 1992) of marker phenotype variation to obtain an addi-
tional measure of overall and pairwise interpopulational ge-
netic differentiation (i.e., FST values). FST estimates were
calculated based on interindividual genetic distances deter-
mined by the number of mismatched RAPD marker pheno-
types between individuals. As with the calculation of θ
estimates (see above), FST estimates were obtained for all
populations simultaneously (FST

T) and for sets of popula-

tions located north (FST
N) and south (FST

S) of the Columbia
River. Furthermore, we obtained FST estimates for each
pairwise combination of populations under analysis. The sig-
nificance of FST values (overall and pairwise) was deter-
mined via random allocation of individuals and RAPD
marker genotypes to populations using 3000 randomization
replicates. P values from pairwise contrasts were evaluated
at the α = 0.004 level to account for nonindependence of ge-
netic distances from the 12 populations examined in the
RAPD analyses. As with coancestry distances obtained from
TFPGA, pairwise FST values obtained for populations were
subsequently used for UPGMA analyses performed by
NTSYS-PC (Rohlf 1994).

Results

mtDNA sequence analyses
Our analyses of cytochrome b sequence variation revealed

13 unique haplotypes among the 15 populations examined
(Table 2). These sequences were characterized by the pres-
ence of 31 variable nucleotide sites (14 parsimony informa-
tive) and pairwise percent sequence divergences ranging
from 0.2% to 5.2%. In general, haplotypes were location
specific with the exception of two sequences (Table 1):
haplotype C was found at both Herman Creek and Starvation
Falls (Oregon, sites 3 and 5), while Lake Kachess and Box
Canyon (Washington, sites 14 and 15) both contained
haplotype M. No mtDNA sequence variation was detected
within populations. Thus, despite limited sample sizes for
sequencing, our analyses suggest that significant differences
in haplotype frequencies generally exist among populations.
To illustrate, haplotype A (from population 1; Table 1) oc-
curs at a frequency of 0.068 in our data set (three copies of
the haplotype from a total of 44 sampled individuals). Under
a simple null hypothesis of genetic panmixia, the probability
of observing all three copies of this haplotype at the same
location is ~0.0683, or ~0.003. Clearly, by extension, the
probability of observing 11 location-specific haplotypes (Ta-
ble 1) becomes exceedingly small. Overall, this pattern is
consistent with other genetic analyses of salamanders from
the northwestern United States (e.g., Jockusch and Wake
2002; Mahoney 2004; Miller et al. 2005) and suggests little
contemporary gene flow among populations.

In maximum parsimony analyses, we found three most
parsimonious trees (tree length = 103, consistency index =
0.94) that were mainly characterized by rearrangements of
haplotypes joined by short branches. Neighbor-joining anal-
ysis revealed a single tree with a sum of branch lengths of
0.308. Bootstrap analyses based on both inferential methods
produced extremely similar topologies, especially with re-
spect to the relationships of haplotypes found in populations
north and south of the Columbia River (Fig. 2). Specifically,
southern haplotypes C (from Oregon populations 3 and 5)
and D (from Oregon population 4) formed a monophyletic
group that was supported by over 98% of bootstrap repli-
cates for both phylogenetic reconstruction techniques. In
contrast, all haplotypes detected in populations north of the
Columbia River (Washington haplotypes E–M) formed a
separate monophyletic group that was supported by over
75% of bootstrap replicates. Interestingly, two southern
haplotypes (haplotypes A and B) from populations 1 and 2
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were part of a larger, well-supported monophyletic group
(supported by over 80% of bootstrap replicates) that also in-
cluded all haplotypes detected in northern populations. Pat-
terns observed in phylogenetic analyses were consistent with
inferred genealogies obtained from the haplotype network
(Fig. 3), which also suggested that haplotypes C and D were
the most divergent alleles detected.

Despite observing more alleles among populations north
of the Columbia River, we note that nucleotide diversity was
lower among haplotypes from these populations compared
with populations south of the river. Among the 9 northern
haplotypes, the average pairwise nucleotide difference
among haplotypes (d = 4.33, SE = 1.10) was approximately
two times lower than that seen among the 4 haplotypes
found in southern populations (d = 8.33, SE = 2.09). Diver-
sity observed among southern populations was in fact com-
parable to the overall average diversity of all 13 haplotypes
detected in our analyses (d = 7.77, SE = 1.44).

RAPD analyses
Our analyses of 34 nuclear RAPD loci indicated that there

is substantial genetic variation among locations. Indeed, when
allele frequencies were estimated from the dominant marker
data, we obtained an overall θ estimate (θT) of 0.38 (upper
confidence limit (UCL) = 0.47, lower confidence limit
(LCL) = 0.29). This value was comparable to the overall FST
estimate obtained when raw marker phenotype data were
used for analyses (FST

T = 0.36, P < 0.001). Despite these
high overall indicators of population differentiation, we note
that the relative contributions of northern and southern popu-
lations were not similar. Specifically, analyses of seven pop-
ulations north of the Columbia River yielded relatively low θ
and FST values (θN = 0.13, UCL = 0.18, LCL = 0.09; FST

N =
0.13, P < 0.001) that were, based on the comparison of con-
fidence limits obtained from θ estimates, significantly
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Fig. 2. Majority rules bootstrap consensus tree (1000 replicates)
illustrating relationships of 13 Larch Mountain salamander
cytochrome b haplotypes detected in this study. Haplotype codes
(A–M), states (OR, Oregon; WA, Washington), and population
numbers (in parentheses; Fig. 1, Table 1) are presented at branch
termini. Numbers along branches reflect the percentage of 1000
bootstrap replicates that supported a given node in maximum
parsimony (above branch) and neighbor-joining (below branch)
analyses, respectively. Neighbor-joining analyses revealed an ad-
ditional well-supported node (72%) that included haplotypes E,
J, and F.



smaller than comparable values obtained for the five south-
ern populations analyzed (θS = 0.41, UCL = 0.54, LCL =
0.28; FST

S = 0.44, P < 0.001).

In addition to high overall statistical indicators of genetic
structure, we also observed considerable variation in pair-
wise genetic distances (coancestry distances and FST values)
between populations. Coancestry distances ranged from 0.05
to 1.1, while pairwise FST values ranged from 0.05 to 0.59
(Table 3). All pairwise FST values were significantly differ-
ent from zero at the α = 0.004 level, with the exception of
those for Oregon populations 4 and 5 (FST = 0.085, P =
0.044), Washington populations 6 and 9 (FST = 0.049, P =
0.015), and Washington populations 10 and 12 (FST = 0.083,
P = 0.015), which nonetheless were significant at the α =
0.05 level (Table 3). Pairwise coancestry distances and FST
estimates, however, were highly correlated (r = 0.95), indi-
cating that analyses based on estimated allele frequencies
and raw marker phenotypes gave qualitatively similar re-
sults. Furthermore, UPGMA analyses based on both distance
matrices gave comparable results, especially with respect to
detection of major population clusters (Fig. 4). UPGMA
dendrograms suggested three main clusters of populations
with substantial bootstrap support; these clusters largely co-
incided with well-supported nodes obtained from the phylo-
genetic relationships of haplotypes detected among
populations (Fig. 2). For example, as in our phylogenetic
analyses of mtDNA sequence variation, a well-supported
cluster (99% of bootstrap replicates) contained all popula-
tions north of the Columbia River (Fig. 4). Likewise, Oregon
populations 3, 4, and 5, which contained haplotypes C and D
(Fig. 2), clustered together in over 80% of bootstrap repli-
cates (Fig. 4). Overall, the main difference between topolo-
gies obtained from mtDNA sequence analyses and RAPD
markers was the placement of Oregon populations 1 and 2
(containing haplotypes A and B). In UPGMA analyses, these
populations clustered together in over 98% of bootstrap rep-
licates (Fig. 4) and, in contrast to the mtDNA sequences, did
not show any particularly substantial alliance with northern
populations.

Discussion

Our analyses of nuclear and mitochondrial DNA data pro-
duced remarkably similar overall patterns (Figs. 2, 4). Spe-
cifically, although pairwise analyses of RAPD data
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Fig. 3. Haplotype network based on sequence differences among
13 cytochrome b haplotypes observed in Larch Mountain sala-
mander. Letters (A–M) indicate one of 13 haplotypes (Table 2)
found among 15 populations examined (Fig. 1, Table 1) in Ore-
gon (OR) and Washington (WA). Numbers in parentheses indi-
cate population(s) where haplotypes were detected. Small circles
indicate inferred haplotypes that are extinct or were not detected
in analyses. Each segment (letter or circle) of the network re-
flects a single base-pair difference between haplotypes.

Population 1 2 3 4 5 6 8 9 10 11 12

1 —
2 0.18 —
3 0.51 0.56 —
4 0.44 0.51 0.21 —
5 0.47 0.52 0.26 0.08 —
6 0.42 0.54 0.55 0.51 0.53 —
8 0.46 0.53 0.54 0.48 0.51 0.15 —
9 0.41 0.51 0.49 0.44 0.48 0.05 0.08 —

10 0.38 0.47 0.54 0.48 0.51 0.19 0.16 0.16 —
11 0.37 0.46 0.52 0.5 0.52 0.14 0.23 0.16 0.14 —
12 0.39 0.47 0.51 0.46 0.48 0.14 0.08 0.1 0.08 0.08 —
13 0.49 0.57 0.59 0.54 0.56 0.19 0.1 0.15 0.28 0.15 0.12

Note: All values are significantly different from zero at the α = 0.004 level, with the exception of those values in bold. These values are nonetheless
significant at the α = 0.05 level. FST values are also highly correlated with coancestry distances estimated from the data (r = 0.95).

Table 3. Pairwise FST values reflecting the extent of genetic differentiation among 12 Larch Mountain salamander populations used for
RAPD analyses in this study.



suggested that most populations significantly differed from
one another, we note that there was substantially less differ-
entiation among populations located north of the Columbia
River than among populations to the south. In RAPD analy-
ses, statistical indicators of genetic differentiation for north-
ern populations were low (θN = 0.13, UCL = 0.18, LCL =
0.09; FST

N = 0.13, P < 0.001) compared with those for
southern populations (θS = 0.41, UCL = 0.54, LCL = 0.28;
FST

S = 0.44, P < 0.001). This pattern was also reflected by
mtDNA sequence data: average pairwise nucleotide differ-
ences among haplotypes were small in the north compared
with the south (north, d = 4.33, SE = 1.10; south, d = 8.33,
SE = 2.09). Overall, this pattern may reflect one of two non-
exclusive possibilities. First, our data may suggest that the
northern region of P. larselli’s distribution was more re-
cently established via range expansion, perhaps during the
late Pleistocene in concert with glacial retreat. Alternatively,
despite detection of significant nuclear differences among
populations, our data may also suggest that contemporary
gene flow among northern populations is greater and per-
haps facilitated through more substantial connectivity among
suitable habitats. We propose, however, that the former hy-
pothesis is likely more tenable given the assumed low dis-
persal ability of many terrestrial salamanders (and P. larselli
by analogy; see below) and the more patchy distribution of

habitat (and likely salamander populations) in the north
compared with the south (Crisafulli 2005). Furthermore,
consistent with the range expansion hypothesis, our phylo-
genetic analyses of mtDNA sequence data show a well-
supported northern haplotype clade nested within the south-
ern haplotypes (Fig. 2), with haplotypes from the northern
clade forming the distinctive starlike pattern commonly at-
tributed to demographic expansions that occur in concert
with range expansions (Avise 2000; Fig. 3). Based on infer-
ences made from the haplotype network (Fig. 3), our data
also indicate that individuals from the southwestern popula-
tions (or closely related and geographically proximal ones)
primarily facilitated the northern range expansion. Overall,
our data are extremely consistent with other phylogeographi-
cal studies of North American taxa that have detected ge-
netic signatures of northern range expansions following
glacial retreat (e.g., Nason et al. 2002; Masta et al. 2003;
Starkey et al. 2003; Zamudio and Savage 2003; Ripplinger
and Wagner 2005).

Although analyses suggest that individuals from the
southwestern region of our study area primarily contributed
to the range expansion, we must further provide a mecha-
nism to explain how the Columbia River itself was traversed
in this process. The efficacy of rivers as barriers to dispersal
of terrestrial plethodontid salamanders has been questioned
(Highton 1972). However, based on distributional data, the
Columbia River appears to be a barrier for a number of ter-
restrial salamanders including the Oregon slender salaman-
der, Batrachoseps wrighti (Bishop, 1937) (= B. wrightorum),
and the clouded salamander, Aneides ferreus Cope, 1869, for
whom the river demarks the northern boundary of their
range (Corkran and Thoms 1996). Likewise, the Columbia
River defines the southwestern extent of the range of Van
Dyke’s salamander (Plethodon vandykei Van Denburgh,
1906; Jones and Crisafulli 2005). Furthermore, we note that
the location of the Columbia River has changed over the
long-term course of evolutionary history. The river became
repeatedly blocked during the Pliocene and the Pleistocene,
a process that significantly deflected the main river channel
both north and south of the current main stem on several dif-
ferent occasions (Fecht et al. 1987; Heller et al. 1987). One
extreme reroute of the channel altered the course of the river
southward towards Mt. Hood (Fig. 1), which may have
caused the river to bisect the region between the southwest-
ern (populations 1 and 2) and southeastern populations (pop-
ulations 3–5) analyzed in this study. Therefore, this process
may have released distributional constraints (limits imposed
by the river) on southwestern populations, providing an op-
portunity for a northern range expansion. This hypothesis is
also consistent with the high degree of both nuclear and mi-
tochondrial genetic differentiation of southwestern and south-
eastern populations examined in our study (Figs. 2, 3, 4), as
this southern reroute of the river may have acted as a formi-
dable barrier to gene flow that promoted the strong contem-
porary pattern of divergence between southeastern and
southwestern populations. Furthermore, this dramatic
hydrogeological event may have subjected populations along
the southern bank of the Columbia River to strong bottle-
necks that effectively reduced allelic diversity within popula-
tions and exacerbated the overall pattern of genetic
differentiation in the region. Thus, we suggest that our data
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Fig. 4. Midpoint-rooted UPGMA (unweighted pair group method
with arithmetic means) dendrograms of (A) pairwise coancestry
genetic distances and (B) pairwise FST values between 12 Larch
Mountain salamander populations based on 34 RAPD (random
amplified polymorphic DNA) loci. Numbers at branch termini in-
dicate the populations listed in Table 1 and Fig. 1. Letters in pa-
rentheses indicate the mitochondrial haplotype (Tables 1, 2)
detected at each site and state (OR, Oregon; WA, Washington)
for each population. Numbers on branches of the coancestry dis-
tance tree reflect the proportions of 1000 bootstrap replicates
that supported the topology. Only bootstrap values greater than
0.5 are shown.



point to the Columbia River as an important overall determi-
nant of patterns of genetic diversity in P. larselli. This con-
clusion is consistent with those reached in a recent study of
genetic variation in B. wrighti (Miller et al. 2005), which
also suggested that changes in the location of the Columbia
River may have permitted an expansion of this species’
range up to the river’s southern bank.

Conservation implications
Larch Mountain salamanders face various threats across

their range depending on land ownership and land manage-
ment objectives. Anthropogenic habitat destruction and frag-
mentation may have important effects (Herrington and
Larsen 1985). In the Columbia River Gorge, road and house
construction and development of rock quarries are primary
concerns, whereas in the Cascade Mountains, forestry prac-
tices are the chief concern. Logging is a particularly acute
threat in areas east and northeast of Mount St. Helens, where
deep tephra deposits, accumulated over millennia, seal off
the salamander’s access to cool, moist subterranean micro-
habitats (Crisafulli et al. 2004). In this tephra fall zone, for-
est canopy ameliorates forest floor conditions through shading,
reduction of desiccating winds, and maintenance of high rel-
ative humidity, which provides the microclimatic conditions
required by the salamander. In areas outside of deep tephra
deposition, unconsolidated surface rock is prevalent and pro-
vides the salamanders with access to subterranean retreats
during periods of unfavorable surface conditions (i.e., sum-
mer drought period). In such rocky areas, forest canopy does
not appear to be a critical attribute of Larch Mountain sala-
mander habitat and logging probably poses fewer problems
for the salamander, provided that surface rocks and associ-
ated microclimates are not altered.

Given their reliance on sites with cool, moist microhabi-
tats (Crisafulli 1999), their narrow physiological tolerances
(as with most Plethodon species; see Feder 1983; Spotila
1972), and their putative low dispersal capabilities, Larch
Mountain salamanders may be constrained in their ability to
respond to contemporary disturbances. Indeed, although dis-
persal and movement of terrestrial salamanders are poorly
understood and infrequently quantified, five studies of simi-
lar western plethodontid salamanders revealed typical
distances moved by individuals, ranging from 1.7 m (Batra-
choseps attenuatus (Eschscholtz, 1833); Hendrickson 1954)
to 23 m (Ensatina eschscholtzii Gray, 1850; Stebbins 1954),
with a mean distance of 2.5 m (Plethodon vehiculum (Coo-
per, 1860); Hendrickson 1954; Stebbins 1954; Barbour et al.
1969; Barthalmus and Bellis 1972; Ovaska 1988). In addi-
tion to the potential for low dispersal, a number of factors
related to the reproductive biology of Larch Mountain sala-
manders could influence species viability when extensive
habitat disturbances occur. For example, their reproductive
rate may be low because females reach sexual maturity only
after 4 years of age, and they appear to have a biennial ovar-
ian cycle with an average clutch size of 7.33 (Herrington and
Larsen 1987). Variance in hatching success, juvenile sur-
vival, and adult survival are unknown. Furthermore, it has
been suggested that the amount of suitable habitat for Larch
Mountain salamanders is limited within the Columbia River
Gorge itself (Herrington and Larsen 1985) and the central
Washington Cascade Range (Crisafulli 1999). Therefore, as-

signment of conservation units to allow for different man-
agement options across the range of the Larch Mountain sal-
amander may assist with mitigation of threats to this species.

Previous studies of multiple species have demonstrated
strong patterns of genetic differentiation across the Colum-
bia River (Soltis et al. 1997; Arbogast et al. 2001; Monsen
and Blouin 2003; Spruell et al. 2003). In contrast, Howard et
al. (1983) suggested that populations of Larch Mountain sal-
amanders from each side of the Columbia Gorge were rela-
tively recently diverged (between 4000 and 43 000 years
ago) based on low allozyme divergence of two pairs of pop-
ulations (four populations) located directly across the river
from one another. However, their analyses (based on less
polymorphic allozyme data) also detected unique alleles for
each location examined. Thus, our results may indicate that
the Columbia River provides a long-term barrier to dispersal
for Larch Mountain salamanders that will ultimately rein-
force genetic differentiation of northern and southern popu-
lations. Furthermore, we note that morphological differences
have been described between northern and southern popula-
tions, including variation in number of vomerine teeth and
melanophore pigmentation (Brodie 1970). Subsequently,
given the concordance of genetic and morphological patterns
of divergence, in combination with the river as a long-term
barrier to dispersal, we suggest that northern and southern
populations are currently on separate evolutionary trajecto-
ries, despite the paraphyly of southwestern populations re-
vealed through phylogenetic analyses of mtDNA sequence
data (Fig. 2). In addition, our data clearly indicate that north-
ern populations are substantially less differentiated than
southern populations. This suggests that extirpation of a
southern population would, on average, result in the loss of
appreciably more genetic diversity in P. larselli relative to
extirpation of a northern population. This is especially im-
portant considering that although most Columbia River
Gorge populations are nominally protected within National
Scenic Area reserves, increasing recreational use in this area
has the potential to affect already fragmented southern popu-
lations (Herrington and Larsen 1985). Furthermore, northern
populations are also genetically differentiated (albeit less so
than southern populations; Table 3) and face threats from
timber harvesting practices. Therefore, designation of sepa-
rate management strategies for northern versus southern
populations may be beneficial to allow for flexibility in miti-
gating different threats to P. larselli across its range.
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