Skip banner links and go to contentU.S. Department of Health & Human Services * National Institutes of Health
National Heart, Lung, and Blood Institute:  Diseases and Conditions Index
Tell us what you think about this site
  Enter keywords to search this site. (Click here for Search Tips)  
U.S. Department of Health & Human Services National Institutes of Health Diseases and Conditions Index NIH Home NHLBI Home About This Site NHLBI Home NHLBI Home Link to Spanish DCI Tell us what you think
 DCI Home: Heart & Vascular Diseases: Implantable Cardioverter Defibrillator: What Is ...

      Implantable Cardioverter Defibrillator
Skip navigation and go to content
What Is ...
Who Needs an ICD
How Does an ICD Work
During ICD Surgery
After ICD Surgery
What Are the Risks
Lifestyle
Key Points
Links
 

What Is an Implantable Cardioverter Defibrillator?

An implantable cardioverter defibrillator (ICD) is a small device that's placed in your chest or abdomen. The device uses electrical pulses or shocks to help control life-threatening, irregular heartbeats, especially those that could cause sudden cardiac arrest (SCA).

SCA is a condition in which the heart suddenly and unexpectedly stops beating. If the heart stops beating, blood stops flowing to the brain and other vital organs. This usually causes death if it's not treated in minutes.

Understanding the Heart's Electrical System

Your heart has its own internal electrical system that controls the rate and rhythm of your heartbeat. With each heartbeat, an electrical signal spreads from the top of your heart to the bottom. As the signal travels, it causes the heart to contract and pump blood.

Each electrical signal normally begins in a group of cells called the sinus node or sinoatrial (SA) node. As a signal spreads from the top of the heart to the bottom, it coordinates the timing of heart cell activity.

First, the heart’s two upper chambers, the atria (AY-tree-uh), contract. This contraction pumps blood into the heart’s two lower chambers, the ventricles (VEN-trih-kuls). The ventricles then contract and pump blood to the rest of the body. The combined contraction of the atria and ventricles is a heartbeat.

For more information on the heart’s electrical system and detailed animations, go to the Diseases and Conditions Index How the Heart Works article.

Overview

A problem with any part of the heart’s electrical system can cause irregular heartbeats called arrhythmias (ah-RITH-me-ahs). During an arrhythmia, the heart can beat too fast, too slow, or with an irregular rhythm. Faulty electrical signaling in the heart causes arrhythmias.

ICDs use electrical pulses or shocks to treat life-threatening arrhythmias that occur in the ventricles (the heart’s lower chambers).

When ventricular arrhythmias occur, the heart can't effectively pump blood. You can pass out within seconds and die within minutes if not treated. To prevent death, the condition must be treated right away with an electric shock to the heart. This treatment is called defibrillation (de-fib-ri-LA-shun).

An ICD has wires with electrodes on the ends that connect to your heart chambers. The ICD will continually monitor your heart rhythm. If the device detects an irregular rhythm in your ventricles, it will use low-energy electrical pulses to restore a normal rhythm.

If the low-energy pulses don’t restore your normal heart rhythm, or if your ventricles start to quiver rather than contract strongly, the ICD will switch to high-energy electrical pulses for defibrillation. These pulses last only a fraction of a second, but they can be painful.

Doctors also treat arrhythmias with another device called a pacemaker. An ICD is similar to a pacemaker, but there are some differences.

Pacemakers can only give off low-energy electrical pulses. They’re often used to treat less dangerous heart rhythms, such as those that occur in the upper chambers of your heart. Most new ICDs can act as both pacemakers and defibrillators.

Comparison of an Implantable Cardioverter Defibrillator and a Pacemaker

The illustration compares an ICD and a pacemaker. Figure A shows the location and general size of an ICD in the upper chest. The wires with electrodes on the ends are inserted into the heart through a vein in the upper chest. Figure B shows the location and general size of a pacemaker in the upper chest. The wires with electrodes on the ends are inserted into the heart through a vein in the upper chest.

The illustration compares an ICD and a pacemaker. Figure A shows the location and general size of an ICD in the upper chest. The wires with electrodes on the ends are inserted into the heart through a vein in the upper chest. Figure B shows the location and general size of a pacemaker in the upper chest. The wires with electrodes on the ends are inserted into the heart through a vein in the upper chest.

Patients who have heart failure may need a special device called a cardiac resynchronization therapy (CRT) device. The CRT device is able to pace both ventricles at the same time. This allows them to work together and do a better job pumping blood out of the heart. CRT devices that have a defibrillator are called CRT-D.

Revised August 2009


NextWho Needs


Email this Page Email all Sections Print all Sections Print all Sections of this Topic


Skip bottom navigation and go back to top
Department of Health and Human Services National Institutes of Health National Heart, Lung, and Blood Institute
Blood Diseases | Heart and Blood Vessel Diseases | Lung Diseases | Sleep Disorders
NHLBI Privacy Statement | NHLBI Accessibility Policy
NIH Home | NHLBI Home | DCI Home | About DCI | Search
About NHLBI | Contact NHLBI

Note to users of screen readers and other assistive technologies: please report your problems here.