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Abstract
Many wildlife studies seek to 

understand changes or differences in 
the proportion of sites occupied by 
a species of interest. These studies 
are hampered by imperfect detection 
of these species, which can result 
in some sites appearing to be unoc-
cupied that are actually occupied. 
Occupancy models solve this problem 
and produce unbiased estimates of 
occupancy and related parameters. 
Required data (detection/non-detec-
tion information) are relatively simple 
and inexpensive to collect. Software 
is available free of charge to aid in-
vestigators in occupancy estimation.

Response Variables in Wildlife 
Studies

Studies of wildlife populations 
often attempt to understand patterns 
of distribution and abundance. Es-
timating abundance can be a costly 
endeavor, and other state variables1

like species richness or occupancy2

may be more appropriate and less 
expensive. Occupancy is an alterna-
tive that has a long history of use in 
ecological and wildlife studies. Two 
of the most noticeable areas where oc-
cupancy information is used include: 
(1) studies of species distribution and 
range where investigators seek to 
understand the factors that determine 
whether or not a species will exist at a 
location (e.g., habitat modeling, Scott 
et al. 2002) and (2) metapopulation 
dynamics (Hanski 1992) where site (or 
patch) occupancy is related to patch, 
or site-specific, characteristics. For the 
latter case, extinction and colonization 
probabilities can also be modeled in 
relation to patch characteristics. Moni-
toring occupancy can reveal changes 
in the status of a species over broad 

areas and may be 
appropriate for spe-
cies that exhibit wide 
population fluctua-
tions over short time 
periods. For example, 
occupancy has been 
the most influential 
state variable in de-
scribing world-wide 
amphibian declines 
(Green 1997). 

The Problem

Wildlife species are rarely de-
tected with perfect accuracy, regard-
less of the technique employed. 
Non-detection does not necessarily 
mean that a species was absent unless 
the probability of detecting the spe-
cies (detectability3) was 100%. This 
leads to a fundamental problem: the 
measure of occupancy (presence/ab-
sence at a set of sites) is confounded4

with the detectability of the spe-
cies. More specifically, an observed 
“absence” occurs if either the species 
was present at the site but not detect-
ed, or the species was truly absent. 
Detectability may vary among study 
sites and may be related to character-
istics of a survey on a particular day, 
such as weather conditions. Because 
of this variation in detectability, it is 
insufficient to simply analyze detec-
tion/non-detection data as if they 
are truly presence/absence data. The 
proportion of sites where a species is 
detected will always underestimate 
the true occupancy level in the study 
area when detection is imperfect. 
Therefore, inferences regarding the 
influences of site characteristics on 
occupancy will be difficult or impos-
sible to discern reliably (e.g., Gu and 
Swihart 2004).

The Solution
New classes of models, called 

occupancy models, were developed to 
solve the problems created by imper-
fect detectability (MacKenzie et al. 
2002, 2003, 2004). These models use 
information from repeated observa-
tions at each site to estimate detect-
ability. Detectability may vary with 
site characteristics (e.g., habitat vari-
ables) or survey characteristics (e.g., 
weather conditions), whereas occu-
pancy relates only to site characteris-
tics. Repeated observations can take 
many forms, but the most obvious is 
simply surveying each site repeatedly. 
In some cases, traps, coverboards, 
transects, and surveys by independent 
observers can be treated as repeated 
observations for a local sample area 
or site. For example, data from 10 
minnow traps in each of 30 ponds 
could be treated as 10 observations at 
each pond if there is some possibility 
that the species of interest could be 
caught in each of the traps. 

How Does This Work?
The technique is very similar to 

estimating abundance from mark-
recapture data but does not require 
any marking of animals. Necessary 
information for occupancy models is 

unit. Sample units were near trails and 
located approximately 250 m apart 
to ensure independence among sites. 
Thirty-nine sites were sampled once 
every two weeks from April to mid-
June when salamanders were believed 
to be most active and near the surface. 
However, we detected no salaman-
ders of the Desmognathus imitator 

complex during the first survey. Thus, 
we eliminated this survey from the 
analysis because we assume the sala-
manders had not emerged from their 
winter retreats and were unavailable 
for capture during this survey occa-
sion. This left a total of four surveys 
for the analysis.

Analysis, Model Selection, and 
Interpretation: Salamanders of the 
Desmognathus imitator complex
were detected at 10 of the 39 sites, 
yielding a naïve occupancy estimate 
of 0.26; however, we suspected that 
salamanders may be more likely to 
occupy undisturbed sites compared 
to disturbed sites. In addition, we 
thought detectability might vary 
among surveys due to environmental 
conditions such as rainfall or temper-
ature. Thus, we consider all combina-
tions of models in which occupancy 
probability is assumed to be constant 
for all sites (denoted as ψ (.)) or 
varied among sites according to the 
site’s previous disturbance history (ψ
(dist)); detection probability was ei-
ther constant ( p (.)), different among 
surveys (p (t)), or varied among sites 
according to previous disturbance his-
tory (p (dist)).

Models that fit the data best with 
the least number of parameters are 
favored. We do not have room to 
explain the details of this parsimoni-

Glossary:
1. State variable: variable used to characterize the status of the wild-

life system of interest; the system being studied.
2. Occupancy: the proportion of sites, patches, or habitat units oc-

cupied by a species.
3. Detectability: the probability of detecting a species during a single 

survey, given it is present at the site.
4. Confounded: an inability to separate multiple factors potentially 

contributing to an observed pattern.
5. Likelihood function: a functional expression of unknown param-

eters, given observed data and an assumed model structure. 
6. Parameters: quantities to be estimated, such as occupancy or de-

tectability, under an assumed model structure.
7. Logit function: an equation that converts a sigmoid relationship 

(logistic) between two factors to a linear relationship. The logit 
function involving detectability may be: logit(p)=ln(p/(1-p))= y.

8. Heterogeneity: Often used synonymously with variation. Here, it is 
used to refer to unexplained variation in the parameters of interest.

9. Probability-based sampling: a sampling scheme in which every 
sample unit (site) has a known probability of being selected (see 
Thompson et al. 1998).

10.Biased: describes an estimator that, over repeated trials, exhibits 
a non-random (directional) difference from the true value being 
estimated.

11.Parsimonious model selection: given a set of candidate models, 
selecting those model(s) that describe the information content of 
the data adequately with the fewest number of parameters pos-
sible.

12.Weighted average: an average where the contribution of the values 
being averaged is unequal. For example, the unweighted average 
of 5, 3, and 9 is (5+3+9)/3=(0.33(5)+0.33(3)+0.33(9))=5.7. How-
ever, if we wanted the contribution of those three values to be 0.1, 
0.4, and 0.5 respectively, we would calculate a weighted average 
of (0.1(5)+0.4(3)+0.5(9))=6.2.

Photo: Bufo boreas, Susanne L. Collins

ous process of model selection,11 but 
Burnham and Anderson (2002) have 
written a comprehensive book on the 
subject. Using the software PRES-
ENCE and methods they describe, 
our analysis highlighted four models 
as the best models representing our 
salamander data (see Box 2). There is 
some uncertainly as to which model 
is the best, so our parameter estimates 
are essentially a weighted average12

among all four models. Together 
these models suggest that occupancy 

indeed differs between previously 
disturbed and undisturbed sites; all of 
the top models include previous dis-
turbance history as a covariate in the 
occupancy estimate. Model-averaged 
occupancy estimates were 0.19 (SE = 
0.15) and 0.70 (SE = 0.15) for previ-
ously disturbed and undisturbed sites, 
respectively. Detectability also varied 
among surveys and possibly among 
sites with different disturbance histo-
ries (Figure 1, Box 2). 

Imitator Salamander
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simply a record of whether a species 
was detected or not detected dur-
ing each survey of each site (Box 
1). These records, termed detection 
histories, can be converted to math-
ematical statements. Assuming the 
sites are independent, the product of 
all the mathematical statements (one 
for each possible detection history) 
forms the model likelihood5 for the 
observed data, and maximum likeli-
hood techniques are then used to 
estimate model parameters6. Param-
eter estimates (occupancy or detect-
ability) can be related to various site 
and survey characteristics using the 
logistic equation or logit-link func-
tion7. The details of this and other 
variations on occupancy estimation 
are described in a series of journal 
articles (see MacKenzie et al. papers 
under Further Reading).

Two software packages will 
help you do an occupancy analysis. 
PRESENCE was created exclusively 
for occupancy analysis and is avail-
able at http://www.mbr-pwrc.usgs.
gov/software.html. Occupancy analy-
sis has also been incorporated into 
MARK, which is available at http://
www.cnr.colostate.edu/~gwhite/soft-
ware.html. Examples using occupan-
cy models include Corn et al. (2005), 
Olson et al. (2005), and O’Connell et 
al. (2005).

Assumptions

All models have assumptions, and 
occupancy models are no exception.
Critical assumptions for data collect-
ed during a single sampling season 
include:
(1) Occupancy state is “closed.”

Species are present at occupied 
sites for the duration of the sam-
pling season. Occupancy does not 
change at a site within the sam-
pling season, but it can change 
between sampling seasons.

(2) Sites are independent. Detection 
of the target species at one site is 
independent of detecting the spe-
cies at other sites. This might be 
a problem if your sites are closely 
spaced, allowing animals to move 

Box 1:   Details of occupancy estimation

Parameters of interest:

ψ is the probability a site is occupied by the target species.
pj is the probability of detecting the species during the jth survey, 
given it is present (detectability). 

Necessary information: Detection histories

Detection histories are just a record of whether or not the target spe-
cies was detected on each survey of each site. For example, suppose 
30 sites were each 
sampled four times 
within a season. The 
following table could 
be the resulting detec-
tion histories, where 
each row represents a 
site and each column 
represents one of the 
four surveys: 

Each site has its own detection history that can be represented by an 
intuitive mathematical equation. In the above case, the target spe-
cies was detected at Site 1 during the first and last survey occasions 
(1001). The site was occupied (ψ), and the species was detected on 
the first and last surveys ( p1 and p4) and not detected on the second 
and third surveys. We can write the probability of this detection his-
tory as:

Pr(H i = 1001) = ψ × p1 (1 – p2)(1 – p3) p4

Sites 2 and 30 represent a case where the target species was never 
detected (detection history = 0000). These sites could either be unoc-
cupied, which mathematically is (1-ψ), or they could be occupied but 
we never detected the target species, which mathematically is:

ψ(1- p1)(1- p2)(1- p3)(1- p4) or ψ Π
4

j=1
(1 – pj )

 Thus, we can write the probability of detection history (0000) as:

Pr(H i = 0000) = ψ Π
4

j=1

(1 – pj ) + (1-ψ)

Mathematical statements of all detection histories are combined into 
model likelihood, such as:

L(ψ, p   H 1,…, H 30) = Π
30

i=1

Pr(Hi)

Maximum likelihood methods incorporated in program PRESENCE 
or program MARK are used to obtain estimates of occupancy and 
detectability (see MacKenzie et al. 2002).

Surveys

1 2 3 4

Site 1 1 0 0 1
Site 2 0 0 0 0
Site 3 1 1 0 0
…    
Site 30 0 0 0 0



simply a record of whether a species 
was detected or not detected dur-
ing each survey of each site (Box 
1). These records, termed detection 
histories, can be converted to math-
ematical statements. Assuming the 
sites are independent, the product of 
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Olson et al. (2005), and O’Connell et 
al. (2005).

Assumptions

All models have assumptions, and 
occupancy models are no exception.
Critical assumptions for data collect-
ed during a single sampling season 
include:
(1) Occupancy state is “closed.”

Species are present at occupied 
sites for the duration of the sam-
pling season. Occupancy does not 
change at a site within the sam-
pling season, but it can change 
between sampling seasons.

(2) Sites are independent. Detection 
of the target species at one site is 
independent of detecting the spe-
cies at other sites. This might be 
a problem if your sites are closely 
spaced, allowing animals to move 

among sites and be detected at 
multiple sites.

(3) No unexplained heterogene-
ity8 in occupancy. Probability of 
occupancy is the same across sites 
or differences in occupancy can be 
explained with site characteristics 
(covariates) that have been quanti-
fied for inclusion in the model.

(4) No unexplained heterogeneity in 
detectability. Detectability at oc-
cupied sites is the same across all 
surveys and sites, or differences in 
detectability can be explained with 
site or survey characteristics that 
have been quantified for inclusion 
in the model.

Approaches to Meeting 
Assumptions

 Investigators can use design-
based or model-based approaches to 
meet these assumptions. A design-
based approach involves collecting 
data in a way that assures the as-
sumptions will be met. For example, 
natural history information may aid 
in scheduling surveys during times 
when the closure assumption is most 
likely to hold. In addition, a scientist 
may use existing movement informa-
tion to ensure that sample sites are 
dispersed across the sample area in a 
manner that maintains independence. 

design or collecting relevant covari-
ates to model it is essential for good 
performance of these methods. 

Finally, if detection is not inde-
pendent among sites, the standard 
error estimates are usually too low. In 
these instances, the number of inde-
pendent sites is actually smaller than 
the total number of sites surveyed. 
There are existing model-based 
methods that aid in detecting and cor-
recting this problem (MacKenzie and 
Bailey 2004). 

Occupancy and Terrestrial 
Salamanders

Approximately 10% of the 
world’s salamander species are found 
in the southern Appalachian region, 
with 31 species occurring inside the 
boundaries of Great Smoky Moun-
tains National Park (GSMNP; Dodd 
2003). Despite this rich diversity, 
large-scale or long-term studies of 
terrestrial salamanders in this re-
gion are almost nonexistent (but see 
Hairston and Wiley 1993). An area of 
interest involves the impact of vari-
ous forms of disturbance on terrestrial 
salamander populations (Petranka et 
al. 1993, Ash 1997, Petranka 1999, 
Ash and Pollock 1999). Some areas 
within GSMNP incurred heavy hu-
man use in the form of logging or 
settlement prior to the park’s estab-
lishment in 1934. In this example 
analysis, we ask if previous distur-
bance history affects the probability 
of occurrence for salamanders of the 
Desmognathus imitator complex in 
GSMNP. We caution that this analysis 
is meant as an example only, and we 
remind readers that there is always an 
inherent danger in inferring biological 
process from spatial patterns.

Data: Salamanders were sampled 
using two methods: an area-con-
strained natural-cover transect (50 x 
3 m) and a 50 m coverboard transect, 
consisting of 5 coverboard stations 
spaced at 10 m intervals. The two 
transects were parallel to one another 
and separated by approximately 10 m. 
Together, the area sampled by these 
transects constituted a site or sample 

Sites should be chosen according 
to some type of probability-based 
sampling9 (e.g., simple-random 
sample, stratified-random sample, 
etc.) to ensure that estimates of oc-
cupancy apply to the area of interest. 
Sampling may be standardized to try 
to minimize differences in detection 
probability caused by variation in 
environmental conditions or time of 
day. Unfortunately, it is impossible 
to control for all possible factors that 
can affect detectability or occupancy. 
When design-based approaches 
cannot reduce all of the variation 
(sometimes termed heterogeneity) 
in either occupancy or detectability, 
model-based approaches might help. 
Investigators should collect informa-
tion about factors they believe could 
cause heterogeneity in either of these 
two parameters and then incorporate 
these covariates into the estimation 
process. For example, it may be im-
practical and wasteful to only sample 
amphibian breeding ponds during 
sunny days, but larvae are more 
difficult to see on cloudy days; thus, 
investigators should record weather 
conditions during each survey. The 
variation in detection probabilities 
caused by cloud cover can easily 
be incorporated to obtain unbiased 
estimates of occupancy.

Biases Caused by Assumption 
Violations

If the assumptions mentioned 
above are not met, estimates of oc-
cupancy and detectability can be 
biased10 and inferences about fac-
tors that influence these parameters 
may be flawed (e.g., Gu and Swihart 
2004). If the target species is not 
present at sites throughout the entire 
study season, then estimates of oc-
cupancy may still be unbiased if the 
species moves randomly in and out 
of a sampling unit. Interestingly, the 
interpretation of occupancy changes 
to the proportion of sites used by the 
target species in this case. Likewise 
the probability of detecting the spe-
cies at occupied sites is now a combi-
nation of two different components: 
the probability that the species was 
present at the sampling unit and the 
probability of detecting the species 
given it was present. If movement in 
and out of the sampling unit is not 
random, the occupancy estimator 
will likely be biased. For example, 
non-random movement occurs if the 
target species was not initially at the 
site when sampling commenced, then 
moves into the sample unit and stays 
for the duration of the season. The di-
rection of the occupancy bias depends 
on the direction of the movement (see 
Kendall 1999 for more details and 
possible solutions).

Little work has been done involv-
ing the impact of variation in occu-
pancy probability among sites that 
cannot be associated with covariates 
(occupancy heterogeneity). It is pos-
sible that the overall average occu-
pancy estimate may still be unbiased, 
but more research on the impacts of 
occupancy heterogeneity is needed. 

Heterogeneity in detection prob-
ability will often result in occupancy 
estimates that are low (negatively 
biased). This problem is further exac-
erbated in studies involving a small 
number of sites, few repeated surveys 
at each site, or species with excep-
tionally low detection probabilities. 
Anticipating variation and minimiz-
ing its effects either through study 

Kenai National Wildlife Refuge

Box 1:   Details of occupancy estimation

Parameters of interest:

ψ is the probability a site is occupied by the target species.
pj is the probability of detecting the species during the jth survey, 
given it is present (detectability). 

Necessary information: Detection histories

Detection histories are just a record of whether or not the target spe-
cies was detected on each survey of each site. For example, suppose 
30 sites were each 
sampled four times 
within a season. The 
following table could 
be the resulting detec-
tion histories, where 
each row represents a 
site and each column 
represents one of the 
four surveys: 

Each site has its own detection history that can be represented by an 
intuitive mathematical equation. In the above case, the target spe-
cies was detected at Site 1 during the first and last survey occasions 
(1001). The site was occupied (ψ), and the species was detected on 
the first and last surveys ( p1 and p4) and not detected on the second 
and third surveys. We can write the probability of this detection his-
tory as:

Pr(H i = 1001) = ψ × p1 (1 – p2)(1 – p3) p4

Sites 2 and 30 represent a case where the target species was never 
detected (detection history = 0000). These sites could either be unoc-
cupied, which mathematically is (1-ψ), or they could be occupied but 
we never detected the target species, which mathematically is:

ψ(1- p1)(1- p2)(1- p3)(1- p4) or ψ Π
4

j=1
(1 – pj )

 Thus, we can write the probability of detection history (0000) as:

Pr(H i = 0000) = ψ Π
4

j=1

(1 – pj ) + (1-ψ)

Mathematical statements of all detection histories are combined into 
model likelihood, such as:

L(ψ, p   H 1,…, H 30) = Π
30

i=1

Pr(Hi)

Maximum likelihood methods incorporated in program PRESENCE 
or program MARK are used to obtain estimates of occupancy and 
detectability (see MacKenzie et al. 2002).

Surveys

1 2 3 4

Site 1 1 0 0 1
Site 2 0 0 0 0
Site 3 1 1 0 0
…    
Site 30 0 0 0 0

Box 2: Results of model selection for salamanders of 
the Desmognathus imitator complex in Great Smoky 

Mountains National Park

 The models we considered assume occupancy was either 
constant across sites ψ (.), or varied according to the sites’ 
previous disturbance history, ψ (dist). Detectability was either 
constant across all surveys and sites p(.), or it varied among 
surveys p(t), or across sites according to previous disturbance 
history p(dist), or both p(dist+t). Model selection was based 
on Akaike’s Information Criteria for small sample size (AICc), 
which selects the most parsimonious model, balancing model 
fit and parameter precision. Models with lower AICc are con-
sidered best. AICc is the difference between the AICc of the 
best model and a subsequent model. As a general rule, models 
with AICc<2.0 have substantial support and should be consid-
ered when making inferences or reporting parameter estimates. 
Another way of assessing model support is with Akaike weight 
(w), which can be interpreted as the weight of evidence for a 
particular model. All weights sum to 1.

Model Parameters AICc AICc Weight (w)

ψ (dist) p(dist + t) 7 89.68 0.00 0.32
ψ (dist) p(t) 6 90.27 0.59 0.24
ψ (dist) p(dist) 4 91.03 1.35 0.16
ψ (dist) p(.) 3 91.47 1.78 0.13
ψ (.) p(dist + t) 6 92.25 2.57 0.09
ψ (.) p(dist) 3 93.54 3.86 0.05
ψ (.) p(t) 5 100.36 10.68 0.00
ψ (.) p(.) 2 102.01 12.33 0.00

Figure 1. Model-averaged estimates of detectability across surveys and among 
sites with different disturbance histories.
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for each possible detection history) 
forms the model likelihood5 for the 
observed data, and maximum likeli-
hood techniques are then used to 
estimate model parameters6. Param-
eter estimates (occupancy or detect-
ability) can be related to various site 
and survey characteristics using the 
logistic equation or logit-link func-
tion7. The details of this and other 
variations on occupancy estimation 
are described in a series of journal 
articles (see MacKenzie et al. papers 
under Further Reading).

Two software packages will 
help you do an occupancy analysis. 
PRESENCE was created exclusively 
for occupancy analysis and is avail-
able at http://www.mbr-pwrc.usgs.
gov/software.html. Occupancy analy-
sis has also been incorporated into 
MARK, which is available at http://
www.cnr.colostate.edu/~gwhite/soft-
ware.html. Examples using occupan-
cy models include Corn et al. (2005), 
Olson et al. (2005), and O’Connell et 
al. (2005).

Assumptions

All models have assumptions, and 
occupancy models are no exception.
Critical assumptions for data collect-
ed during a single sampling season 
include:
(1) Occupancy state is “closed.”

Species are present at occupied 
sites for the duration of the sam-
pling season. Occupancy does not 
change at a site within the sam-
pling season, but it can change 
between sampling seasons.

(2) Sites are independent. Detection 
of the target species at one site is 
independent of detecting the spe-
cies at other sites. This might be 
a problem if your sites are closely 
spaced, allowing animals to move 

among sites and be detected at 
multiple sites.

(3) No unexplained heterogene-
ity8 in occupancy. Probability of 
occupancy is the same across sites 
or differences in occupancy can be 
explained with site characteristics 
(covariates) that have been quanti-
fied for inclusion in the model.

(4) No unexplained heterogeneity in 
detectability. Detectability at oc-
cupied sites is the same across all 
surveys and sites, or differences in 
detectability can be explained with 
site or survey characteristics that 
have been quantified for inclusion 
in the model.

Approaches to Meeting 
Assumptions

 Investigators can use design-
based or model-based approaches to 
meet these assumptions. A design-
based approach involves collecting 
data in a way that assures the as-
sumptions will be met. For example, 
natural history information may aid 
in scheduling surveys during times 
when the closure assumption is most 
likely to hold. In addition, a scientist 
may use existing movement informa-
tion to ensure that sample sites are 
dispersed across the sample area in a 
manner that maintains independence. 

design or collecting relevant covari-
ates to model it is essential for good 
performance of these methods. 

Finally, if detection is not inde-
pendent among sites, the standard 
error estimates are usually too low. In 
these instances, the number of inde-
pendent sites is actually smaller than 
the total number of sites surveyed. 
There are existing model-based 
methods that aid in detecting and cor-
recting this problem (MacKenzie and 
Bailey 2004). 

Occupancy and Terrestrial 
Salamanders

Approximately 10% of the 
world’s salamander species are found 
in the southern Appalachian region, 
with 31 species occurring inside the 
boundaries of Great Smoky Moun-
tains National Park (GSMNP; Dodd 
2003). Despite this rich diversity, 
large-scale or long-term studies of 
terrestrial salamanders in this re-
gion are almost nonexistent (but see 
Hairston and Wiley 1993). An area of 
interest involves the impact of vari-
ous forms of disturbance on terrestrial 
salamander populations (Petranka et 
al. 1993, Ash 1997, Petranka 1999, 
Ash and Pollock 1999). Some areas 
within GSMNP incurred heavy hu-
man use in the form of logging or 
settlement prior to the park’s estab-
lishment in 1934. In this example 
analysis, we ask if previous distur-
bance history affects the probability 
of occurrence for salamanders of the 
Desmognathus imitator complex in 
GSMNP. We caution that this analysis 
is meant as an example only, and we 
remind readers that there is always an 
inherent danger in inferring biological 
process from spatial patterns.

Data: Salamanders were sampled 
using two methods: an area-con-
strained natural-cover transect (50 x 
3 m) and a 50 m coverboard transect, 
consisting of 5 coverboard stations 
spaced at 10 m intervals. The two 
transects were parallel to one another 
and separated by approximately 10 m. 
Together, the area sampled by these 
transects constituted a site or sample 

Sites should be chosen according 
to some type of probability-based 
sampling9 (e.g., simple-random 
sample, stratified-random sample, 
etc.) to ensure that estimates of oc-
cupancy apply to the area of interest. 
Sampling may be standardized to try 
to minimize differences in detection 
probability caused by variation in 
environmental conditions or time of 
day. Unfortunately, it is impossible 
to control for all possible factors that 
can affect detectability or occupancy. 
When design-based approaches 
cannot reduce all of the variation 
(sometimes termed heterogeneity) 
in either occupancy or detectability, 
model-based approaches might help. 
Investigators should collect informa-
tion about factors they believe could 
cause heterogeneity in either of these 
two parameters and then incorporate 
these covariates into the estimation 
process. For example, it may be im-
practical and wasteful to only sample 
amphibian breeding ponds during 
sunny days, but larvae are more 
difficult to see on cloudy days; thus, 
investigators should record weather 
conditions during each survey. The 
variation in detection probabilities 
caused by cloud cover can easily 
be incorporated to obtain unbiased 
estimates of occupancy.

Biases Caused by Assumption 
Violations

If the assumptions mentioned 
above are not met, estimates of oc-
cupancy and detectability can be 
biased10 and inferences about fac-
tors that influence these parameters 
may be flawed (e.g., Gu and Swihart 
2004). If the target species is not 
present at sites throughout the entire 
study season, then estimates of oc-
cupancy may still be unbiased if the 
species moves randomly in and out 
of a sampling unit. Interestingly, the 
interpretation of occupancy changes 
to the proportion of sites used by the 
target species in this case. Likewise 
the probability of detecting the spe-
cies at occupied sites is now a combi-
nation of two different components: 
the probability that the species was 
present at the sampling unit and the 
probability of detecting the species 
given it was present. If movement in 
and out of the sampling unit is not 
random, the occupancy estimator 
will likely be biased. For example, 
non-random movement occurs if the 
target species was not initially at the 
site when sampling commenced, then 
moves into the sample unit and stays 
for the duration of the season. The di-
rection of the occupancy bias depends 
on the direction of the movement (see 
Kendall 1999 for more details and 
possible solutions).

Little work has been done involv-
ing the impact of variation in occu-
pancy probability among sites that 
cannot be associated with covariates 
(occupancy heterogeneity). It is pos-
sible that the overall average occu-
pancy estimate may still be unbiased, 
but more research on the impacts of 
occupancy heterogeneity is needed. 

Heterogeneity in detection prob-
ability will often result in occupancy 
estimates that are low (negatively 
biased). This problem is further exac-
erbated in studies involving a small 
number of sites, few repeated surveys 
at each site, or species with excep-
tionally low detection probabilities. 
Anticipating variation and minimiz-
ing its effects either through study 

Kenai National Wildlife Refuge

Box 1:   Details of occupancy estimation

Parameters of interest:

ψ is the probability a site is occupied by the target species.
pj is the probability of detecting the species during the jth survey, 
given it is present (detectability). 

Necessary information: Detection histories

Detection histories are just a record of whether or not the target spe-
cies was detected on each survey of each site. For example, suppose 
30 sites were each 
sampled four times 
within a season. The 
following table could 
be the resulting detec-
tion histories, where 
each row represents a 
site and each column 
represents one of the 
four surveys: 

Each site has its own detection history that can be represented by an 
intuitive mathematical equation. In the above case, the target spe-
cies was detected at Site 1 during the first and last survey occasions 
(1001). The site was occupied (ψ), and the species was detected on 
the first and last surveys ( p1 and p4) and not detected on the second 
and third surveys. We can write the probability of this detection his-
tory as:

Pr(H i = 1001) = ψ × p1 (1 – p2)(1 – p3) p4

Sites 2 and 30 represent a case where the target species was never 
detected (detection history = 0000). These sites could either be unoc-
cupied, which mathematically is (1-ψ), or they could be occupied but 
we never detected the target species, which mathematically is:

ψ(1- p1)(1- p2)(1- p3)(1- p4) or ψ Π
4

j=1
(1 – pj )

 Thus, we can write the probability of detection history (0000) as:

Pr(H i = 0000) = ψ Π
4

j=1

(1 – pj ) + (1-ψ)

Mathematical statements of all detection histories are combined into 
model likelihood, such as:

L(ψ, p   H 1,…, H 30) = Π
30

i=1

Pr(Hi)

Maximum likelihood methods incorporated in program PRESENCE 
or program MARK are used to obtain estimates of occupancy and 
detectability (see MacKenzie et al. 2002).

Surveys

1 2 3 4

Site 1 1 0 0 1
Site 2 0 0 0 0
Site 3 1 1 0 0
…    
Site 30 0 0 0 0

Box 2: Results of model selection for salamanders of 
the Desmognathus imitator complex in Great Smoky 

Mountains National Park

 The models we considered assume occupancy was either 
constant across sites ψ (.), or varied according to the sites’ 
previous disturbance history, ψ (dist). Detectability was either 
constant across all surveys and sites p(.), or it varied among 
surveys p(t), or across sites according to previous disturbance 
history p(dist), or both p(dist+t). Model selection was based 
on Akaike’s Information Criteria for small sample size (AICc), 
which selects the most parsimonious model, balancing model 
fit and parameter precision. Models with lower AICc are con-
sidered best. AICc is the difference between the AICc of the 
best model and a subsequent model. As a general rule, models 
with AICc<2.0 have substantial support and should be consid-
ered when making inferences or reporting parameter estimates. 
Another way of assessing model support is with Akaike weight 
(w), which can be interpreted as the weight of evidence for a 
particular model. All weights sum to 1.

Model Parameters AICc AICc Weight (w)

ψ (dist) p(dist + t) 7 89.68 0.00 0.32
ψ (dist) p(t) 6 90.27 0.59 0.24
ψ (dist) p(dist) 4 91.03 1.35 0.16
ψ (dist) p(.) 3 91.47 1.78 0.13
ψ (.) p(dist + t) 6 92.25 2.57 0.09
ψ (.) p(dist) 3 93.54 3.86 0.05
ψ (.) p(t) 5 100.36 10.68 0.00
ψ (.) p(.) 2 102.01 12.33 0.00

Figure 1. Model-averaged estimates of detectability across surveys and among 
sites with different disturbance histories.
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Abstract
Many wildlife studies seek to 

understand changes or differences in 
the proportion of sites occupied by 
a species of interest. These studies 
are hampered by imperfect detection 
of these species, which can result 
in some sites appearing to be unoc-
cupied that are actually occupied. 
Occupancy models solve this problem 
and produce unbiased estimates of 
occupancy and related parameters. 
Required data (detection/non-detec-
tion information) are relatively simple 
and inexpensive to collect. Software 
is available free of charge to aid in-
vestigators in occupancy estimation.

Response Variables in Wildlife 
Studies

Studies of wildlife populations 
often attempt to understand patterns 
of distribution and abundance. Es-
timating abundance can be a costly 
endeavor, and other state variables1

like species richness or occupancy2

may be more appropriate and less 
expensive. Occupancy is an alterna-
tive that has a long history of use in 
ecological and wildlife studies. Two 
of the most noticeable areas where oc-
cupancy information is used include: 
(1) studies of species distribution and 
range where investigators seek to 
understand the factors that determine 
whether or not a species will exist at a 
location (e.g., habitat modeling, Scott 
et al. 2002) and (2) metapopulation 
dynamics (Hanski 1992) where site (or 
patch) occupancy is related to patch, 
or site-specific, characteristics. For the 
latter case, extinction and colonization 
probabilities can also be modeled in 
relation to patch characteristics. Moni-
toring occupancy can reveal changes 
in the status of a species over broad 

areas and may be 
appropriate for spe-
cies that exhibit wide 
population fluctua-
tions over short time 
periods. For example, 
occupancy has been 
the most influential 
state variable in de-
scribing world-wide 
amphibian declines 
(Green 1997). 

The Problem

Wildlife species are rarely de-
tected with perfect accuracy, regard-
less of the technique employed. 
Non-detection does not necessarily 
mean that a species was absent unless 
the probability of detecting the spe-
cies (detectability3) was 100%. This 
leads to a fundamental problem: the 
measure of occupancy (presence/ab-
sence at a set of sites) is confounded4

with the detectability of the spe-
cies. More specifically, an observed 
“absence” occurs if either the species 
was present at the site but not detect-
ed, or the species was truly absent. 
Detectability may vary among study 
sites and may be related to character-
istics of a survey on a particular day, 
such as weather conditions. Because 
of this variation in detectability, it is 
insufficient to simply analyze detec-
tion/non-detection data as if they 
are truly presence/absence data. The 
proportion of sites where a species is 
detected will always underestimate 
the true occupancy level in the study 
area when detection is imperfect. 
Therefore, inferences regarding the 
influences of site characteristics on 
occupancy will be difficult or impos-
sible to discern reliably (e.g., Gu and 
Swihart 2004).

The Solution
New classes of models, called 

occupancy models, were developed to 
solve the problems created by imper-
fect detectability (MacKenzie et al. 
2002, 2003, 2004). These models use 
information from repeated observa-
tions at each site to estimate detect-
ability. Detectability may vary with 
site characteristics (e.g., habitat vari-
ables) or survey characteristics (e.g., 
weather conditions), whereas occu-
pancy relates only to site characteris-
tics. Repeated observations can take 
many forms, but the most obvious is 
simply surveying each site repeatedly. 
In some cases, traps, coverboards, 
transects, and surveys by independent 
observers can be treated as repeated 
observations for a local sample area 
or site. For example, data from 10 
minnow traps in each of 30 ponds 
could be treated as 10 observations at 
each pond if there is some possibility 
that the species of interest could be 
caught in each of the traps. 

How Does This Work?
The technique is very similar to 

estimating abundance from mark-
recapture data but does not require 
any marking of animals. Necessary 
information for occupancy models is 

unit. Sample units were near trails and 
located approximately 250 m apart 
to ensure independence among sites. 
Thirty-nine sites were sampled once 
every two weeks from April to mid-
June when salamanders were believed 
to be most active and near the surface. 
However, we detected no salaman-
ders of the Desmognathus imitator 

complex during the first survey. Thus, 
we eliminated this survey from the 
analysis because we assume the sala-
manders had not emerged from their 
winter retreats and were unavailable 
for capture during this survey occa-
sion. This left a total of four surveys 
for the analysis.

Analysis, Model Selection, and 
Interpretation: Salamanders of the 
Desmognathus imitator complex
were detected at 10 of the 39 sites, 
yielding a naïve occupancy estimate 
of 0.26; however, we suspected that 
salamanders may be more likely to 
occupy undisturbed sites compared 
to disturbed sites. In addition, we 
thought detectability might vary 
among surveys due to environmental 
conditions such as rainfall or temper-
ature. Thus, we consider all combina-
tions of models in which occupancy 
probability is assumed to be constant 
for all sites (denoted as ψ (.)) or 
varied among sites according to the 
site’s previous disturbance history (ψ
(dist)); detection probability was ei-
ther constant ( p (.)), different among 
surveys (p (t)), or varied among sites 
according to previous disturbance his-
tory (p (dist)).

Models that fit the data best with 
the least number of parameters are 
favored. We do not have room to 
explain the details of this parsimoni-

Glossary:
1. State variable: variable used to characterize the status of the wild-

life system of interest; the system being studied.
2. Occupancy: the proportion of sites, patches, or habitat units oc-

cupied by a species.
3. Detectability: the probability of detecting a species during a single 

survey, given it is present at the site.
4. Confounded: an inability to separate multiple factors potentially 

contributing to an observed pattern.
5. Likelihood function: a functional expression of unknown param-

eters, given observed data and an assumed model structure. 
6. Parameters: quantities to be estimated, such as occupancy or de-

tectability, under an assumed model structure.
7. Logit function: an equation that converts a sigmoid relationship 

(logistic) between two factors to a linear relationship. The logit 
function involving detectability may be: logit(p)=ln(p/(1-p))= y.

8. Heterogeneity: Often used synonymously with variation. Here, it is 
used to refer to unexplained variation in the parameters of interest.

9. Probability-based sampling: a sampling scheme in which every 
sample unit (site) has a known probability of being selected (see 
Thompson et al. 1998).

10.Biased: describes an estimator that, over repeated trials, exhibits 
a non-random (directional) difference from the true value being 
estimated.

11.Parsimonious model selection: given a set of candidate models, 
selecting those model(s) that describe the information content of 
the data adequately with the fewest number of parameters pos-
sible.

12.Weighted average: an average where the contribution of the values 
being averaged is unequal. For example, the unweighted average 
of 5, 3, and 9 is (5+3+9)/3=(0.33(5)+0.33(3)+0.33(9))=5.7. How-
ever, if we wanted the contribution of those three values to be 0.1, 
0.4, and 0.5 respectively, we would calculate a weighted average 
of (0.1(5)+0.4(3)+0.5(9))=6.2.

Photo: Bufo boreas, Susanne L. Collins

ous process of model selection,11 but 
Burnham and Anderson (2002) have 
written a comprehensive book on the 
subject. Using the software PRES-
ENCE and methods they describe, 
our analysis highlighted four models 
as the best models representing our 
salamander data (see Box 2). There is 
some uncertainly as to which model 
is the best, so our parameter estimates 
are essentially a weighted average12

among all four models. Together 
these models suggest that occupancy 

indeed differs between previously 
disturbed and undisturbed sites; all of 
the top models include previous dis-
turbance history as a covariate in the 
occupancy estimate. Model-averaged 
occupancy estimates were 0.19 (SE = 
0.15) and 0.70 (SE = 0.15) for previ-
ously disturbed and undisturbed sites, 
respectively. Detectability also varied 
among surveys and possibly among 
sites with different disturbance histo-
ries (Figure 1, Box 2). 

Imitator Salamander
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Many wildlife studies seek to 

understand changes or differences in 
the proportion of sites occupied by 
a species of interest. These studies 
are hampered by imperfect detection 
of these species, which can result 
in some sites appearing to be unoc-
cupied that are actually occupied. 
Occupancy models solve this problem 
and produce unbiased estimates of 
occupancy and related parameters. 
Required data (detection/non-detec-
tion information) are relatively simple 
and inexpensive to collect. Software 
is available free of charge to aid in-
vestigators in occupancy estimation.

Response Variables in Wildlife 
Studies

Studies of wildlife populations 
often attempt to understand patterns 
of distribution and abundance. Es-
timating abundance can be a costly 
endeavor, and other state variables1

like species richness or occupancy2

may be more appropriate and less 
expensive. Occupancy is an alterna-
tive that has a long history of use in 
ecological and wildlife studies. Two 
of the most noticeable areas where oc-
cupancy information is used include: 
(1) studies of species distribution and 
range where investigators seek to 
understand the factors that determine 
whether or not a species will exist at a 
location (e.g., habitat modeling, Scott 
et al. 2002) and (2) metapopulation 
dynamics (Hanski 1992) where site (or 
patch) occupancy is related to patch, 
or site-specific, characteristics. For the 
latter case, extinction and colonization 
probabilities can also be modeled in 
relation to patch characteristics. Moni-
toring occupancy can reveal changes 
in the status of a species over broad 

areas and may be 
appropriate for spe-
cies that exhibit wide 
population fluctua-
tions over short time 
periods. For example, 
occupancy has been 
the most influential 
state variable in de-
scribing world-wide 
amphibian declines 
(Green 1997). 

The Problem

Wildlife species are rarely de-
tected with perfect accuracy, regard-
less of the technique employed. 
Non-detection does not necessarily 
mean that a species was absent unless 
the probability of detecting the spe-
cies (detectability3) was 100%. This 
leads to a fundamental problem: the 
measure of occupancy (presence/ab-
sence at a set of sites) is confounded4

with the detectability of the spe-
cies. More specifically, an observed 
“absence” occurs if either the species 
was present at the site but not detect-
ed, or the species was truly absent. 
Detectability may vary among study 
sites and may be related to character-
istics of a survey on a particular day, 
such as weather conditions. Because 
of this variation in detectability, it is 
insufficient to simply analyze detec-
tion/non-detection data as if they 
are truly presence/absence data. The 
proportion of sites where a species is 
detected will always underestimate 
the true occupancy level in the study 
area when detection is imperfect. 
Therefore, inferences regarding the 
influences of site characteristics on 
occupancy will be difficult or impos-
sible to discern reliably (e.g., Gu and 
Swihart 2004).

The Solution
New classes of models, called 

occupancy models, were developed to 
solve the problems created by imper-
fect detectability (MacKenzie et al. 
2002, 2003, 2004). These models use 
information from repeated observa-
tions at each site to estimate detect-
ability. Detectability may vary with 
site characteristics (e.g., habitat vari-
ables) or survey characteristics (e.g., 
weather conditions), whereas occu-
pancy relates only to site characteris-
tics. Repeated observations can take 
many forms, but the most obvious is 
simply surveying each site repeatedly. 
In some cases, traps, coverboards, 
transects, and surveys by independent 
observers can be treated as repeated 
observations for a local sample area 
or site. For example, data from 10 
minnow traps in each of 30 ponds 
could be treated as 10 observations at 
each pond if there is some possibility 
that the species of interest could be 
caught in each of the traps. 

How Does This Work?
The technique is very similar to 

estimating abundance from mark-
recapture data but does not require 
any marking of animals. Necessary 
information for occupancy models is 

unit. Sample units were near trails and 
located approximately 250 m apart 
to ensure independence among sites. 
Thirty-nine sites were sampled once 
every two weeks from April to mid-
June when salamanders were believed 
to be most active and near the surface. 
However, we detected no salaman-
ders of the Desmognathus imitator 

complex during the first survey. Thus, 
we eliminated this survey from the 
analysis because we assume the sala-
manders had not emerged from their 
winter retreats and were unavailable 
for capture during this survey occa-
sion. This left a total of four surveys 
for the analysis.

Analysis, Model Selection, and 
Interpretation: Salamanders of the 
Desmognathus imitator complex
were detected at 10 of the 39 sites, 
yielding a naïve occupancy estimate 
of 0.26; however, we suspected that 
salamanders may be more likely to 
occupy undisturbed sites compared 
to disturbed sites. In addition, we 
thought detectability might vary 
among surveys due to environmental 
conditions such as rainfall or temper-
ature. Thus, we consider all combina-
tions of models in which occupancy 
probability is assumed to be constant 
for all sites (denoted as ψ (.)) or 
varied among sites according to the 
site’s previous disturbance history (ψ
(dist)); detection probability was ei-
ther constant ( p (.)), different among 
surveys (p (t)), or varied among sites 
according to previous disturbance his-
tory (p (dist)).

Models that fit the data best with 
the least number of parameters are 
favored. We do not have room to 
explain the details of this parsimoni-

Glossary:
1. State variable: variable used to characterize the status of the wild-

life system of interest; the system being studied.
2. Occupancy: the proportion of sites, patches, or habitat units oc-

cupied by a species.
3. Detectability: the probability of detecting a species during a single 

survey, given it is present at the site.
4. Confounded: an inability to separate multiple factors potentially 

contributing to an observed pattern.
5. Likelihood function: a functional expression of unknown param-

eters, given observed data and an assumed model structure. 
6. Parameters: quantities to be estimated, such as occupancy or de-

tectability, under an assumed model structure.
7. Logit function: an equation that converts a sigmoid relationship 

(logistic) between two factors to a linear relationship. The logit 
function involving detectability may be: logit(p)=ln(p/(1-p))= y.

8. Heterogeneity: Often used synonymously with variation. Here, it is 
used to refer to unexplained variation in the parameters of interest.

9. Probability-based sampling: a sampling scheme in which every 
sample unit (site) has a known probability of being selected (see 
Thompson et al. 1998).

10.Biased: describes an estimator that, over repeated trials, exhibits 
a non-random (directional) difference from the true value being 
estimated.

11.Parsimonious model selection: given a set of candidate models, 
selecting those model(s) that describe the information content of 
the data adequately with the fewest number of parameters pos-
sible.

12.Weighted average: an average where the contribution of the values 
being averaged is unequal. For example, the unweighted average 
of 5, 3, and 9 is (5+3+9)/3=(0.33(5)+0.33(3)+0.33(9))=5.7. How-
ever, if we wanted the contribution of those three values to be 0.1, 
0.4, and 0.5 respectively, we would calculate a weighted average 
of (0.1(5)+0.4(3)+0.5(9))=6.2.

Photo: Bufo boreas, Susanne L. Collins

ous process of model selection,11 but 
Burnham and Anderson (2002) have 
written a comprehensive book on the 
subject. Using the software PRES-
ENCE and methods they describe, 
our analysis highlighted four models 
as the best models representing our 
salamander data (see Box 2). There is 
some uncertainly as to which model 
is the best, so our parameter estimates 
are essentially a weighted average12

among all four models. Together 
these models suggest that occupancy 

indeed differs between previously 
disturbed and undisturbed sites; all of 
the top models include previous dis-
turbance history as a covariate in the 
occupancy estimate. Model-averaged 
occupancy estimates were 0.19 (SE = 
0.15) and 0.70 (SE = 0.15) for previ-
ously disturbed and undisturbed sites, 
respectively. Detectability also varied 
among surveys and possibly among 
sites with different disturbance histo-
ries (Figure 1, Box 2). 

Imitator Salamander
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