

SHOALS-1000T LIDAR and Image Data Acquisition

for

Grand Canyon Monitoring and Research Program

Lees Ferry and San Juan Study Areas, AZ

Survey Report

Fugro Document No.: FP-6088.008-RPT-01-00 Contract No.: DACW01-02-D-0008/035 EN Project NO.: C-05-002

Applicable to:	Fugro Pelagos, Inc.
Controlled by:	Data Center
	Fugro Pelagos, Inc.
	3738 Ruffin Road
	San Diego, CA 92123
Telephone:	(858) 292-8922
Facsimile:	(858) 292-5308

REPORT CERTIFICATION FOR

SHOALS-1000T LIDAR and Image Data Acquisition

Grand Canyon Monitoring and Research Program

Lees Ferry and San Juan Study Areas, AZ

FP-6088.008-RPT-01-00

This issue of the report has been approved by:

1. Vice President Coastal Mapping and LIDAR Services David M	/illar
--	--------

2. Project Manager Carol Lockhart

This report has been distributed to:

Eddie Culpepper, U.S. Army Corps of Engineers,

1. Spatial Data Branch (OP-J), 109St Joseph St, Digital Copy Mobile, AL 36602

The following versions of this report have been issued:

0	2/25/2005	Grand Canyon	NK/JM	CAL	DM
REV	DATE	DESCRIPTION			

1	INTF	RODUCTION	1-1
	1.1	AREA SURVEYED	1-2
2	DAT	A ACQUISITION	2-1
	2.1	PROJECT DATUM	2-1
	2.2	GROUND CONTROL	2-1
		2.2.1 SECCHI DISK MEASUREMENTS	2-2
	2.3	AIRBORNE SURVEY	
		2.3.1 HELICOPTER MOBILISATION	
		2.3.2 POSITIONING	
		2.3.3 SENSOR ORIENTATION	
		2.3.4 LIDAR SYSTEM	2-5
	2.4	CHALLENGES ENCOUNTERED	
3			
	DAI	A PROCESSING	
	3.1	A PROCESSING GROUND CONTROL	
			3-1
	3.1	GROUND CONTROL	3-1 3-2
	3.1	GROUND CONTROL	3-1 3-2 3-2
	3.1	GROUND CONTROL LIDAR DATA	3-1 3-2 3-2 3-2
	3.1	GROUND CONTROL LIDAR DATA	3-1 3-2 3-2 3-3
	3.1	GROUND CONTROL LIDAR DATA 3.2.1 PRE-PROCESSING 3.2.2 KGPS PROCESSING 3.2.3 AUTO PROCESSING 3.2.4 DATA VISUALIZATION & EDITING 3.2.5 ASCII XYZ File	3-1 3-2 3-2 3-2 3-3 3-3 3-7
	3.1	GROUND CONTROL LIDAR DATA 3.2.1 PRE-PROCESSING 3.2.2 KGPS PROCESSING 3.2.3 AUTO PROCESSING 3.2.4 DATA VISUALIZATION & EDITING	3-1 3-2 3-2 3-2 3-3 3-3 3-7

- APPENDIX A : DAILY LOG
- APPENDIX B : GROUND CONTROL EQUIPMENT
- APPENDIX C : NGS DATASHEETS
- APPENDIX D : FPI GPS BASE STATION FIELD LOGS
- APPENDIX E : STATION DESCRIPTIONS (LES1 & PAG1)
- APPENDIX F : HELICOPTER SPECIFICATIONS
- APPENDIX G : SHOALS-1000T EQUIPMENT SPECIFICATIONS
- APPENDIX H : STATIC GPS NETWORK PROCESSING
- APPENDIX I : SHOALS CALIBRATION VALUES USED
- APPENDIX J : PDOP GRAPHS
- APPENDIX K : KGPS PROCESSING RESULTS
- APPENDIX L : PERSONNEL

LIST OF FIGURES

Figure 1-1 Lees Ferry Survey Location	1-1
Figure 1-2 San Juan River Survey Location	1-2
Figure 1-3 Dirty Water in the San Juan Study Area	1-3
Figure 2-1 FPI GPS Base Stations: PAG1 (left) and LES1 (right)	2-2
Figure 3-1 Processing Data Flow	3-1
Figure 3-2 Viewing the Dataset Surface in Fledermaus	3-4
Figure 3-3 Fledermaus 3D Editor	3-5
Figure 3-4 Waveform Viewer	3-5
Figure 3-5 Sample Waveforms indicating Differences in Water Clarity	3-7

LIST OF TABLES

Table 2-1 Helicopter Offsets	2-4
Table 3-1 Adjusted Coordinates for FPI Control Stations	3-2
Table 3-2 Coordinates for control stations (NAD83)	3-2
Table 3-3 QC Results	3-8

1 INTRODUCTION

Fugro Pelagos, Inc (FPI) was contracted by the US Army Corps of Engineers (USACE) to conduct surveys of two study areas for the US Geological Survey's (USGS) Grand Canyon Monitoring and Research Center (GCMRC).

The first study area, Lees Ferry, is within the Colorado River corridor, starting near the Lees Ferry boat dock and extending upstream 2.5 miles (Figure 1-1). The second study area, San Juan, starts 37km from the San Juan River's confluence with Lake Powell and extends up the river 33 km (Figure 1-2).

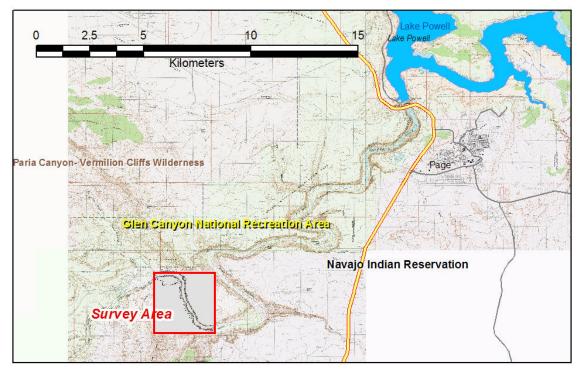


Figure 1-1 Lees Ferry Survey Location

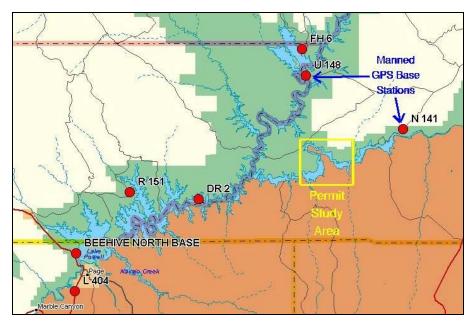


Figure 1-2 San Juan River Survey Location

The objective of the survey was to obtain the existing bathymetric conditions of the river and some land area along its margins to support sediment storage and movement studies being conducted in late November. The data will be used by GCMRC to model sediment response to dam operations within the Colorado River.

The survey took place on November 26 - 28, 2004, during the low flow period following the dam's flow spike. During this period, the following information were collected:

- Bathymetric LIDAR data from the SHOALS-1000T (including land data from the bathymetric laser)
- Digital Aerial Photography from the SHOALS-1000T
- GPS Ground Control

All times quoted in this report are UTC, unless otherwise stated.

1.1 AREA SURVEYED

The total area surveyed at Lees Ferry and San Juan was approximately $0.89 \text{ mi}^2 (2.3 \text{ km}^2)$ and 12.6 mi² (32.7 km²) in size, respectively. The bathymetric laser was operated to achieve 2m x 2m spot spacing over the river and surrounding land, flying at 300m altitude and approximately 65 knots. The survey lines were planned with 50% overlap.

At San Juan, the laser was operated to achieve 4m x 4m spot spacing at 300m altitude and approximately 65 knots. Very few bathymetric data points were acquired in the San Juan study area due to extremely dirty water conditions (Figure 1-3).

Figure 1-3 Dirty Water in the San Juan Study Area

2 DATA ACQUISITION

Operations for this survey were based out of the Courtyard Marriott hotel in Page, Arizona, where a temporary office was established. The base airport for operations was Page (PGA), Arizona.

The ground control stations were occupied each morning prior to the first flight of the day. Base station data were acquired by the client, with the exception of the PAG1 station and LES1, run by FPI.

A detailed daily operations log is given in APPENDIX A.

2.1 PROJECT DATUM

The project control was established in the NAD83 datum. Online acquisition and post-processed data were conducted in the project datum. Data results were projected to the State Plane Coordinate System Zone 202 (Central Arizona) in meters.

The vertical datum for the project was NAVD88 with units in meters. Conversion from NAD83 ellipsoid elevations to NAVD88 used the GEOID03 model. All coordinates conversions were performed using POSPac v4.2 software.

2.2 GROUND CONTROL

In order that a post-processed Kinematic GPS (KGPS) solution could be used for final positioning and refinement of the inertial solution, it was necessary to acquire dual frequency GPS data at a known location on the ground.

GPS data was collected at five ground control points: N141, U148, LFRG, PAG1, and LES1. The GPS measurements at LFRG, N141, and U148 were collected by the client. The GPS measurements at PAG1 and LES1 were collected by FPI personnel and equipment (Figure 2-1). Detailed specifications for FPI ground control equipment can be found in APPENDIX B. Dual frequency GPS data were acquired at 1-second intervals in all cases.

NGS datasheets for LFRG, N141, and U148 can be found in APPENDIX C. Precise coordinates for these stations were provided by the client.

GPS field logs for PAG1 and LES1 can be found in APPENDIX D, while station descriptions can be found in APPENDIX E.

Figure 2-1 FPI GPS Base Stations: PAG1 (left) and LES1 (right)

2.2.1 SECCHI DISK MEASUREMENTS

Secchi disc measurements were not taken. During visual inspection at the ground truth locations, and from review of the imagery the water was clear and the riverbed visible at Lees Ferry (Figure 2-2). At San Juan access to the survey area was not possible. However, the imagery indicates that this water is saturated with sediment, proving too dirty for LIDAR depths to be acquired (see Figure 1-3).

Figure 2-2 Water Clarity at Western Edge of Lees Ferry Study Area

2.3 AIRBORNE SURVEY

The Bell 206 L-III Long Ranger (call sign N1085T) equipped with a SHOALS-1000T LIDAR System was used for the project (Figure 2-3). Technical specifications for the helicopter are located in APPENDIX F. Detailed equipment specifications for the SHOALS-1000T are available in APPENDIX G.

Figure 2-3 Bell Long Ranger (N1085T)

2.3.1 HELICOPTER MOBILISATION

The helicopter was mobilized at Oxnard Airport, California with the assistance of Optech staff. The airborne component of the SHOALS-1000T consists of three separate modules. The lasers and camera are housed in a single package that was bolted to a flange above the camera door. An equipment rack, containing the system cooler and power supplies, was installed aft of the laser on the starboard side. The operators console was attached to the aft port side directly beside the power supply. The console was installed so the operator was facing backward. Equipment installation required about 4 hours.

Prior to helicopter mobilization, the system had been installed in a fixed-wing aircraft. Ground truth data were flown before demobilization of the aircraft and after remobilization of the helicopter to ensure all calibration and offset values were valid.

2.3.1.1 OFFSET MEASUREMENTS

The only offset measurement required during system mobilization is from the POS AV Inertial Measurement Unit (IMU) to the POS AV GPS antenna. The IMU is completely enclosed within the laser housing. The offsets from the IMU to a common measuring point (CMP) on the outside of the housing are known.

Offsets were measured using a total station. An arbitrary base line was established along the port side of the helicopter. Ranges and bearings were measured from the total station to the CMP on the top of the laser housing. Additional measurements where made to the sides and top of the housing to determine its orientation. A final measurement was made to the center of the POSAV GPS antenna. The IMU to POS AV GPS offsets are calculated using the known IMU to CMP offsets. A summary of the offset measurements can be found in Table 2-1, below.

OFFSET	X	Y	Z
IMU to CMP	0.073	-0.230	-0.415
CMP to POS AV GPS Antenna	-2.164	0.527	-1.059
IMU to POS AV GPS Antenna	-2.091	0.297	-1.474

Table 2-1 Helicopter Offsets

The offsets from the IMU to the POS AV GPS antenna are entered in to the POS AV console prior to survey.

2.3.2 POSITIONING

Position was determined in real time using a differential GPS (DGPS) solution. However, final positions were determined using a post-processed kinematic GPS solution (KGPS) (Section 3.2.2).

The primary position GPS antenna was a NovAtel 512 airborne L1/L2, which was connected to a NovAtel Millennium GPS card residing in the POS AV (Section 2.3.3)

An AeroAntenna AT-3065-9 antenna was used to acquire differential corrections. Two differential receivers were available: the OmniSTAR 3100LM and a CSI MBX-3S Coast Guard

beacon receiver. The OmniSTAR was the primary source of differential corrections for this project.

Dual frequency GPS data was also acquired with the NovAtel Millennium card in the POS AV. These data were used in post-processing, along with the dual frequency ground control data to provide a KGPS solution.

2.3.3 SENSOR ORIENTATION

The Applanix POS AV 410 provides orientation parameters (roll, pitch and heading). The system consists of a POS AV computer with a NovAtel Millennium GPS card, an Inertial Measuring Unit (IMU), and one NovAtel 512 airborne L1/L2 GPS antenna.

The IMU is permanently mounted within the SHOALS-1000T sensor. It uses a series of linear accelerometers and angular rate sensors that work in tandem to determine orientation.

The POS AV information is used in post-processing to determine position of the laser spots. However, analog data from the POS AV is also used during acquisition to maintain a consistent laser scan pattern.

2.3.4 LIDAR SYSTEM

The SHOALS-1000T was used to acquire both bathymetric and topographic LIDAR data during the project, using the 1 kHz bathymetric laser.

The 1-kHz bathymetric laser (or hydro laser) was used to collect data over the entire survey area. All hydrographic lines for Lees Ferry were run at approximately 300m altitude and 65 knots with a 2x2m spot spacing. All hydrographic lines for San Juan were run at approximately 300m altitude and 65 knots with a 4x4m spot spacing. Background theory on bathymetric LIDAR can be found in the paper, "*Meeting the Accuracy Challenge in Airborne LIDAR Bathymetry*" (Guenther, et al.¹). However, in general, the laser outputs a green and infrared beam. The infrared beam is used to detect the water surface and does not penetrate this. The green beam penetrates the water and is used to detect the seafloor. The green beam also excites water molecules at the air/water interface generating radiation known as Raman backscatter that can also be used to detect the sea surface. Distances to the sea surface and seafloor are calculated from the times of the laser pulses, using the speed of light in air and water.

Data received by the airborne system were continually monitored for data quality during acquisition operations. Display windows showed coverage and information about the system status. In addition, center waveforms at 5Hz were shown. All of this information allowed the airborne operator to assess the quality of data being collected.

In addition to LIDAR data, a DuncanTech DT4000 digital camera was also used to acquire one 24bit color photo per second. The camera, mounted in a bracket at the rear of the sensor, captures imagery of the area being over flown, and can be used during post-processing.

¹ "<u>Meeting the Accuracy Challenge in Airborne LIDAR Bathymetry</u>", Gary C. Guenther, A. Grant Cunningham, Paul E. LaRocque, David J. Reid (available by request).

2.3.4.1 LIDAR CALIBRATION

A LIDAR in-flight calibration was performed in Toronto, Canada prior to this project. Values were confirmed after mobilization in to the helicopter by flying ground truth data in Oxnard, CA. This "raster pattern" calibration is used in the determination of the small offsets of the scanner mirror frame relative to the optical axes of the system. To calculate the angular offsets, an average of the water surface is derived by the system. The raster pattern calibration required flying reciprocal straight lines over a relatively calm water surface for at least 5 minutes, into and against the waves. In addition, ground truth data were acquired over Oshawa runway (Toronto), and these were used to determine system biases.

2.4CHALLENGES ENCOUNTERED

Water clarity was an issue at the San Juan site. However it was decided to continue to survey the site to acquire elevations above the waterline.

On November 27, 2005 the client's base stations U148 and N141 were demobilized approximately an hour prior to completion of data collection. For this remaining period the base station used was the one set up at the Marriott hotel in Page (PAG1) by FPI.

3 DATA PROCESSING

Data were provisionally processed at the temporary office base in Page, AZ to determine data coverage. The remaining data were processed in FPI's San Diego office. An overall processing flow is given in Figure 3-1, below.

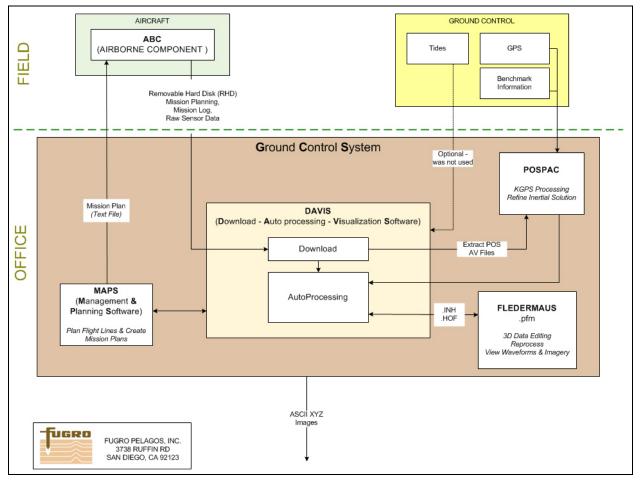


Figure 3-1 Processing Data Flow

3.1 GROUND CONTROL

The client provided dual frequency GPS data for stations U148, N141 and LFRG stations, for which accurate positions were known (APPENDIX C). To calculate coordinates for PAG1 and LES1, these data along with the data provided for U148, N141 and LFRG were processed as a static baseline network, with the client coordinates held as fixed. Baseline processing was carried out using GNSS Studio software. Final adjusted coordinates for PAG1 and LES 1 are presented in Table 3-1. Static GPS network processing results are attached in APPENDIX H.

	Latitude	Longitude	Ellipsoid Height (m)
PAG1	36º 55' 31.47067" N	111º 28' 07.88500" W	1212.061
LES1	36º 51' 58.81624" N	111º 35' 13.05479" W	933.651

3.2LIDAR DATA

All data were processed using the Optech SHOALS-1000T Ground Control System (GCS) on Windows XP workstations. The GCS includes links to Applanix POSPac software for GPS and inertial processing, and IVS Fledermaus software for data visualization and 3D editing.

The GCS was used to process the KGPS and inertial solutions, apply environmental parameters, auto-process the LIDAR waveforms, apply the vertical datum offsets, edit data and export accepted data to an ASCII file.

3.2.1 PRE-PROCESSING

Once data had been downloaded to DAViS (Download, Auto processing and Visualization Software), hardware related calibration information was entered into the GCS. A list of the calibration values used can be found in APPENDIX I.

In addition to the hardware values, some default environmental parameters were also set. Surface detection method was selected to use the IR channel initially. If no IR pick were found then the Raman would be used.

3.2.2 KGPS PROCESSING

For every mission, a new project was set up in POSPac. POS data downloaded from the air were then extracted from DAViS into the POSPac project.

Using POS GPS, GPS data from the air and ground control base station were converted from the native NovAtel and base station formats respectively, to the POS GPS .gpb format. The KGPS data were then post-processed for position, using the ground control coordinates given in Table 3-2, as the master control coordinates.

	Latitude	Longitude	Ellipsoid Height (m)
LFRG	36º 51' 40.44281" N	111º 36' 04.00607" W	968.95
U148	37º 27' 11.86283" N	110º 42' 40.46805" W	1173.065
N141	37º 18' 26.66190" N	110º 22' 33.79759" W	1167.966
PAG1	36º 55' 31.47067" N	111º 28' 07.88500" W	1212.061
LES1	36º 51' 58.81624" N	111º 35' 13.05479" W	933.651

Multi-base station solutions were used extensively throughout the data processing. The Lees Ferry site was processed using control stations LFRG and PAG1, whilst the San Juan site used

U148, N141 and PAG1. Station LES1 was used for ground truth survey processing at the Lees Ferry site. A summary of the GPS processing results can be found in APPENDIX K. While graphic plots of PDOP during the survey can be found in APPENDIX J.

POSPac then used the post-processed GPS positions to post-process the POS orientation data and refine the inertial solution. The final solution was exported to a sbet.out file, which was then used by the GCS during LIDAR auto processing.

3.2.3 AUTO PROCESSING

Once calibration values are set, environmental parameters selected and KGPS data processed, the LIDAR data can be auto processed using the GCS. The auto processing routine contains a waveform processor to select surface and bottom returns from the bathymetry data, and surfaces from the bathymetric laser. In addition, it contains algorithms to determine position for each laser pulse.

The auto process algorithms obtained inputs from the raw data and calculated a height, position and confidence for each laser pulse. This process, using the set environmental parameters, also performed a first cut at cleaning the data of poor land/seafloor detections. Questionable soundings were flagged as suspect, with attached warning information.

Data were then imported into a project PFM format file to allow data inspection and editing in Fledermaus.

3.2.4 DATA VISUALIZATION & EDITING

Data visualization and editing was done using Fledermaus. Fledermaus was used to view a gridded surface of the entire dataset in 3D (Figure 3-2). Any areas with questionable soundings/elevations were then reviewed using the 3D area-based editor, which displayed each individual sounding in 3D (Figure 3-3). This was used on smaller subsets of the data. Gross fliers were rejected. Other data of uncertain quality requiring more examination were reviewed along with the waveform window, showing shallow and deep channel bottom selections, and IR and Raman surface picks (Figure 3-4). Other metadata such as confidence and warnings are also incorporated into the viewer. In addition, the camera image associated with the laser pulse was also displayed.

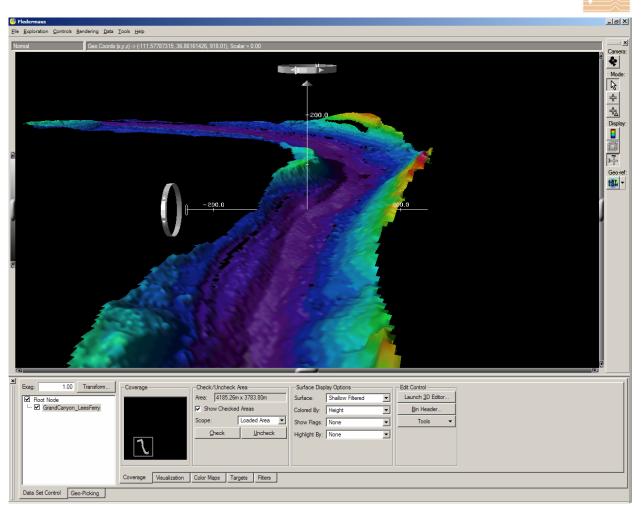
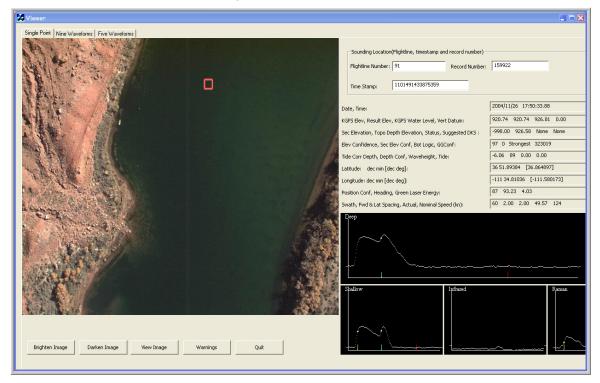



Figure 3-2 Viewing the Dataset Surface in Fledermaus

Display Options		ided												
cted	record=15 subrecord	2334	line=001_041128_1	1548_A\03D\$04010_001_ 548_A\03D\$04010_001_0	041128_1548_A_00083	hof (4)	(4484)	89.8, 4080135 34.6743', 36*5	5.3, 1001.79) 51 94491 100	1 70)			Camera:	
cied	subtecord	- 50	nie=001_041128_1	548_A \03D \$04010_001_1	J41128_1548_A_00063.	nor (4) 49449	FILL	34.6743,363	51,3448, IUU	JL.73J		\$ B8		1
						en al							Mode:	J
				-	21 4 18	100							1 1 1]
			, i	A Little	Stall	essa.							Display:	
						Ser.Se						Soundings		ejected
			sec.			College .						Surface		onnecto
												L cabe	Soundings:	
			Real Providence		40.0m	100						a survey and the	Depth	
		260		ELLER TO	and the state of	The state of the				100		WINDOWNERS IN	None	
State of		13 A	State St		A services	1			-			Sec Depths:	None	
	Mar Ma	MAG		San Bir and	20.0m	Nat and and	-	anter al			è-	Exag:	-	2
大学			and the second	- BANNER AND		Part -	1			10 193 W		Size:	Selection:	SET E
4			-100.0m	-60.0m	50,0m	1 1400.0m	- 10 m		T the			Clear		Select E
1000			and the star			Conception in	1-14	diana fr					E dit	
100		Kine			State & Car	and the second	Sister.	- Carlos				Reject		Unrejec
			- Contraction	alar f	-20.0m		AD MA							
					and the second second	1 3 V	m -							
					Call to be	~ 」推								
		Sec.	the second second											
	and the second se		C. State											
			Ba.		A. C. Same	三 在想								
		1.12	CELER.											
		A. S. S.	and a strategy and		and a contract									
				and the second se	A CARLES									
	ord File L	Line Easting	Northing	Lon	Lat	Depth	Plotted	Suspect	Feature	Rejected	Man Rejected	Fil Rejected	Kept	Sw
ecord A Subreco														
ecord A Subrect														
lecord A Subrect														
ecord A Subrece														
Record A Subreco														

Figure 3-3 Fledermaus 3D Editor

Figure 3-4 Waveform Viewer

Other SHOALS specific tools, such as swapping a sounding falsely recognized as water to land, were used inside Fledermaus.

In general, manual editing was used to remove obvious anomalies in the data mostly due to turbidity. As mentioned previously almost no data were collected in the San Juan River itself due to extremely poor water clarity. When water is turbid most of the laser energy is absorbed and is not reflected back to the receiver. This is apparent in the waveforms and images collected during this survey.

An example of a typical waveform return for this project is given in where it is compared to a waveform from clearer water conditions. As can be seen in Figure 3-5, the energy in the San Juan waveform is absorbed. The initial reflection seen in the deep and shallow channels is from the surface, but no bottom reflection occurs after this, and the signal is quickly absorbed. In the Lake Ontario sample, the reflection from the surface is followed by some volume backscatter, and then the bottom reflection. No data from the San Juan contained a clear bottom return, resulting in no depths being achieved.

TUGRO

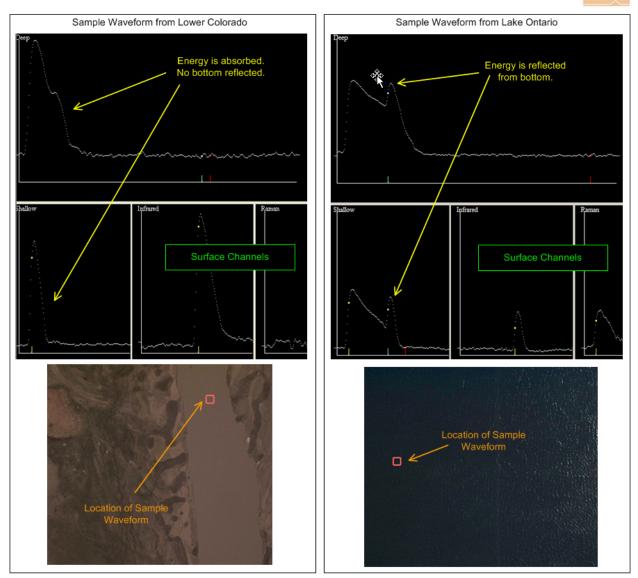


Figure 3-5 Sample Waveforms indicating Differences in Water Clarity

3.2.5 ASCII XYZ File

Once all editing was completed in Fledermaus, the GCS was used to export ASCII XYZ files of all remaining accepted data. Exported data were in NAD83, with elevation in meters. The data were transformed to the final charting datum, given in Table 3-3, using POSPac. Data were delivered with elevations in NAD83 and NAVD88, both in meters.

Datum	NAD83
Coordinate System	U.S State Plane 1983
Zone	Arizona Central (Zone 202)
Horizontal Units	Meters

Table 3-3 Geodetic Parameters for Deliverables

3.2.6 QUALITY CONTROL

Two ground truth surveys were planned and acquired over a land section in Lees Ferry. The survey consisted in observing points with a kinematic GPS rover station on terrain covered by the LIDAR scanning. A difference analysis between the observed points and LIDAR survey lines was performed using the Crosscheck program within Fledermaus.

The crosscheck program was used to create an average grid of the LIDAR data at ~3m. The ground truth points were then compared to the grid.

The results of the crosscheck are included in Table 3-3.

	All Soundings
No. of Samples	96
Mean Difference	-0.0629m
Std. Dev.	0.1676m
% of Samples with <0.15m Difference	68%

Table 3-3 QC Results

4 DATA PRODUCTS

After all processing was completed, the following deliverables for the survey were provided:

- Report :
 - Lees Ferry & San Juan Study Areas (FP-6088.008-RPT-01-00) (DOC& PDF on CD)
- ACSII XYZ Files with NAD83 heights (DVD)
- ASCII XYZ Files with NAVD88 heights (calculated using Geoid03) (DVD)
- All digital imagery acquired with associated world file(DVD)
- Image index files giving image coordinates and aircraft orientation(DVD)
- FGDC compliant Metadata(DVD)
- Flight Line Index as ArcGIS Coverage(DVD)
- Flight Line Index as ArcGIS SHP File(DVD)

APPENDIX A : DAILY LOG

TIMES BELOW ARE LOCAL

Date: 25-November-2004 Julian Day: 330

FLIGHT SUMMARY:

	ENGINE TIME		PLANE TIME			
	START	STOP	RUN	TAKE OFF	LAND	FLYING
FLIGHT 01	09:16	10:40	1h 24m	09:32	10:36	1h 04m
FLIGHT 02	10:54	11:48	0h 54m	11:03	11:44	0h 41m
FLIGHT 03			??	TRANSIT	TO PAGE	

GENERAL:

TIME	EVENT
07:30	Depart hotel for Oxnard Airport.
07:45	Arrive at Airport.
08:00	Setup GPS receivers on control point at Airport.
08:30	Back at hotel analyzing KGPS data.
10:00	Possible problem with mission plan having lever arms in wrong location.
10:15	Create new mission plan and head to Oxnard Airport.
10:45	Deliver new mission plan to Dennis T.
11:00	Back at hotel checking flight 01 data.
11:45	KGPS processing was successful.
12:00	Haresh H. leaves for LAX Airport.
12:15	Checking data from flight 02.
12:25	System checks complete.
12:30	Packing equipment that will go on Helicopter.
12:45	Depart hotel for Oxnard Airport.
13:00	Finish loading equipment on Helicopter.
13:05	Take down GPS receivers & depart Airport for hotel.
13:25	Dushan A. and Dennis T. Depart hotel for LAX Airport.
18:00	Meet Pepe M. at Phoenix Airport.
10:00	Arrive at Page, Arizona.

AIRBORNE CREW:

TIME	EVENT
	Dennis Tobin
07:00	Preflight Safety and toolbox meeting.
07:30	Depart hotel for Oxnard Airport.
07:45	Arrive at Airport.
08:00	Setup GPS receivers on control point at Airport.
09:16	Start engines.
10:40	Stop engines.
10:54	Start engines.
11:48	Stop engines.

TIME	EVENT
11:50	Depart Airport for hotel to check data.
12:30	Packing equipment that will go on Helicopter.
12:45	Depart hotel for Oxnard Airport.
13:00	Finish loading equipment on Helicopter.
13:00	Helicopter leaves for Page, Arizona.

GROUND CONTROL CREW:

TIME	EVENT
	None

Date: 26-November-2004 Julian Day: 331

FLIGHT SUMMARY:

	ENGINE TIME		PLANE TIME			
	START	STOP	RUN	TAKE OFF	LAND	FLYING
FLIGHT 01	10:17	11:35	1h 18m	10:25	11:33	1h 08m
FLIGHT 02	12:44	14:56	2h 12m	12:56	14:52	1h 56m
	DAILY TOTAL		3h 30m	DAILY	TOTAL	3h 04m
	PROJECT TO DATA		7h 03m	PROJECT	TO DATA	5h 39m

NOTE: Total does not include Transit to Page, Arizona.

GENERAL:

TIME	EVENT
07:30	Arrange to pick up rental cars.
08:15	Picked up rental cars and arrived back at hotel.
08:30	Depart hotel for Airport.
09:30	Setup system to use OmniStar.
10:00	Head back to hotel.
11:00	Processing equipment arrives at hotel.
11:45	Setting up processing equipment.
12:00	Received data from Lees Ferry site.
12:10	Downloading and checking data.
12:30	Continue setting up processing equipment.
14:30	Received call from Dennis T. indicating that water quality was poor at San Juan site. Informed him to abort and return if he was not getting any data.
15:30	Spoke to the client and he indicated that at minimum he would like to get terrestrial data at San Juan.
16:00	Checking data from San Juan.
16:30	As per client request will continue San Juan tomorrow. Informed James H. of the clients request.

AIRBORNE CREW:

TIME	EVENT
------	-------

TIME	EVENT
	Dennis Tobin
07:00	Preflight Safety and toolbox meeting.
08:30	Depart hotel for Page Airport.
08:40	Arrive at Airport.
08:45	Remove cover for laser.
08:55	Clean laser cover and camera lens and lens cover.
09:15	Get Helicopter out of hanger.
09:30	Reprogram POS for OmniStar & Reprogram OmniStar.
10:17	Start engines.
11:35	Stop engines.
11:40	Depart Airport for hotel to check data.
12:15	Depart hotel for Page Airport.
12:25	Arrive at Airport.
12:44	Start engines.
14:56	Stop engines.
15:10	Get Helicopter back in hanger.
15:25	Depart Airport for hotel.

GROUND CONTROL CREW:

TIME	EVENT
	Pepe Martinez
10:00	Setting up base station PAG1 in hotel parking lot in Page.
10:30	Depart to ground truth site in Lees Ferry.
11:40	Arrived to Lees Ferry. Scouting site for ground truth survey. Setting up base station LES1.
12:00	Start logging base station on LES1. Setting up rover station.
12:20	Start logging rover in kinematic mode. Start ground truth survey.
13:25	End ground truth survey. Stop logging rover station.
13:55	Stop logging base station on LES1. Breaking down station.
14:10	Depart to hotel.
15:10	Arrive to hotel.
15:17	Stop logging base station on PAG1. Breaking down station.

Date: 27-November-2004 Julian Day: 332

FLIGHT SUMMARY:

	ENGINE TIME			PLANE TIME		
	START STOP RUN		TAKE OFF	LAND	FLYING	
FLIGHT 01	08:39	11:18	2h 39m	08:55	11:15	2h 20m
FLIGHT 02	11:51	14:32	2h 41m	11:59	14:30	2h 31m
FLIGHT 03	15:15	16:58	1h 43m	15:22	16:55	1h 33m
	DAILY TOTAL		7h 03m	DAILY TOTAL		6h 24m

FP6088.008– Lees Ferry and San Juan Lidar Study Areas

PROJECT TO DATA	14h 06m	PROJECT TO DATA	12h 03m
-----------------	---------	-----------------	---------

NOTE: Total does not include Transit to Page, Arizona.

GENERAL:

TIME	EVENT
06:00	Haresh H. departs for Toronto.
08:00	Continue processing Lees Ferry data.
17:00	Received word that the base station was demobilized approximately an hour prior to completion of data collection.
17:30	Discussed issue with office and concluded that we will try to use the backup station setup at the hotel in Page.
17:45	Received data from San Juan survey. Downloading and processing data.
19:00	Mark G. (USGS) arrived at hotel with San Juan base station data.
20:00	Completed downloading base station data.

AIRBORNE CREW:

TIME	EVENT		
	Dennis Tobin		
07:00	Preflight Safety and toolbox meeting.		
08:00	Depart hotel for Page Airport.		
08:10	Arrive at Airport.		
08:39	Start engines.		
11:18	Stop engines @ Airport close to survey area for fuel.		
11:51	Start engines.		
14:32	Stop engines @ Airport close to survey area for fuel.		
15:12	Start engines.		
16:59	Stop engines @ Page Airport.		
17:05	Get Helicopter back in hanger.		
17:20	Depart Airport for hotel.		

GROUND CONTROL CREW:

TIME	EVENT		
	Pepe Martinez		
09:50	Setting up base station on PAG1		
10:07	Start logging base station on PAG1		
10:20	Depart to Lees Ferry site		
11:35	Arrive to Lees Ferry. Setting up base station on LES1.		
11:44	Start logging base station on LES1. Setting up rover station.		
12:06	Start logging rover station. Start ground truth survey.		
13:41	End ground truth survey. Stop logging rover station.		
14:01	Stop logging base station on LES1. Breaking down station.		
14:45	Depart to hotel.		
16:25	Arrive to hotel.		
18:02	Stop logging base station on PAG1.		

Date: 28-November-2004 Julian Day: 333

	ENGINE TIME			PLANE TIME		
	START	STOP	RUN	TAKE OFF	LAND	FLYING
FLIGHT 01	08:39	09:32	0h 53m	08:50	09:29	0h 39m
FLIGHT 02			??	TRANSIT T	O OXNARD	
	DAILY TOTAL		0h 53m	DAILY TOTAL		0h 39m
	PROJECT TO DATA		14h 59m	PROJECT	TO DATA	12h 42m

FLIGHT SUMMARY:

NOTE: Total does not include Transit to Page, Arizona and back to Oxnard, California.

GENERAL:

TIME	EVENT
07:30	Heading to Page Airport.
08:40	Adjusting Gain values on Digital Camera to see vegetation in the water.
09:30	Flight complete. Setting gain values on Camera back to original.
10:00	Helicopter departs for Oxnard, California.
10:15	Back at hotel.
10:30	Continue processing data.
12:00	Processing San Juan GPS data as multi base solutions.
15:00	Dennis T. and Pepe M. start packing equipment.
17:00	Completed processing San Juan GPS.
18:00	Packing rest of the equipment for shipping to Redding, California.

AIRBORNE CREW:

TIME	EVENT		
	Dennis Tobin		
07:00	Preflight Safety and toolbox meeting.		
07:30	Depart hotel for Page Airport.		
07:45	Arrive at Airport.		
07:55	Get Helicopter out of hanger.		
08:39	Start engines.		
08:40	Readjust gain on system Camera.		
09:32	Stop engines.		
10:00	Depart Airport for hotel.		

GROUND CONTROL CREW:

TIME	EVENT		
	Pepe Martinez		
08:00	Setting up base station on PAG1.		
08:15	Start logging base station.		
10:06	Stop logging base station. Breaking down station.		

APPENDIX B : GROUND CONTROL EQUIPMENT

THALES NAVIGATION

SUPERIOR RTK PERFORMANCE IN A MODULAR DESIGN

Z-Max Surveying System

The Z-Max[™] surveying system from Thales Navigation is a precision GPS surveying solution designed for topography and construction. Offering superior RTK performance, an innovative design and a total software solution, Z-Max delivers survey grade positioning on demand.

SUPERIOR RTK PERFORMANCE

Z-Max rises above other GPS receivers with ADAPT-RTK[™]. This breakthrough technology dramatically expands centimeter-accurate coverage by rapidly adapting to current conditions. With ADAPT-RTK, Z-Max ensures exceptional RTK coverage and data confidence. Z-Max is capable of using VRS and FKP, so that optimal results can be obtained in networks of reference stations.

INNOVATIVE MODULAR DESIGN

Z-Max features a unique modular design, with interchangeable base and rover receivers, for quick and easy system optimization in the field. The versatile system offers options for power, portability, communications, data collection, downloading and post-processing.

Wireless Roving: Integrated Bluetooth" advanced wireless system enables a convenient cable-free RTK rover.

Long-Range Communication: UHF or cellular - or a uniquely combined UHF + GSM module - simply snap into place.

New Vortex[™] UHF Antenna: Breakthrough technology eliminates conventional radio antennas and cables.

On-Board Software: A full range of options are available, including control, stop and go, RTK setup and data collection – all without the need of an additional field controller.

THE TOTAL SURVEYING SOLUTION

The Z-Max system leverages the latest in surveying technology by integrating field and office software solutions focused on topographic and construction surveying. With this comprehensive suite of software tools, the Z-Max total surveying solution can enhance your surveying capabilities, boost your productivity, improve your data quality, and upgrade your deliverables.

FAST Survey" software is a powerful graphical field companion to Z-Max that enables feature coding, real-time line work, coordination of system setup, COGO (Coordinate Geometry) and seamless connectivity to a variety of optical total stations – all available through a simple touch-screen menu.

GNSS Studio[™] software is the Z-Max GPS surveying office manager, intuitively guiding you through the entire GPS data collection process, from planning to professional quality deliverables.

www.thalesnavigation.com

Z-MAX SURVEYING SYSTEM

ECHNICAL SPECIFICATIONS

Features	Benefits		
ADAPT-RTK. Automatic Decorrelation and Parameter Tuning.	Adapts to different environments to maximize coverage area of centimeter-accurate solutions for RTK. Two second initialization (typical) baselines <20 km (12 miles) centimeter-level solution availability up to 50 km (31 miles) in long-range mode.		
Z-Max modular design	Tripod mounted data collection, cable-free RTK rover and RTK rover with a backpack, all with the same GPS receiver platform.		
On-Board control software	Perform control, topo and even RTK surveys all without the need for additional field computer and software.		
Integrated software solution for Topography and Construction	Move jobs from planning through deliverable with GNSS Studio office software and FAST Survey field software.		
Bluetooth wireless connectivity	Eliminates the cost and hassles of cables.		
Modular Communications technology	Flexible communications options, including Thales UHF, Pacific Crest UHF, GSM cellular and GSM plus UHF, are modular and simply snap on to the Z-Max.		
Vortex UHF antenna technology	UHF antenna integrated with range pole provides superior range and physical durability.		
Modular, lithium-ion power technology -14 hour size - 7 hour size	Smart battery system provides long runtime, an integral charger and up-to-the-minute capacity information and reliable, trouble-free operation.		
Dual-frequency GPS all-in-view operation	Maximize GPS measurement redundancy for surveying by tracking all observables of all GPS satellites visible abov the horizon.		
P-Code decryption using patented Z-tracking™ technique	The cleanest signal quality commercially available for civilian use.		
Automatic multipath mitigation	Robust operation in real-world surveying environments.		
Reference station network compatibility	Using the VRS or FKP positioning, Z-Max obtains optimal results from networks of reference stations in seconds.		

Performance Specifications

Static, Rapid Static *

- Horizontal 0.005 m + 0.5 ppm
- (0.016 ft + 0.5 ppm)
- Vertical 0.010 m + 0.5 ppm (0.033 ft + 0.5 ppm)

Post-Processed Kinematic

- + Horizontal 0.010 m + 1.0 ppm
- (0.033 ft +1.0 ppm) + Vertical 0.020 m + 1.0 ppm
- (0.065 ft +1.0 ppm)

Real-Time DGPS position • < 0.8 m (2.62 ft)

Real-Time Kinematic Position (fine mode)

- + Horizontal 0.010 m + 1.0 ppm (0.033 ft + 1.0 ppm)
- Vertical 0.020 m + 1.0 ppm (0.065 ft + 1.0 ppm)

ADAPT-RTK Initialization

• 99.9% reliability Typical 2 second initialization for baselines < 20 km

Technical Specifications

GPS Receiver Environmental

- Meets IP54 for moisture *
- Operating temperature: -30° to +55°C (-22° to +131°F)
- Storage temperature: -40° to +85°C (-40° to +185°F)
- Shock: 1.5 m (4.92 ft) pole drop
- Vibration: MIL-STD-810F Method 514.4 (1-3.1.1, 1-3.4.8, 1-3.4.9)*

Physical

- Receiver Module: 1.371 kg (3.02 lb)
- Antenna Module: 0.64 kg (1.17 lb)
- Power Module: 0.52 kg (0.96 lb)

Power*

- + 9-24 VDC input
- + 10-24 VDC output on serial ports
- Max-Run battery > 14 hrs. run-time @ 0 °C
- Max-Lite battery > 7 hrs. run-time @ 0 °C

Memory

+ 48 hours of 1 sec. raw GPS data with 64 MB Secure digital 128 MB SD card available

Languages Supported in Controller

- English
- French
- German
- Portuguese
- Spanish

Standard Features

- Dual frequency with Z-Tracking
- + On-board controller software 10 Hz Data recording

Optional System Components

- Thales Navigation UHF Communication Module Pacific Crest UHF Communication Module
- GSM Communication Module
- GSM+UHE Communication Module
- Z-Max GPS Antenna
- Padded Carry Bag
- + Hard Shell Case

System Software

GNSS Studio Office Software

- +L1 Processing
- RTK Support
- + L1 + L2 Processing Option

FAST Survey Field Software

- GPS Control
- Optical Instrument Control
- · Advanced Road Construction (optional)

Performance values assume minimum of 5 satellites, following the procedures recommended in the product manual. High-multipath areas, high PDOP values and periods of severe atmospheric conditions may degrade performance.

 Toll Free (Sales in USA/Canada)
 1 800 922 2401

 Email professionalsales@thalesnavigation.com
 In South America

 House 156 2 234 56 43 • Fax +56 2 234 56 47
 In China +86 10 6566 9866 + Fax +86 10 6566 0246 Web site www.thalesnavigation.com

Thates Navigation follows a policy of continuous product improvement; specifications and descriptions are thus subject to change without notice. Please contact Thates Navigation for the latest product information.

© 2004 Thales Navigation, Inc. All rights reserved. Z-Max, ADAPT-RTK, Vortex and Z-Tracking are trademarks of Thales Navigation. All other product and brand names are trademarks of their respective holdes. (3.04) Part # 8302958

THALES NAVIGATION

*Based on preliminary tests.

APPENDIX C : NGS DATASHEETS

The NGS Data SheetSee file dsdata.txt for more information about the datasheet.DATABASE = Sybase ,PROGRAM = datasheet, VERSION = 7.12 1 National Geodetic Survey, Retrieval Date = FEBRUARY 1, 2005 DG5953 DESIGNATION - LFRG - DG5953 DG5953 PID DG5953 STATE/COUNTY- AZ/COCONINO DG5953 USGS QUAD - LEES FERRY (1985) DG5953 DG5953 *CURRENT SURVEY CONTROL DG5953 DG5953* NAD 83(1992)- 36 51 40.44281(N) 111 36 04.00607(W) ADJUSTED DG5953* NAVD 88 -992.3 (meters) 3256. (feet) GPS OBS DG5953 DG5953 X -1,881,216.565 (meters) COMP _ DG5953 Y - -4,751,141.067 (meters) COMP DG5953 Z 3,805,664.431 (meters) COMP -2.76 (seconds) 968.95 (meters) DG5953 LAPLACE CORR-DEFLEC99 DG5953 ELLIP HEIGHT-(06/28/04) GPS OBS DG5953 GEOID HEIGHT--23.34 (meters) GEOID03 DG5953 DG5953 HORZ ORDER - A DG5953 ELLP ORDER - THIRD CLASS II DG5953 DG5953. The horizontal coordinates were established by GPS observations DG5953.and adjusted by the National Geodetic Survey in June 2004. DG5953 DG5953. The orthometric height was determined by GPS observations and a DG5953.high-resolution geoid model. DG5953 DG5953. The X, Y, and Z were computed from the position and the ellipsoidal ht. DG5953 DG5953. The Laplace correction was computed from DEFLEC99 derived deflections. DG5953 DG5953. The ellipsoidal height was determined by GPS observations DG5953.and is referenced to NAD 83. DG5953 DG5953. The geoid height was determined by GEOID03. DG5953 Units Scale Factor Converg. DG5953; North East DG5953;SPC AZ C - 650,118.386 241,496.164 MT 0.99990975 +0 11 21.5 DG5953;UTM 12 - 4,079,647.414 446,418.032 MT 0.99963537 -0 21 38.2 DG5953 DG5953! - Elev Factor x Scale Factor = Combined Factor DG5953!SPC AZ C -0.99984796 x 0.99990975 = 0.99975773 DG5953!UTM 12 0.99984796 x 0.99963537 = 0.99948339 _ DG5953 DG5953 SUPERSEDED SURVEY CONTROL DG5953 DG5953.No superseded survey control is available for this station. DG5953 DG5953_U.S. NATIONAL GRID SPATIAL ADDRESS: 12SVF4641879647(NAD 83) DG5953_MARKER: DO = NOT SPECIFIED OR SEE DESCRIPTION DG5953_SETTING: 35 = SPLINED REBAR DG5953_STAMPING: NO STAMPING DG5953_MAGNETIC: I = MARKER IS A STEEL ROD DG5953_STABILITY: C = MAY HOLD, BUT OF TYPE COMMONLY SUBJECT TO DG5953+STABILITY: SURFACE MOTION DG5953_SATELLITE: THE SITE LOCATION WAS REPORTED AS SUITABLE FOR DG5953+SATELLITE: SATELLITE OBSERVATIONS - 2003 DG5953 DG5953 HISTORY - Date Condition Report By DG5953 HISTORY - 2003 MONUMENTED GRANCN

DG5953 DG5953 DG5953 DG5953 DG5953'DESCRIBED BY GRAND CANYON MONITORING AND RESEARCH 2003 (FMG) DG5953'FROM THE U.S. POST OFFICE IN MARBLE CANYON LODGE, FOLLOW THE ROAD TO DG5953'LEE'S FERRY FOR 5 MILES TO THE RANGER STATION ON THE LEFT AT THE LARGE DG5953'WATER TOWER. TURN RIGHT ON THE ROAD THAT LEADS TO THE RESIDENTIAL AREA DG5953'FOR LEE'S FERRY PARK EMPLOYEES. FOLLOW ROAD TO ITS END ON THE SOUTH DG5953'SIDE OF THE RESIDENTIAL AREA. THE STATION IS 43 METERS SOUTH OF THE DG5953'SW FENCE CORNER AND 35 METERS SW OF THE NORTHERLY OF 2 MANHOLES. DG5953' DG5953'THE STATION IS A ONE-HALF INCH SPLINED REBAR WITH A 1-INCH STEEL CAP, DG5953'CEMENTED TO A DEPTH OF 10 INCHES. **** retrieval complete.

Elapsed Time = 00:00:00

Coordinates for N141 and U148 as provided by the client.

Stations were used for water penetrating LIDAR contract, San Juan Arm Nov-Dec. 2004

Station	Latitude	Longitude	Ortho.03	Geoid03 Ellipsoid
N 141	37 18 26.66190N	110 22 33.79759W	1189.697	-21.697 1167.966
U 148	37 27 11.86283N	110 42 40.46805W	1195.592	-22.545 1173.065

The NGS Data SheetSee file dsdata.txt for more information about the datasheet.DATABASE = Sybase ,PROGRAM = datasheet, VERSION = 7.10 National Geodetic Survey, Retrieval Date = NOVEMBER 27, 2004 1 HN0156 DESIGNATION - N 141 - HN0156 HN0156 PID HN0156 STATE/COUNTY- UT/SAN JUAN HN0156 USGS QUAD - WHIRLWIND DRAW (1987) HN0156 HN0156 *CURRENT SURVEY CONTROL HN0156 HN0156* NAD 83(1986)- 37 18 44. 110 22 06. (N) (W) SCALED HN0156* NAVD 88 -1189.698 (meters) 3903.20 (feet) ADJUSTED HN0156 HN0156 GEOID HEIGHT--21.67 (meters) GEOID03 HN0156 DYNAMIC HT -1188.412 (meters) 3898.98 (feet) COMP HN0156 MODELED GRAV-979,509.8 (mgal) NAVD 88 HN0156 HN0156 VERT ORDER - FIRST CLASS II HN0156 HN0156. The horizontal coordinates were scaled from a topographic map and have HN0156.an estimated accuracy of +/- 6 seconds. HN0156 HN0156. The orthometric height was determined by differential leveling HN0156.and adjusted by the National Geodetic Survey in June 1991. HN0156 HN0156. The geoid height was determined by GEOID03. HN0156

FP6088.008– Lees Ferry and San Juan Lidar Study Areas

TUGRO

HN0156. The dynamic height is computed by dividing the NAVD 88 HN0156.geopotential number by the normal gravity value computed on the HN0156.Geodetic Reference System of 1980 (GRS 80) ellipsoid at 45 HN0156.degrees latitude (g = 980.6199 gals.). HN0156 HN0156. The modeled gravity was interpolated from observed gravity values. HN0156 Units Estimated Accuracy North HN0156; East HN0156;SPC UT S - 3,072,250. 600,310. MT (+/- 180 meters Scaled) HN0156 SUPERSEDED SURVEY CONTROL HN0156 HN0156 HN0156 NGVD 29 (??/??/92) 1188.807 (m) 3900.28 (f) ADJ UNCH 1 2 HN0156 HN0156.Superseded values are not recommended for survey control. HN0156.NGS no longer adjusts projects to the NAD 27 or NGVD 29 datums. HN0156.See file dsdata.txt to determine how the superseded data were derived. HN0156 HN0156_U.S. NATIONAL GRID SPATIAL ADDRESS: 12SWG559296(NAD 83) HN0156_MARKER: DB = BENCH MARK DISK HN0156 SETTING: 66 = SET IN ROCK OUTCROP HN0156_STAMPING: N 141 1962 HN0156_STABILITY: A = MOST RELIABLE AND EXPECTED TO HOLD HN0156+STABILITY: POSITION/ELEVATION WELL HN0156 HN0156 HISTORY - Date Condition Report By MONUMENTED HN0156 HISTORY - 1962 CGS HN0156 HN0156 STATION DESCRIPTION HN0156 HN0156'DESCRIBED BY COAST AND GEODETIC SURVEY 1962 HN0156'42.0 MI S FROM FRY CANYON. HN0156'ABOUT 12.5 MILES SOUTHEAST ALONG UTAH STATE HIGHWAY 95 FROM THE POST HN0156'OFFICE AT FRY CANYON. THENCE 19.5 MILES SOUTHWEST ALONG A GRADED DIRT HN0156'ROAD. THENCE 10.0 MILES SOUTHWEST ALONG A BULLDOZED ROAD LEADING TO HN0156'THE SAN JUAN RIVER, 367 FEET EAST-SOUTHEAST OF THE CENTERLINE OF THE HN0156'ROAD, 161 FEET EAST-SOUTHEAST OF A METAL WITNESS POST, 3 1/2 FEET EAST HN0156'OF A ROCK CAIRN, ABOUT 5 FEET BELOW THE LEVEL OF THE ROAD, AND SET IN HN0156'THE TOP OF A LARGE FLAT ROCK OUTCROP THAT PROJECTS ABOUT 7 INCHES. *** retrieval complete. Elapsed Time = 00:00:02 NGS Data The SheetSee file information about dsdata.txt for the more datasheet.DATABASE = Sybase ,PROGRAM = datasheet, VERSION = 7.10 National Geodetic Survey, Retrieval Date = NOVEMBER 27, 2004 1 HN0302 DESIGNATION - U 148 HN0302 PID HN0302 HN0302 STATE/COUNTY- UT/SAN JUAN HN0302 USGS QUAD - HALLS CROSSING (1987) HN0302 HN0302 *CURRENT SURVEY CONTROL HN0302 HN0302* NAD 83(1986)-37 27 00. (N) 110 41 41. (W) SCALED HN0302* NAVD 88 1195.592 (meters) 3922.54 (feet) ADJUSTED _ HN0302 HN0302 GEOID HEIGHT--22.53 GEOID03 (meters) HN0302 DYNAMIC HT -1194.271 (meters) 3918.20 (feet) COMP HN0302 MODELED GRAV-979,485.2 NAVD 88 (mgal) HN0302 HN0302 VERT ORDER - FIRST CLASS II

FP6088.008– Lees Ferry and San Juan Lidar Study Areas

HN0302 HN0302. The horizontal coordinates were scaled from a topographic map and have HN0302.an estimated accuracy of +/- 6 seconds. HN0302 HN0302. The orthometric height was determined by differential leveling HN0302.and adjusted by the National Geodetic Survey in June 1991. HN0302 HN0302. The geoid height was determined by GEOID03. HN0302 HN0302. The dynamic height is computed by dividing the NAVD 88 HN0302.geopotential number by the normal gravity value computed on the HN0302.Geodetic Reference System of 1980 (GRS 80) ellipsoid at 45 HN0302.degrees latitude (g = 980.6199 gals.). HN0302 HN0302. The modeled gravity was interpolated from observed gravity values. HN0302 HN0302; North East Units Estimated Accuracy HN0302;SPC UT S - 3,087,240. 571,250. ΜT (+/- 180 meters Scaled) HN0302 SUPERSEDED SURVEY CONTROL HN0302 HN0302 HN0302 NGVD 29 (??/??/92) 1194.587 (m) 3919.24 (f) ADJ UNCH 1 2 HN0302 HN0302. Superseded values are not recommended for survey control. HN0302.NGS no longer adjusts projects to the NAD 27 or NGVD 29 datums. HN0302.See file dsdata.txt to determine how the superseded data were derived. HN0302 HN0302_U.S. NATIONAL GRID SPATIAL ADDRESS: 12SWG270448(NAD 83) HN0302_MARKER: DB = BENCH MARK DISK HN0302_SETTING: 66 = SET IN ROCK OUTCROP HN0302_STAMPING: U 148 1962 HN0302_STABILITY: A = MOST RELIABLE AND EXPECTED TO HOLD HN0302+STABILITY: POSITION/ELEVATION WELL HN0302 HN0302 HISTORY - Date Condition Report By HN0302 HISTORY - 1962 MONUMENTED CGS HN0302 HISTORY - 1973 NPS GOOD HN0302 HISTORY - 1973 GOOD NPS HN0302 HN0302 STATION DESCRIPTION HN0302 HN0302'DESCRIBED BY COAST AND GEODETIC SURVEY 1962 HN0302'62.55 MI SW FROM FRY CANYON. HN0302'12.5 MILES SOUTHEAST ALONG UTAH HIGHWAY 95 FROM THE POST OFFICE AT FRY HN0302'CANYON. THENCE 19.5 MILES SOUTHWEST ALONG A GRADED DIRT ROAD. THENCE HN0302'15.0 MILES WEST ALONG A GRADED DIRT ROAD THAT LEADS THROUGH CLAY HILLS HN0302'DIVIDE. THENCE 15.55 MILES NORTHWEST ALONG A BULLDOZED ROAD LEADING HN0302'TO HALLS CROSSING ON THE COLORADO RIVER, 23.05 MILES WEST OF GREEN HN0302'WATER SPRING, 129 FEET SOUTH-SOUTHWEST OF A CURVE IN THE ROAD, 71.0 $\tt HN0302'FEET$ WEST-SOUTHWEST OF A METAL WITNESS POST, ABOUT 3 FEET ABOVE THE HN0302'LEVEL OF THE ROAD, AND SET IN THE TOP AND CENTER OF A 30X75 FEET EGG HN0302'SHAPED ROCK OUTCROP PROJECTING ABOUT 3 FEET ABOVE THE GROUND AT THE HN0302'HIGHEST POINT. HN0302 HN0302 STATION RECOVERY (1973) HN0302 HN0302'RECOVERY NOTE BY NATIONAL PARK SERVICE 1973 HN0302'RECOVERED IN GOOD CONDITION. HN0302 HN0302 STATION RECOVERY (1973) HN0302 HN0302'RECOVERY NOTE BY NATIONAL PARK SERVICE 1973 HN0302'RECOVERED IN GOOD CONDITION.

APPENDIX D : FPI GPS BASE STATION FIELD LOGS

fucro

Project No. & Name: Client Name:	6088.008 Lidar-Gr USGS	and Canyon		GROUND	CONTROL	-Tuger
Location:	Page, Arizona			BASE STA	TION LOG	* 2
SITE INFORMATI	ON	Site ID: LES1		Site Name	: Lees 1	Ferru
Site Type:	🕅 Horiz Cntrl	Later C	X New		ccupation	
Receiver Type:	Z-Max	S/N: 200339011	Antenna T	ype: Z-Ma	x S/N:	200342038
ANTENNA HEIGH	T PARAMETERS	Phase Offset In	cluded? 🔯	Yes 🗆 No	Ant. Meas	uring Point Sketch
Mean Antenna	1	Ant. Radius	Vert. Off	set).774-5	2
Start _1.730_m	End <u>1.7307</u> m	<u>Plate</u> 0.09 m	0.774		4	Plate
in		in		in	730-27	Mark
OBSERVATIONS	Date:	26-Nov-C	14	Observer	J.Mar	tinez
	Time	Memory	Recordin		PDOP	Record Interval
Start:	1900	<u>33</u> (% Used)	🖗 Yes 🗆	No 9	2.3	1 secs
End:	2055	35 (% Used)	🕅 Yes 🗆	No 8	2.2	
Start Antenna	Contraction of the second second	d Antenna Height	Entry	road -	A	
1. 1.730	1. 1.	731		- Pár	King	
2. 1.730	2. 1.	731		Pdf	King E	Bost
	2. 1. 3. 1 -	731 730		aling	IVET =	E Famp
2. 1.730	2. 1. 3. 1- OBSTRUCTION N	731 730		MONUMENT	IVET =	E Famp
2. 1.730	2. 1. 3. 1- OBSTRUCTION	731 730		aling	TVE T	SCRIPTION
2. 1.730	2. 1. 3. 1- OBSTRUCTION N 345 0 330	731 730 DIAGRAM			RUBBING/DE	SCRIPTION
2. 1.730 3. 1.730	2. 1. 3. 1- OBSTRUCTION N 345 0 330	731 730 DIAGRAM 15 30	((MONUMENT I Black pai	aubbing/De nt cross der luc	SCRIPTION Cated in
2. 1.730 3. 1.730 3.1.730	2. 1. 3. 1. OBSTRUCTION N 345 0 330 20	731 730 DIAGRAM 15 30 45 60		MONUMENT Black pai Black pai Blat boul	nt cross der loc ng lot c	SCRIPTION Cated in OF the
2. 1.730 3. 1.730 315 300 285	2. 1. 3. 1- OBSTRUCTION N 345 0 330 20 40	731 730 DIAGRAM 15 30 45 60 7	75 {	MONUMENT Black pai Blat boul the parkin poat laur	nt cross der loc ng lot c nching	SCRIPTION Cated in OF the
2. 1.730 3. 1.730 315 300 285 W 270	2. 1- 3. 1- OBSTRUCTION N 330 330 20 40 60	731 730 DIAGRAM 15 30 45 60 7	75 { 90 E	MONUMENT Black pai Black pai Blat boul	nt cross der loc ng lot c nching	SCRIPTION Cated in OF the
2. 1.730 3. 1.730 315 300 285 W 270 255	2. 1- 3. 1- OBSTRUCTION N 330 330 20 40 60	731 730 DIAGRAM 15 30 45 60 7	75 {	MONUMENT Black pai Blat boul the parkin poat laur	nt cross der loc ng lot c nching	SCRIPTION Cated in OF the
2. 1.730 3. 1.730 315 300 285 W 270	2. 1- 3. 1- OBSTRUCTION N 330 330 20 40 60	731 730 DIAGRAM 15 30 45 60 7	75 { 90 E	MONUMENT Black pai Blat boul the parkin poat laur	nt cross der loc ng lot c nching	SCRIPTION Cated in OF the
2. 1.730 3. 1.730 315 300 285 W 270 255	2.1- 3.1- OBSTRUCTION N 345 0 330 20 40 60 80	731 730 DIAGRAM 15 30 45 60 7 10 120 135	75 { 90 E	MONUMENT Black pai Blat boul the parkin poat laur	nt cross der loc ng lot c nching	SCRIPTION Cated in OF the
2. 1.730 3. 1.730 315 300 285 W 270 255 240	2. 1- 3. 1- 0BSTRUCTION N 330 20 40 60 80	731 730 DIAGRAM 15 30 45 60 7 10 120 135	75 { 90 E	MONUMENT Black pai Blat boul the parkin poat laur	nt cross der loc ng lot c nching	SCRIPTION Cated in OF the

f	UGRO
U	\sim
	\sim

Client Name: .ocation:	6088.008 Lidar-Gra USGS Page, Arizona	ind Canyon		OUND CO		-Fuge
SITE INFORMATIO	ON	Site ID: LES		Site Name:	Lees Fe	erry
Site Type:	R Horiz Cntrl	Vert Cntrl	🕅 New		pation	,
Receiver Type:	Z-Max	S/N: 200339011	Antenna Type:	Z-Max	S/N:	200342038
ANTENNA HEIGH	T PARAMETERS	Phase Offset Incl	uded? 🕅 Yes	□ No 「	Ant. Measu	uring Point Sketch
Mean Antenna Start <u>1.6623</u> m <u>65₹/l6</u> in	End	Ant. Radius Plate O.09 m in	Vert. Offset 0.774 m in	0.5	774 J	Plate
DBSERVATIONS	Date:	27 Nov 04		Observer	J.Mar	tinez
Start:	Time (844	Memory 17 (% Used)	Recording	SV# ୪	PDOP 2-0	Record Interval
End:	2103	20 (% Used)	Yes 🗆 No	8	2.5	secs
<u>Start Antenna</u> 1. 1.662 2. 1.663 3. 1.662	657/16" 1. l. 2. l.		Access roza	Parki	11/1 A	
	OBSTRUCTION	DIAGRAM		NUMENT RUE	BING / DE	SCRIPTION
	N					

TUGRO

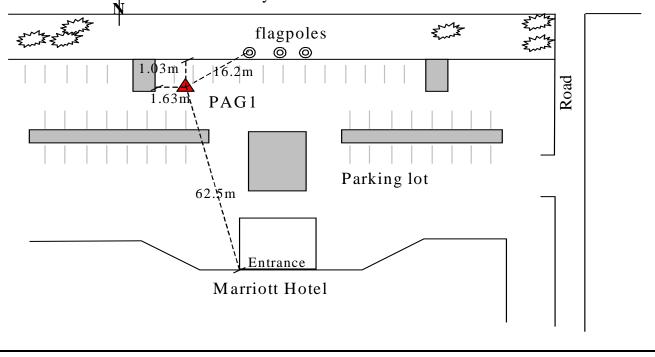
The second state of the se	USGS	ina Canyon			SE STAT		T	uceo
	Page, Arizona	Site ID: P	461		Site Name:	Macriott	Hotel	Poss
Site Type:	R Horiz Cntrl		and the second se	🤇 New			110101	<u>1 auge</u>
Receiver Type:	Z-Max	S/N: 2003480	070 An	tenna Type:	Z-Max	S/N:		
ANTENNA HEIGHT	PARAMETERS	Phase Of	fset Included	d? 🖳 Yes	🗆 No	Ant. Measu	uring Poin	t Sketch
Mean Antenna Start <u> </u>	Height-Slant End 603.3_ m in	Ant. Radi Plate 0.09		/ert. Offset to Ll 0.327 m in	1.4	604	Plate Mark	
OBSERVATIONS	Date:	26 No.	104		Observer	J. Mart	-inez	
	Time	Memory		lecording	SV#	PDOP	Record	Interva
Start: End:	1711	10 (%)		es 🗆 No	0	3.7	_1	secs
Start Antenna 1. 1.604 2. 1.604	1. l- 2. l-	604	<u>ght</u>	N	Huny 89 A Parking Lot Marriott	r]		
3. 1.604	3. 1			1	NUMENT RI		CODIDTI	201
315 300 285 W 270 255 240 225	N 330 20 40 60 80 20 40 40 60 80 80 210 195 180	15 30	Clear 45 60 75 90 E 105 120 35		°K nail z driven Sur Fac on the	e in p	arkir	ig lot

FUGRO

Client Name:	6088.008 Li USGS Page, Arizoi		nd Canyon	_		ROUND C		
			Site ID: PAG			Site Name:	Marriott	Hote Page
Site Type:	🕅 Horiz				New	C Reoc	Alter an an and a set	
Receiver Type:	Z-Max	5	S/N:20034807	-0 Ante	enna Type:	Z-Max	S/N:	
ANTENNA HEIGH	T PARAME	TERS	Phase Offset	Included?	Yes	No No	Ant. Meas	suring Point Sketch
Mean Antenna		nt	Ant. Radius	Ve	rt. Offset	0.	327-	2
Start 1.5923 m	End 1.5924		Plate 0.09	m 0	.327 m		592 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Plate
in	The second secon		0.04	in	.327 m in		42	X A Mark
OBSERVATIONS		Date:	27-Nov-	-04	_	Observer	J.Mart	thez
	Time	9	Memory	Re	cording	SV#	PDOP	Record Interval
Start:	1707		<u>7</u> (% Used	I) 🖾 Yes	s 🗆 No	8	1.9	
End:	0102	(28-Nov)	18 (% Used	i) 🖾 Yes	s 🗆 No	8	2.1	3eccs
Start Antenna	Hoight	End	Antonno Lloight		N -	20 0	arking	
1. 1.592	rieigint	1. 1.6			4	1111		and
	neigin	2000	192 1925		4	Hole		3.
1. 1.592 2. 1.592	OBSTRUC	1. 1.6 2. 1.5 3. 1.5	192 1928 1928		MC	Hole		ESCRIPTION
1. 1.592 2. 1.592	OBSTRUC	1. 1.6 2. 1.6 3. 1.6 CTION D	92 925 9926 NAGRAM	lear		Hole DNUMENT R		ESCRIPTION
1. 1.592 2. 1.592		1. 1.6 2. 1.5 3. 1.5 CTION D N 0	92 926 NAGRAM			Hole DNUMENT R		ESCRIPTION
1. 1.592 2. 1.542 3. 1.543	OBSTRUC	1. 1.6 2. 1.6 3. 1.6 CTION D 0	42 426 5426 NAGRAM 15 30 45	lear	PK dr	Hole DNUMENT R . na.il ar iven in	UBBING/D Id flagg tarma	ESCRIPTION Jing tape C Surface
1. 1.592 2. 1.542 3. 1.543 315 300	OBSTRUC	1. 1.5 2. 1.5 3. 1.5 CTION E N 0 20 40	42 426 5426 NAGRAM 15 30 45	lear 60	PK dr in	Hole DNUMENT R . nail ar liven in the Nort	UBBING/D Id flagg tarma	ESCRIPTION
1. 1.592 2. 1.542 3. 1.543 3. 1.543	OBSTRUC	1. 1.5 2. 1.5 3. 1.5 CTION E N 0 20 40 60	42 426 5426 NAGRAM 15 30 45	lear	PK dr in	Hole DNUMENT R . na.il ar iven in	UBBING/D Id flagg tarma	ESCRIPTION Jing tape C Surface
1. 1.592 2. 1.542 3. 1.543 315 300	OBSTRUC	1. 1.5 2. 1.5 3. 1.5 CTION E N 0 20 40	42 426 5426 NAGRAM 15 30 45	lear 60	PK dr in	Hole DNUMENT R . nail ar liven in the Nort	UBBING/D Id flagg tarma	ESCRIPTION Jing tape C Surface
1. 1.592 2. 1.542 3. 1.543 315 300 285	OBSTRUC	1. 1.5 2. 1.5 3. 1.5 CTION E N 0 20 40 60	42 426 5426 NAGRAM 15 30 45	60 75	PK dr in	Hole DNUMENT R . nail ar liven in the Nort	UBBING/D Id flagg tarma	ESCRIPTION Jing tape C Surface
1. 1.592 2. 1.542 3. 1.543 300 285 W 270	OBSTRUC	1. 1.5 2. 1.5 3. 1.5 CTION E N 0 20 40 60	92 9926 11AGRAM 15 0 45	60 75 90 E 105 120	PK dr in	Hole DNUMENT R . nail ar liven in the Nort	UBBING/D Id flagg tarma	ESCRIPTION Jing tape C Surface

fugro

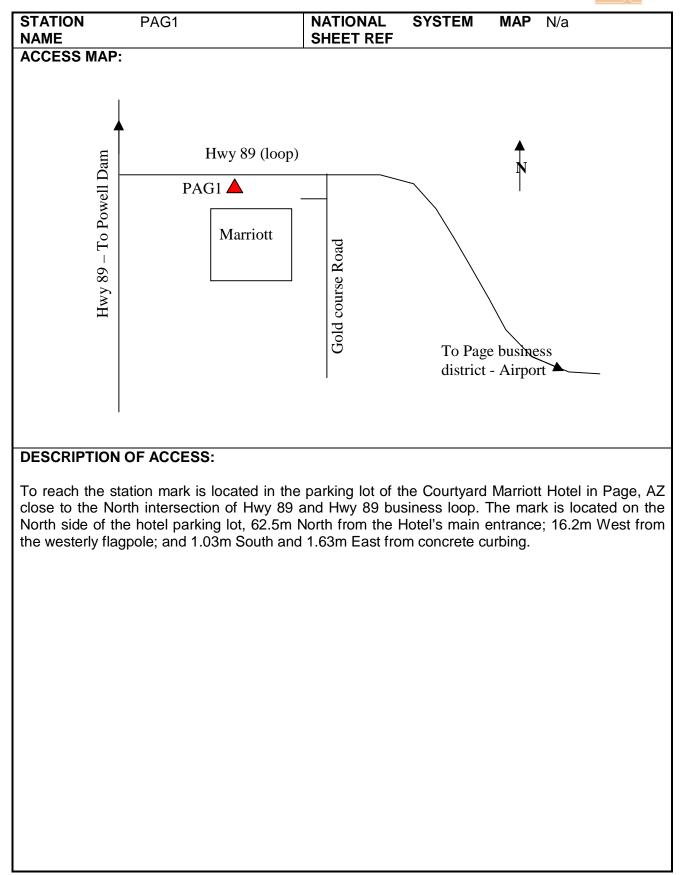
Project No. & Name: Client Name:	6088.008 Lidar-Gro USGS	and Canyon	-			ONTROL		-Fuga
Location:	Page, Arizona			BA	SE STAT	ION LOG		1991-002
SITE INFORMATIC	DN	Site ID: PAG	1		Site Name:	Marriott	Hotel	Page
Site Type:	M Horiz Cntrl	Ø√ert Cn	trl 🔯	New		cupation		0
Receiver Type:	Z-Max	S/N: 2003480	70 Ante	nna Type:	Z-Max	S/N:		
ANTENNA HEIGH	T PARAMETERS	Phase Offset	Included?	K Yes	🗆 No	Ant. Meas	uring Poi	nt Sketch
Mean Antenna Start <u>1.621</u> 3 m <u>6213</u> 16 in	Height-Slant End <u>I.622</u> m in	Ant. Radius Plate 0.09		rt. Offset • 327 m in	1.6	22	Plate	
OBSERVATIONS	Date:	28 Nov	04		Observer	J.Mart	the3	
	Time	Memory		cording	SV#	PDOP	Record	d Interval
Start:	1515	(% Used) 🖾 Yes	□ No	8	1.8	1	secs
End:	1706	(% Used) 🖾 Yes	□ No	8	1.8		3003
2. 1.4.	213/16" 1. 1.	622		r	Parking	× -		
3. 1.622 1	3. (.)				Hotel		11	-
	OBSTRUCTION	DIAGRAM		MO	NUMENT R	JBBING / DI	ESCRIPT	ION
	345 0 330	15 C	lear	PK	- nail a	und Flac	gging	tape
315 300	20-40-	45	60			ac surf		
285 W 270 255 240 225	210 195 180	135 165	75 90 E 105 120					



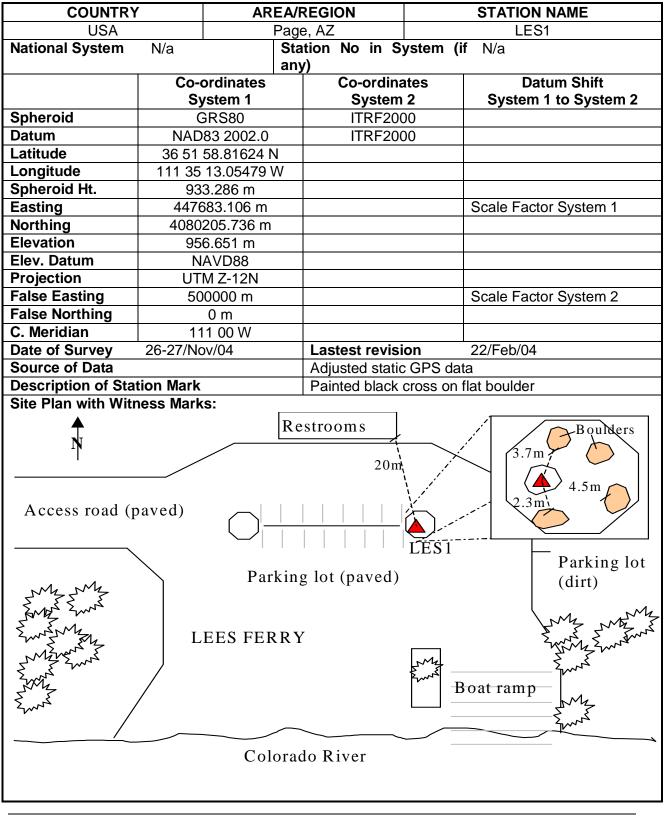
APPENDIX E : STATION DESCRIPTIONS (LES1 & PAG1)

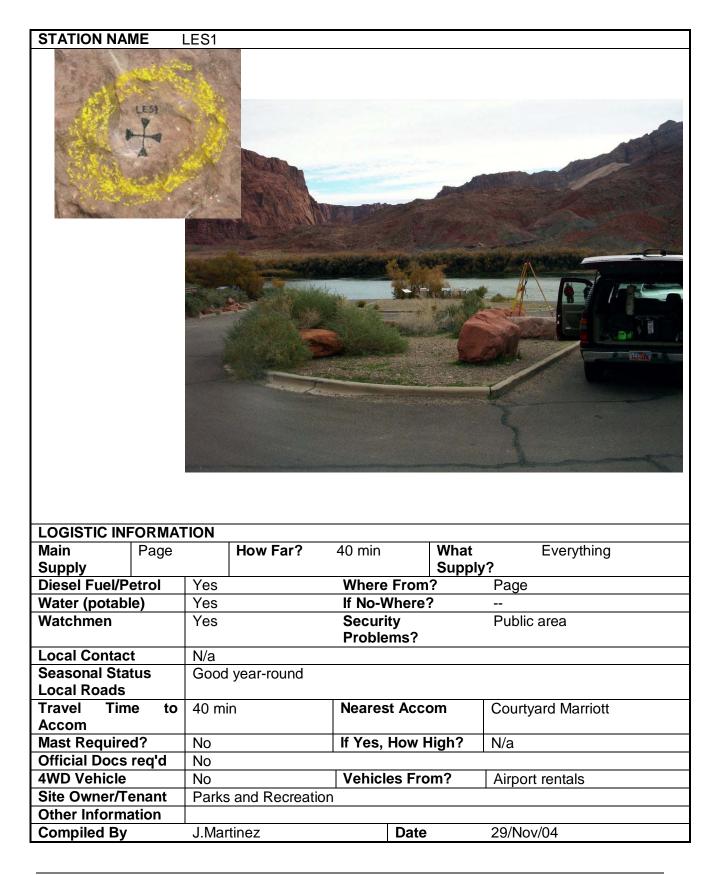
SURVEY STATION DESCRIPTION

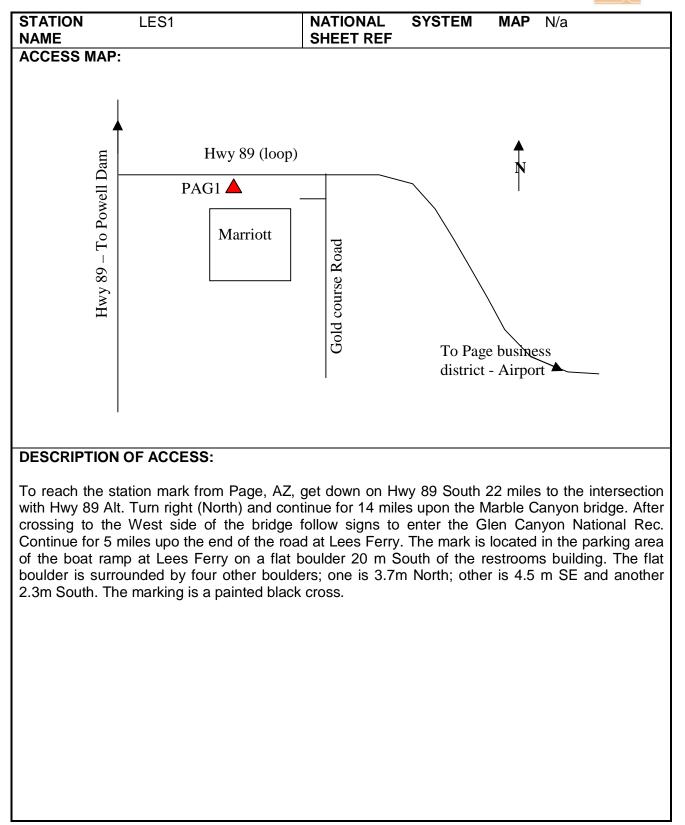
COUNTRY	/	ARE	EA/R	EGION			STATION NAME
USA			Page,				PAG1
National System	N/a						(if N/a
	1		any)				
		ordinates			ordinat		Datum Shift
		vstem 1			stem 2		System 1 to System 2
Spheroid	-	SRS80			RF200		
Datum	NAD	83 2002.0		ITF	RF200	0	
Latitude	36 55	31.47067 N					
Longitude	111 28	07.88500 W	V				
Spheroid Ht.	12	212.061					
Easting	458	3242.107					Scale Factor System 1
Northing	408	6700.394					
Elevation	12	235.516					
Elev. Datum	NAVD	88 (orthom))				
Projection	UTN	1 Z12N m					
False Easting	50	0000 m					Scale Factor System 2
False Northing		0 m					
C. Meridian	111 00 V	/					
Date of Survey	26-28/No	ov/04		Lastest	revisio	on	22/Feb/05
Source of Data				Adjusted	static	GPS da	ata
Description of Sta	tion Mark			PK nail d	lriven i	n paveo	l surface
Site Plan with Witr	ness Mark	S:					
▲ N		Нѡу	89				
- Stranger		~				~	te Europe



STATION NAME PAG1 LOGISTIC INFORMATION Main How Far? What Everything Page 5 min Supply? Supply Diesel Fuel/Petrol Where From? Page Yes Water (potable) Watchmen If No-Where? Yes --Security Hotel parking lot Yes Problems? N/a Local Contact Seasonal Status Good year-round


Local Roads			
Travel Time to	Right there	Nearest Accom	Courtyard Marriott
Accom			
Mast Required?	No	If Yes, How High?	N/a
Official Docs req'd	No		
4WD Vehicle	No	Vehicles From?	Airport rentals
Site Owner/Tenant	Courtyard Marriott		
Other Information			
Compiled By	J.Martinez	Date	26/Nov/04


SURVEY STATION DESCRIPTION


FP6088.008– Lees Ferry and San Juan Lidar Study Areas

APPENDIX F : HELICOPTER SPECIFICATIONS

HEICOPTER	BELL LONGRANGER
Official Number	N1085T
Owner	Aspen Helicopters
Blade Span	37 ft 0 in
Fuselage Length	32 ft 2 in
Gross Weight	4,150 lbs
Typical Empty Weight	2500 lbs
Survey Mode Duration	~2.5 hours
Engine	RR250-C30P Jet Turbo Shaft

APPENDIX G: SHOALS-1000T EQUIPMENT SPECIFICATIONS

SHOALS Specifications

Hydrographic Mode

1000 Hz					
200-400 m	Guidelines only. Actual specific				
IHO Order 1 (25 cm, 1 σ)	operating environment. All specifications subject to c				
0.1-50 m	without notice.				
kD = 3.0					
20° forward arc					
2x2, 3x3, 4x4, 5x5 m					
Variable, up to 0.58 x altitude					
Variable, depends on scan pattern					
IHO Order 1 (2.5 m, 1 σ)					
Class IV laser product (US FDA CF	FR 21)				
150 m					
100 A @ 28 VDC					
5-40° C					
125-175		knots			
	200-400 m IHO Order 1 (25 cm, 1 σ) 0.1-50 m kD = 3.0 20° forward arc 2x2, 3x3, 4x4, 5x5 m Variable, up to 0.58 x altitude Variable, depends on scan pattern IHO Order 1 (2.5 m, 1 σ) Class IV laser product (US FDA CF 150 m 100 A @ 28 VDC 5-40° C	200-400 m IHO Order 1 (25 cm, 1 σ) 0.1-50 m kD = 3.0 20° forward arc 2x2, 3x3, 4x4, 5x5 m Variable, up to 0.58 x altitude Variable, depends on scan pattern IHO Order 1 (2.5 m, 1 σ) Class IV laser product (US FDA CFR 21) 150 m 100 A @ 28 VDC 5-40° C			

Topographic Mode

Measurement rate	1000 Hz			
Operating altitude	300-700 m			
Horizontal accuracy	DGPS - 2.5 m, 1 $\sigma;$	KGPS - 1/200 x alti	tude	
Vertical accuracy	25	cm,	1	σ

Equipment

Sensor dimensions	50 x 50 x 60 cm
Sensor weight	65 kg
Control rack dimensions	60 x 60 x 70 cm each
Control rack weight	65 kg each

POSA/

Aided Intertial Solutions for Airborne Applications

POS AV is a fully integrated position and orientation system designed specifically for airborne applications. The system integrates precision GPS with inertial technology to provide real-time and post-processed (POSPac) measurements of the position, roll, pitch and heading of airborne sensors. Engineered for use with aerial cameras, scanning lasers, imaging scanners and synthetic aperture radar (SAR) – POS AV enables the rapid creation of digital termin models (DTMs), orthophotos and digital maps.

A Revolution in Airborne Surveying and Mapping

Over the last few years there has been a large increase in the number of digital sensors used for airborne data collection. Scanning lasers and line scanners, for example, are now widely used for aerial surveying and mapping. POS AV has been the enabling technology behind this growth, because it allows you to do what was never before possible: quickly and accurately motion compensate and geocode airborne sensor data. With POS AV, data can be geometrically corrected and then geographically encoded and mosaicked to produce precise DTMs and orthophotos.

POS AV Increases Your Productivity

By directly measuring the sensor's position and attitude with high accuracy and at high data rates, POS AV greatly reduces the need for labour-intensive ground control and elaborate post-processing. This allows you to carry out aerial surveys quickly and cost-effectively, with turnaround times as short as 24 hours for:

- mapping of uniformly textured areas (water, deserts, forests)
- stripline mapping
- spot mapping
- coastal surveying (highway, pipeline and powerline)
- flood plain mapping

POS AV is ...

Accurate with high-bandwidth

- 0.005 pitch/roll, 0.008 heading (POS AV
- 510 post-processed)
- 5-10 cm sensor positioning (post-processed)
- 200 Hz data rates
- Real-time data with < 3 msec latency
- Precise time-alignment of POS data with airborne sensor
 Montular
- Compact, lightweight IMU (Inertial Measurement Unit) mounts easily on any airborne sensor
- Powerful PCS (POS Computer System) contains:
 - the core POS processor
- PC drive
- removable PC-card disk
- embedded, low-noise, dual-frequency GPS receiver

Flexible

- Real-time and post-processed operation
- Data logging via Ethernet and/or removable PC-card disk for post-processing on PC laptop
- Multiple, reconfigurable interfaces for:
 - differential GPS
 - time alignment of airborne sensors
 - flight management systems
 - stabilized platforms

Convenient

- System can be installed in only a few hours
- In-air alignment capability
- Menu-driven controller and display software run under Windows on your PC laptop
- Autonomous, stand-alone operation

Reliable

- Rugged PC-based computer designed specifically for airborne applications
- Fully shock-and vibration-tested
- Temperature-and altitude-tested

Fully Supported

- Full installation, training and customer support by highly qualified field specialists
- Developed by a solid company with years of experience in aided inertial technology for airborne applications

POS AV Models with POSPac™

Applanix has developed four POS AV models that provide accuracy levels suitable for the full range of airborne sensors. Each model is sold with our post-processing software POSPac, which optimally blends integer carrierphase GPS data with inertial data, significantly increasing your productivity.

POS AVTM 210:

Roll/pitch: 0.04º RMS/ 2 arcmin RMS (post-processed) Heading: 0.08° RMS/ 5 arcmin RMS (post-processed) Sensor position: 5-10cm RMS

POS AVTM 310:

Roll/pitch: 0.013º RMS/ 50 arcsec RMS (post-processed) Heading: 0.035° RMS/ 2 arcmin RMS (post-processed) Sensor position: 5-10 cm RMS

POS AVTM 410:

Roll/pitch: 0.008º RMS/ 30 arcsec RMS (post-processed) Heading: 0.015° RMS/ 1 arcmin RMS (post-processed) Sensor position: 5-10 cm RMS

POS AVTM 510:

Roll/pitch: 0.005° RMS/ 20 arcsec RMS (post-processed) Heading: 0.008° RMS/ 30 arcsec RMS (post-processed) Sensor position: 5-10 cm RMS

DG Option (Direct Georeferencing) - POSEO™:

Each POS AV system can be used to automatically generate plotter-ready exterior orientation (EO) data for frame cameras simply by adding the software module POSEO to the post-processing software suite.

Inertial/GPS Integration

All POS systems blend linear acceleration and angular rate measurements provided by the inertial sensors, with position and velocity measurements of GPS to compute a highly accurate solution for all motion variables. POS retains the best capabilities of both inertial and GPS, with performance characteristics that are better than those of either GPS or inertial alone.

Using GPS data to calibrate inertial sensors on-line, POS maintains the dynamic fidelity of the inertial solution, yet removes any long-term, systematic drifts from the inertially derived position and orientation. The calibrated inertial solution allows POS to maintain accuracy while navigating through GPS outages.

The image above (a colorized infrared orthophoto draped over a LIDAR Digital Elevation Model) was obtained using EarthData Technologies' LIDAR system and Applaniz' POS AV at 2140m AMT. EarthData flew this LIDAR for the Grand Canyon Monitoring and Research Center.

POS AV System Inertial Measurement Unit (IMU), POS

APPLANIX

OmniSTAR, The Global Positioning System

3100LM DGPS Receiver Module

The OmniSTAR 3100LM combines the reception of high performance differential corrections with a compact, light weight and robust design, ideally suited for backpack or On-the-Belt applications.

The OmniSTAR 3100LM is a fully functional differential corrections receiver, designed to be used with an external (handheld) GPS receiver. Its design is based on proven OmniSTAR OEM technology, currently utilised in many OmniSTAR compatible applications.

Features

- Compact, light weight portable receiver
 Robust design with high quality
- nobusi design with high quality components
- Minimal power requirements
- Real time status indicators
- Output RTCM 104
- Remote access facility (via satellite link)
- Compatible with most common antenna systems
- Internal antenna splitter
- Designed for portable use; all
- Designed to portable use, an connectors and indicators located on one side of the receiver
- Free 24 hour technical support
- Quality control statistics available to the user

OmniSTAR DGPS services

OmniSTAR transmits differential GPS data world wide using a global network of reference stations to measure errors in the GPS system and generate corrections

This reference data is gathered at a network control centre where it is checked for integrity and reliability and is up-linked to a series of geo-stationary satellites, which distribute the data around the world. The OmniSTAR service is available by subscription.

VBS - Virtual Base Station

OmniSTAR's Virtual Base Station (VBS) Service is a unique world-wide high precision service with sub-meter accuracy throughout the coverage area (subject to the quality of the GPS receiver used). The high level of accuracy is made possible by processing all available reference data into a set of corrections, optimised for the users actual location.

This provides the end-user with a consistent and high accuracy over a large area.

The features of OmniSTAR's differential corrections service

- OmniSTAR differential corrections are highly reliable (not dependent on any single reference station)
- No position jumps due to switching from one reference station to another
- All reference stations have dual data connections to their network control centre
- Multiple up-links are used (primary and backup)
- The European continent is covered by several satellite services

OmniSTAR Global Coverage

OmniSTAR corrections can be utilised around the world.

We operate a world-wide network of reference stations, controlled by two Network Control Centres. These Network Control Centres also provide free of charge, 24 hour technical support to OmniSTAR users, should they require it.

OmniSTAR Applications

- Airborne geophysics
- Mapping & boundary marking
- Precision farming
- · Aerial farming applications
- · Search & rescue guidance
- · Vehicle location & positioning
- Navigation
- Environmental monitoring
- GIS data acquisition
- Defence application
- Asset management
- Aviation photogrammetry
- Surveying

Standalone Radiobeacon Receiver

MBX-3 2 Channel Automatic Differential Beacon Receiver

A new global beacon table within the

Automatic Operation

beacons by name.

beacon in the area.

Antennas

active antennas.

receiver menu system allows selection of

In automatic mode, the two channels of the

beacon receiver cooperatively construct and

maintain a table of radiobeacons available in

your area. The receiver's primary channel

automatically locks to the station providing

the highest quality signal. This ensures that

the MBX-3 is always locked to the best

The MBX-3 receiver may use any of a

include an E-field Whip antenna, two varieties of H-field beacon Loop antennas,

and a combination GPS/beacon antenna.

All CSI antennas incorporate band-pass

filtering and integral preamplifiers. The

MBX-3 receiver provides power to these

H-field beacon Loop antennas do not require

a counterpoise ground connection and are

ideal for portable applications. They are also less susceptible than a conventional

variety of antennas offered by CSI. Options

FEATURES

- Dual independent channels for superior automatic beacon tracking
- State-of-the-art digital architecture enhances beacon reception
- Fast acquisition times ensure you are up and running quickly
- 2-line by 16-character LCD display provides more information simultaneously
- Global beacon table listing gives you quick access to beacons by name
- Low power consumption gives extended battery life for portable applications
- Automatic and manual tune modes provide operational versatility
- Optional internal splitter and GPS signal output port for use with combination GPS/beacon antennas
- Firmware upgrades are easily loaded into the receiver through the serial port
- Wide selection of antennas available

Advanced Beacon Receiver Technology

The CSI MBX-3 beacon receiver employs CSI's third generation of digital receiver technology to receive free DGPS signals broadcast by the networks of 300 kHz radiobeacons deployed worldwide.

Using these signals, the MBX-3 beacon receiver outputs differential correction data in the industry standard RTCM SC-104 format accepted by differential-ready GPS receivers.

The advanced digital signal processing techniques of the MBX-3 allow for reliable extraction of DGPS data from the beacon broadcasts, even in noisy environments.

Ease of Operation

The MBX-3 incorporates a large 2-line by 16-character display and 3-switch keypad. The intuitive menu system provides access to receiver status information and operating parameters.

You may configure the MBX-3 beacon receiver for either automatic or manual tune operation using the convenient menu system.

FP6088.008– Lees Ferry and San Juan Lidar Study Areas

whip antenna to predominate E-field noise, including precipitation static.

Hassle-Free Upgrading

The MBX-3 supports firmware upgrades as improvements to firmware or changes to the global beacon table are made. These upgrades are easily loaded into the receiver through the serial port using a PC computer.

Configuration Software

CSI offers custom Windows 95® software for beacon receiver configuration, monitoring receiver performance, and decoding RTCM data. A terminal interface and data logging capability are also included.

Warranty

CSI is committed to supporting its products and offers a one-year warranty on parts and labor.

Contact us to discover why the MBX-3 is the right choice for your application.

-

Receiver Specificat	ions	Operating M	lodes
hannels: requency Range: hannel Spacing: ISK Bit Rates: fold Start Time: Varm Start Time:	2 independent channels 283.5 to 325.0 kHz 500 Hz 50, 100, and 200 bps <1 minute <2 seconds	MBX-3 Mode (Default): MBX-E Mode:	RTCM SC-104 correction and NMEA status message output (Default Mode) RTCM SC-104 correction and NMEA status message output and GPS NMEA message input for position and satellite status display.
emodulation: ensitivity:	Minimum shift keying 2.5 μV/m for 10 dB SNR	NMEA 0183	1/0
ynamic Range:	100 dB		matic and Manual tune command
requency Offset:	± 5 Hz		inatic and Manual tune command I data rate query
djacent Channel Rejection:	60 dB		prmance and operating status queries
orrection Output Protocol: nput/Status Protocol:	RTCM SC-104 NMEA 0183	 Automatic sea 	rch almanac queries (proprietary) ction command (proprietary)
Communications			rt command (proprietary)
nterface Level: aud Rates:	RS-232C or RS-422 2400, 4800, 9600		ade command (proprietary) up-load command (proprietary)
Environmental Spe	cifications -30°C to +70°C	Accessorie	—
torage Temperature:	-30°C to +80°C	Antenna: Power Cables:	Various Various
umidity:	95% non-condensing	Antenna Cables:	various Various
MC:	EN 60945	Data Cables:	Various
	EN 50081-1	CSI Beacon Comm	110 111140110 500 004001
	EN 50082-1 FCC: Part 15, sub-part J, class A	Pin-Out, RS-	control software
Power Specification nput Voltage: Iominal Power: Iominal Current: Intenna Voltage Output: Mechanical Specific imensions: Veight: itsplay: isypad: ower Connector: Intenna Conne	9 - 40 VDC 2.5 W 210 mA 10 VDC (5 VDC optional)	3 R 5 S Pin-Out, RS- D 1 T 2 T 4 R 5 S	XD, RTCM SC-104 / status output XD, configuration input ignal return 422 excription XD +, RTCM SC-104 / status output XD -, configuration input ignal return XD +, configuration input
1200 – 58 th Avenu Phone: (403) 259	n Systems International, Inc. Je S.E., Calgary, AB, Canada, T2H 2C9 -3311 Fax: (403) 259-8866 ps.com e-mail: Info@csi-dgps.com	C	SI Authorized Dealer

DT4000

1-CCD Camera 1600(H) x 1200(V) Pixels Color or Monochrome

HIGH RESOLUTION DIGITAL CAMERA

High Resolution 1600 x 1200 Progressive Scan Digital Camera in RGB AccuColor and Monochrome Configurations

DuncanTech's *DT4000 Digital Camera* provides the crisp, clear images that only all-digital processing can provide. The camera uses the latest in advanced largefomat progressive scan CCD sensors to maximize quantum efficiency and sensitivity. Both color and monochrome configurations are available. The 11.8 x 8.9 mm sensor has 3.5 times the sensing area of a 1/2" sensor and twice the sensing area of a 2/3" sensor delivering a significant increase in sensitivity. Interline transfer technology provides electronic shuttering.

In color configurations, the *DT4000* employs DuncanTech's proprietary *AccuColor* algorithm to deliver crisp, clear color images directly from the camera - no need for postprocessing. *AccuColor* improves resolution and minimizes color aliasing, rivaling the image quality of many 3-CCD cameras.

The camera's advanced digital processing offers a number of features to maximize usability and image quality. Auto-exposure control and semi-automatic white-balance optimize performance. Digital Crosshairs simplify camera targeting. Multiple triggering modes provide accurate acquisition timing. Programmable control of image plane multiplexing enables display and output of the composite image, any single color plane, the raw pixel data, or any combination of these.

A Camera Link data interface supports the latest generation of digital framegrabbers. LVDS and RS-422 parallel options are also available. The *DirectView* analog video option adds the capability to simultaneously preview or record the image in NTSC, PAL, or progressive scan RGB format at resolutions up to 1280x1024.

4000-1-12/17/01

FEATURES

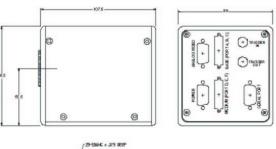
- 1600(H) x 1200(V) CCD imaging sensor (11.8 mm x 8.9 mm)
- Available in RGB color or monochrome
- Frame rate of 10 fps
- AccuColor in-camera, real-time color interpolation
- 7.4 micron square pixels for accurate image metrics
- Display composite RGB or individual color plane images as monochrome images
 - Digital Image Output Camera Link, LVDS, or RS-422
- Auto-exposure control and semi-auto white balance for ease of use
- External trigger input with three operating modes
- Digital cross-hairs for easy camera targeting
- Analog gain control for each color maximizes dynamic range
- Digital gain and exposure control
- RS-232 interface for configuration and control
- Compact, rugged package
- Uses standard Nikon Bayonet Mount and High Resolution Graphics Lens
- Optional DirectView video preview with built-in zoom

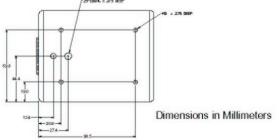
CAMERA

FP6088.008– Lees Ferry and San Juan Lidar Study Areas

Image Device:	1 - Inch Interline Transfer CCD
Picture Elements:	1600(H) x 1200(V)
Pixel Size:	7.4 x 7.4 micron
Pixel clock rate:	22 MHz max
Sensing Area:	11.8 x 8.9 mm
Frame Rate:	10 frames per second - Standard. 5 frames per second - Low Noise Mode
Digital Image Output:	8 bits x 4 taps or 10 bits x 3 taps, Camera Link, EIA-644 (LVDS) or RS422
Signal/Noise:	54 dB - Standard. 60 dB - Low Noise Mode.
Sensitivity:	.5 lux - color; .2 lux - monochrome
Lens Mount:	C-Mount and Nikon Bayonet Mount
Electronic Shutter:	Range: 1/10,000 - 1/10 sec - Standard. 1/6,000 - 1/5 sec - Low Noise Mode.
Gain Selection:	Range: 0-36 dB. Controlled via RS-232 input.
External Trigger Input	Edge or level, Three modes
External Trigger Source:	BNC or Frame Grabber. (Optical isolator on BNC)
Exposure Control:	Manual or Automatic
White-Balance:	Manual or Semi-Automatic
Noise Reduction:	Correlated Double Sampling
Usability Features:	Digital Crosshairs, Color-Plane Multiplexing
Operating Temperature:	0-50 C
Operating Voltage:	12 VDC
Power Consumption:	10 Watts
Weight	.98 kg
Programmable Functions:	Gain, integration time, multiplexing, trigger modes, custom processing.
Options:	
DirectView Video Output:	NTSC, PAL, S-video and Progressive Scan RGB (1280x1024 max display resolution Gamma correction, 2x and 4x digital zoom,

APPLICATIONS


The fine resolution and crisp colors of the DT4000 make it the ideal imaging tool for a number of applications. AccuColor real-time color interpolation delivers crisp 24 or 30 bit RGB images directly from the camera. Automatic features for exposure control and white balance provide ease of use. DirectView analog option adds video preview. CameraLink interface supports the latest in acquisition. technology.


- General Purpose Imaging
- Graphics Imaging for Press and Web Graphics
- Medical/Scientific Imaging
- Industrial Vision Applications for Semiconductor Inspection, Color Inspection
- Microscopy
- Metrology

Hote Kolley Kolley Auburn, CA 95603 USA Phone: (530)-888-6565 Fax: (530)-888-6579 Email: info@duncantech.com Web: www.duncantech.com

DIMENSIONS

APPENDIX H: STATIC GPS NETWORK PROCESSING

Static GPS Survey Overview

GNSS Studio, Copyright (C) 2004 by Thales Navigation, 2/7/2005 7:18:08 PM www.thalesnavigation.com

Project Name : GrandCanyon Spatial Reference System : NAD 83 Geographic Time Zone : (GMT) Greenwich Mean Time : Dublin, Edinburgh, Lisbon, London Linear Units : Meters

Control Points

		95%		
	Components	Error	Status	Control Error
X 111° 36'	04.00607"W	0.000	FIXED	
Y 36° 51'	40.44281"N	0.000	FIXED	
Z	968.950	0.000	FIXED	
X 110° 22'	33.79759"W	38.416	FIXED	
Y 37° 18'	26.66190"N	38.416	FIXED	
Z	1167.966	38.416	FIXED	
X 110° 42'	40.46805"W	38.416	FIXED	
Y 37° 27'	11.86283"N	38.416	FIXED	
Z	1173.065	38.416	FIXED	
	Y 36° 51' Z X 110° 22' Y 37° 18' Z X 110° 42' Y 37° 27'	X 111° 36' 04.00607"W Y 36° 51' 40.44281"N Z 968.950 X 110° 22' 33.79759"W Y 37° 18' 26.66190"N Z 1167.966 X 110° 42' 40.46805"W Y 37° 27' 11.86283"N	Components Error X 111° 36' 04.00607"W 0.000 Y 36° 51' 40.44281"N 0.000 Z 968.950 0.000 X 110° 22' 33.79759"W 38.416 Y 37° 18' 26.66190"N 38.416 Z 1167.966 38.416 X 110° 42' 40.46805"W 38.416 Y 37° 27' 11.86283"N 38.416	Components Error Status X 111° 36' 04.00607"W 0.000 FIXED Y 36° 51' 40.44281"N 0.000 FIXED Z 968.950 0.000 FIXED X 110° 22' 33.79759"W 38.416 FIXED Y 37° 18' 26.66190"N 38.416 FIXED X 110° 42' 40.46805"W 38.416 FIXED X 110° 42' 40.46805"W 38.416 FIXED X 110° 42' 11.86283"N 38.416 FIXED

Logged Points

		95%	
Name	Components	Error	Status
LES1	X 111° 35' 13.05479"W	0.002	Adjusted
	Y 36° 51' 58.81624"N	0.002	Adjusted
	Z 933.286	0.002	Adjusted
PAG1	X 111° 28' 07.88500"W Y 36° 55' 31.47067"N Z 1212.061	0.012 0.012 0.014	Adjusted Adjusted Adjusted

Files

Name	Start Time	Sampling	Epochs	Size (Kb)	Туре
BPAG1B04.331	04/11/26 17:12	1	18331	16403	L1/L2 GPS
BLFRGA04.331	04/11/26 14:07	1	26120	22227	L1/L2 GPS
BU148A04.331	04/11/26 19:07	1	16980	15028	L1/L2 GPS
BPAG1A04.332	04/11/27 17:07	1	28466	25986	L1/L2 GPS
BU148A04.332	04/11/27 15:28	1	24655	21520	L1/L2 GPS
BN141A04.332	04/11/27 15:58	1	21545	19046	L1/L2 GPS
BLES1A04.331	04/11/26 19:00	1	6881	5895	L1/L2 GPS
BLES1A04.332	04/11/27 18:44	1	8383	7158	L1/L2 GPS

Observations

	Antenna A	Antenna	Height Re	ceiver		
Site	Туре	Height	Type	Туре	Start Time	File Name
PAG1	ZMax GPS	1.928	True	Z-MAX	04/11/26 17:12:09	BPAG1B04.331
LFRG	701975-01 +GP	1.500	Vertical	UZ-12	04/11/26 14:07:31	BLFRGA04.331
U148	701975-01 +GP	1.374	Vertical	UZ-12	04/11/26 19:07:31	BU148A04.331
PAG1	ZMax GPS	1.917	True	Z-MAX	04/11/27 17:07:34	BPAG1A04.332
U148	701975-01 +GP	1.348	Vertical	UZ-12	04/11/27 15:28:01	BU148A04.332
N141	701975-01 +GP	1.358	Vertical	UZ-12	04/11/27 15:58:31	BN141A04.332
LES1	ZMax GPS UHF	2.502	True	Z-MAX	04/11/26 19:00:24	BLES1A04.331
LES1	ZMax GPS UHF	2.435	True	Z-MAX	04/11/27 18:44:07	BLES1A04.332

Processes

Reference	Reference File	Rover	Rover File	Mode	Num
U148	BU148A04.332	LES1	BLES1A04.332	Static	1
U148	BU148A04.332	N141	BN141A04.332	Static	2
U148	BU148A04.332	PAG1	BPAG1A04.332	Static	3
U148	BU148A04.331	PAG1	BPAG1B04.331	Static	4
U148	BU148A04.331	LES1	BLES1A04.331	Static	5
LFRG	BLFRGA04.331	U148	BU148A04.331	Static	б
LFRG	BLFRGA04.331	LES1	BLES1A04.331	Static	7
LFRG	BLFRGA04.331	PAG1	BPAG1B04.331	Static	8
N141	BN141A04.332	PAG1	BPAG1A04.332	Static	9
N141	BN141A04.332	LES1	BLES1A04.332	Static	10
PAG1	BPAG1A04.332	LES1	BLES1A04.332	Static	11
PAG1	BPAG1B04.331	LES1	BLES1A04.331	Static	12

Processed vectors

	Vector	95%		Vector	95%			
Vector Identifier	Length	Error		Components	Error SV	PDOP	QA	Solution
PAG1 - LES1	12406.339	0.060	Х	-11156.749	0.024 9	1.9	No	Fixed
04/11/26 19:00			Y	409.220	0.024			
			Ζ	-5410.798	0.024			
PAG1 - LES1	12406.337	0.060	Х	-11156.754	0.024 10	1.8	No	Fixed
04/11/27 18:44			Y	409.198	0.024			
			Ζ	-5410.786	0.024			
LFRG - PAG1	13777.450	0.067	х	12465.944	0.027 9	1.4	No	Fixed
04/11/26 17:12	13777.130	0.007	Y	-531.269	0.027		110	TINCU
01,11,20 1, 12			z	5842.615	0.027			
			-	5012.015	0.027			
LFRG - LES1	1383.971	0.007	Х	1309.206	0.003 9	1.9		Fixed
04/11/26 19:00			Y	-122.020	0.003			
			Ζ	431.818	0.003			
LFRG - U148	102804.728	0.498	х	87995.398	0.202 9	1.4	No	Fixed
04/11/26 19:07			Y	8333.275	0.202			
			Z	52499.319	0.202			
U148 - LES1	101474.190	0.492	Х	-86686.179	0.199 10	1.7	No	Fixed
04/11/26 19:07			Y	-8455.291	0.200			
			Ζ	-52067.509	0.199			
U148 - PAG1	89219.520	0.432	х	-75529.427	0.175 6	2.1	No	Fixed
04/11/26 19:07			Y	-8864.521	0.175			
01,11,20 19 0,			Z	-46656.711	0.175			
U148 - PAG1	89219.565	0.432	х	-75529.479	0.175 8	1.9	No	Fixed
	09219.505	0.432				1.9	NO	Fixed
04/11/27 17:07			Y Z	-8864.563 -46656.705	0.175 0.175			
			Д	-40050.705	0.1/5			
U148 - N141	33820.861	0.164	Х	24354.649	0.066 7	2.7	No	Fixed
04/11/27 15:58			Y	-19622.038	0.066			
			Ζ	-12871.570	0.066			
U148 - LES1	101474.200	0.491	Х	-86686.175	0.199 10	1.8	No	Fixed
04/11/27 18:44			Y	-8455.304	0.199			
			Ζ	-52067.534	0.199			
N141 - LES1	118283.908	0.573	Х	-111040.822	0.232 10	1.8	No	Fixed
04/11/27 18:44			Y	11166.736	0.232			
			Ζ	-39195.952	0.232			
N141 - PAG1	105990.692	0.513	х	-99884.319	0.208 9	1.4	No	Fixed
04/11/27 17:07	_0000000000	0.010	Y	10757.318	0.208			1 2000
5 1, 11, 1, 1, · 0,			Z	-33785.052	0.208			
			-	23,03.032	5.200			

Repeat vectors

Repeat Vector		Difference	Length	QA
PAG1 - LES1	Х	0.005	12406.339	No
04/11/26 19:00	Y	0.022		
04/11/27 18:44	Ζ	-0.013		
U148 - PAG1	Х	0.052	89219.520	No
04/11/26 19:07	Y	0.042		
04/11/27 17:07	Ζ	-0.006		
U148 - LES1	х	-0.004	101474.190	No
04/11/26 19:07	Y	0.013		
04/11/27 18:44	Z	0.025		

Adjusted vectors

	-						
	Vector	Length		Vector		Tau	
Vector Identifier	Length	Resid.		Components	Resid.	Test	QA
PAG1 - LES1	12406.335	0.005	Х	-11156.746	0.002		
04/11/26 19:00			Y	409.221	0.001		
			Z	-5410.793	0.005		
PAG1 - LES1	12406.335	0.025	Х	-11156.746	0.007		
04/11/27 18:44			Y	409.221	0.023		
			Ζ	-5410.793	-0.008		
LFRG - PAG1	13777.456	0.029	х	12465.953	0.009		
04/11/26 17:12			Y	-531.241	0.028		
.,,			Z	5842.612	-0.003		
LFRG - LES1	1383.971	0.000	Х	1309.206	-0.000		
04/11/26 19:00			Y	-122.020	-0.000		
			Z	431.818	0.000		
LFRG - U148	102804.748	0.046	х	87995.422	0.024		
04/11/26 19:07			Y	8333.314	0.039		
01/11/20 19:07			z	52499.312	-0.007		
				52199.512	0.007		
U148 - LES1	101474.217	0.058	Х	-86686.216	-0.037		
04/11/26 19:07			Y	-8455.334	-0.043		
			Ζ	-52067.494	0.015		
U148 - PAG1	89219.554	0.056	Х	-75529.469	-0.043		
04/11/26 19:07	09219.004	0.050	л Ү	-8864.555	-0.043		
04/11/20 19:07							
			Ζ	-46656.701	0.010		
U148 - PAG1	89219.554	0.013	Х	-75529.469	0.009		
04/11/27 17:07			Y	-8864.555	0.007		
			Ζ	-46656.701	0.004		
1140 1141	22020 064	0 014	v	24254 654	0 005		
U148 - N141 04/11/27 15:58	33820.864	0.014	X Y	24354.654 -19622.030	0.005 0.008		
04/11/2/ 13·20							
			Ζ	-12871.581	-0.010		
U148 - LES1	101474.217	0.065	Х	-86686.216	-0.041		
04/11/27 18:44			Y	-8455.334	-0.030		
			Ζ	-52067.494	0.040		
N1/1 TEC1	118283.936	0.074	Х	111040 970	0 049		
N141 - LES1	110203.930	0.074	л Ү	-111040.870	-0.048		
04/11/27 18:44				11166.696	-0.040		
			Ζ	-39195.913	0.039		
N141 - PAG1	105990.545	0.260	х	-99884.123	0.196		
04/11/27 17:07			Y	10757.475	0.157		

APPENDIX I : SHOALS CALIBRATION VALUES USED

SHOALS-1000T SYSTEM#3

November 17, 2004 - rev2

BELL LONGRANGER (N1085T):

DAVIS → Auto Process → Topo Parameters

BELL LONGRANGER (N1085T)

horiz_misalign_angle:	n/a
vert_misalign_angle:	n/a
pitch_offset	n/a
topo_elevation_bias_300:	n/a

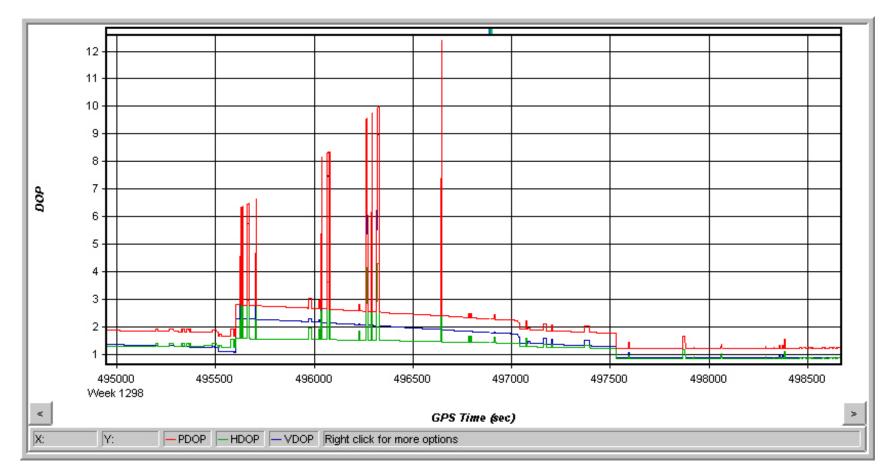
topo_elevation_bias_700: n/a

DAVIS → Utilities → LIDAR Parameters (Hardware - system_params_03.txt)

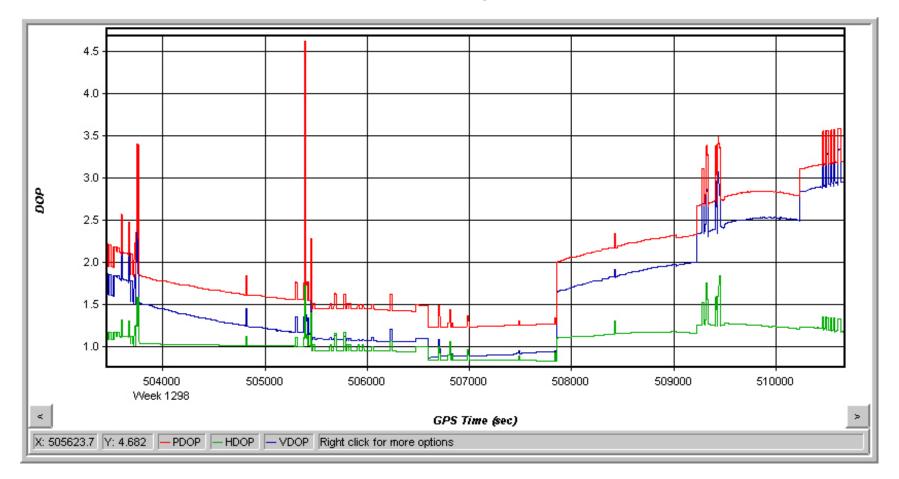
bathy_topo_bias_200:	- 0.21
bathy_topo_bias_300:	- 0.21
bathy_topo_bias_400:	- 0.21
deep_bias_left_200:	+ 0.050
deep_bias_left_300:	+ 0.070
deep_bias_left_400:	+ 0.090
deep_bias_right_200:	+ 0.040
deep_bias_right_300:	+ 0.060
deep_bias_right_400:	+ 0.080
apriori_depth_bias_shallow	- 0.28
apriori_depth_bias_deep	- 0.28
rcvr_horiz_misalign_angle:	- 0.125
rcvr_vert_misalign_angle:	+ 0.455
imu_sensor_pitch_offset:	- 0.353
scan_x_yaw_misalign_angle	- 0.180

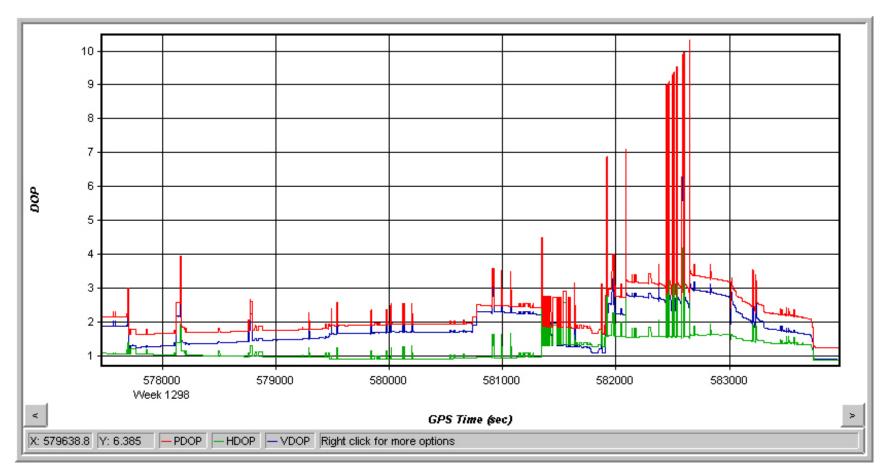
For information only – do NOT change the following values for processing.

sensorref_antenna_lever_arm (x, y, z):	-2.164, 0.527, -1.059
imu_antenna_lever_arm (x, y, z):	-2.091, 0.297, -1.474

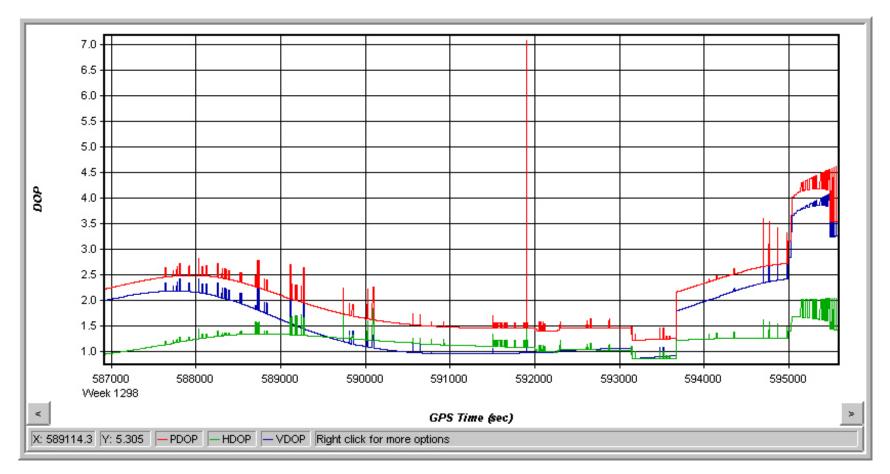

$\mathsf{DAVIS} \rightarrow \mathsf{Utilities} \rightarrow \mathsf{Camera} \ \mathsf{Parameters}$

camera_boresight_roll:	+0.08
camera_boresight_pitch:	+10.77
camera_boresight_heading:	-0.80


APPENDIX J: PDOP GRAPHS

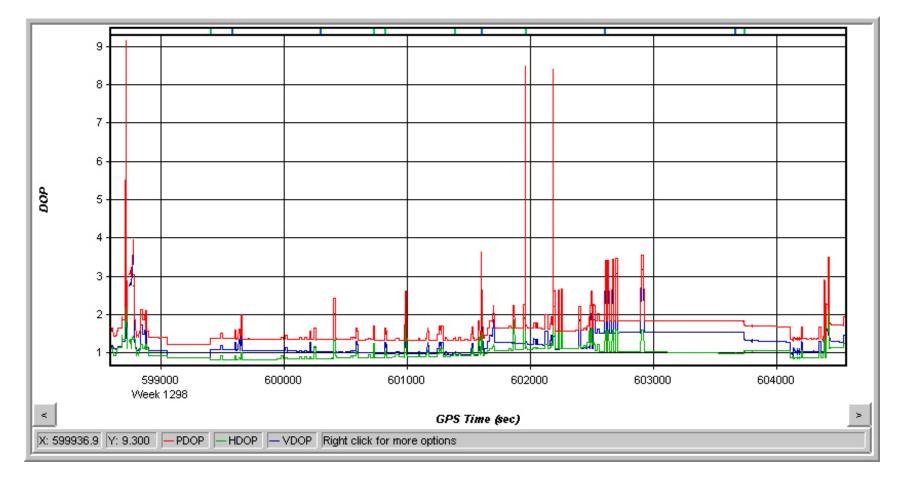


2004-11-26 Flight 1

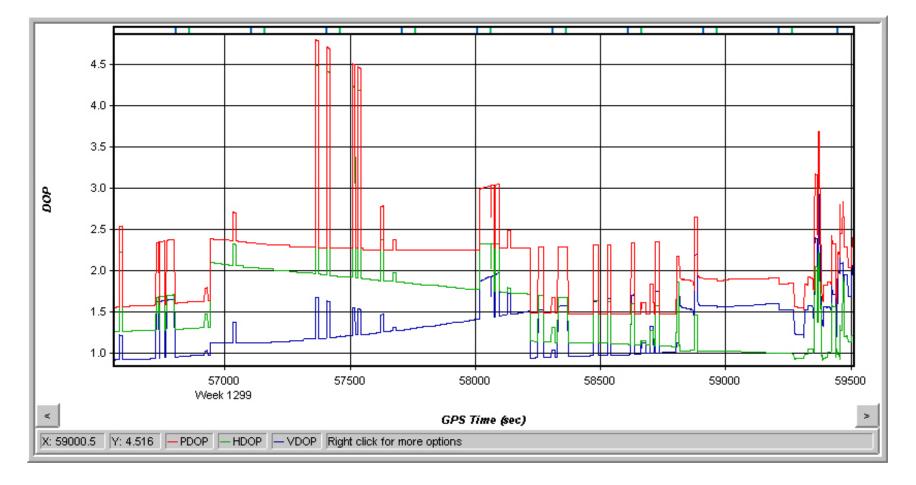


2004-11-26 Fight 2

2004-11-27 Flight 1


-FUGRO

2004-11-27 Flight 2



2004-11-27 Flight 3

2004-11-28 Flight 1

APPENDIX K : KGPS PROCESSING RESULTS

Processing Summary Information Program: POSGPS Version: 4.20 Project:P:\Projects\FP6088.008_LIDAR-GrandCanyon\03_processing\GCS_GPS\2004-11-26-Flt1-PAG1\GPS\Combined (1).gnv Solution Type: Combined Fwd/Rev Number of Epochs: Total in GPB file: 8752 No processed position: 5020 Missing Fwd or Rev: 0 With bad C/A code: 0 With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0192 (m) C/A Code: 1.04 (m) L1 Doppler: 0.078 (m/s) Fwd/Rev Separation RMS Values: 0.025 (m) East: 0.039 (m) North: Height: 0.094 (m) Fwd/Rev Sep. RMS for 25%-75% weighting (3732 occurances): East: 0.025 (m) North: 0.039 (m) Height: 0.094 (m) Quality Number Percentages: Q 1: 81.0 % Q 2: 18.8 % Q 3: 0.2 % Q 4: 0.0 % Q 5: 0.0 % 0 6: 0.0 % Position Standard Deviation Percentages: 0.00 - 0.10 m: 98.6 % 0.10 - 0.30 m: 1.4 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD_DOP over 10.00: DOP over Tol: 2.3 % Baseline Distances: 8.158 (km) Maximum: 0.731 (km) 4.833 (km) Minimum: Average: First Epoch: 7.541 (km) Last Epoch: 7.295 (km)

Processing Summary Information Program: POSGPS Version: 4.20 Project: P:\Projects\FP6088.008_LIDAR-GrandCanyon\03_processing\GCS_GPS\2004-11-26-Flt2-PAG1\GPS\Combined (1).gnv Solution Type: Combined Fwd/Rev Number of Epochs: Total in GPB file: 14991 No processed position: 7748 Missing Fwd or Rev: 0 With bad C/A code: 0 With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0180 (m) C/A Code: 0.92 (m) L1 Doppler: 0.077 (m/s) Fwd/Rev Separation RMS Values: 0.041 (m) East: 0.069 (m) North: Height: 0.059 (m) Fwd/Rev Sep. RMS for 25%-75% weighting (592 occurances): East: 0.082 (m) North: 0.076 (m) Height: 0.063 (m) Quality Number Percentages: Q 1: 98.0 % Q 2: 2.0 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % 0 6: 0.0 % Position Standard Deviation Percentages: 0.00 - 0.10 m: 100.0 % 0.10 - 0.30 m: 0.0 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD_DOP over 10.00: DOP over Tol:0.5 % Baseline Distances: 56.346 (km) Maximum: 1.446 (km) Minimum: Average: 24.173 (km) First Epoch: 1.527 (km) Last Epoch: 2.082 (km)

Processing Summary Information Program: POSGPS Version: 4.20 Project: P:\Projects\FP6088.008_LIDAR-GrandCanyon\03_processing\GCS_GPS\2004-11-27-Flt1-Multi\GPS\Combined (2).gnv Solution Type: Combined Fwd/Rev Number of Epochs: Total in GPB file: 17438 No processed position: 10913 Missing Fwd or Rev: 0 With bad C/A code: 0 With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0165 (m) C/A Code: 0.92 (m) L1 Doppler: 0.053 (m/s) Fwd/Rev Separation RMS Values: 0.078 (m) East: 0.064 (m) North: Height: 0.055 (m) Fwd/Rev Sep. RMS for 25%-75% weighting (6399 occurances): East: 0.078 (m) North: 0.065 (m) Height: 0.054 (m) Quality Number Percentages: Q 1: 75.4 % Q 2: 22.7 % Q 3: 1.9 % Q 4: 0.0 % Q 5: 0.0 % 0 6: 0.0 % Position Standard Deviation Percentages: 0.00 - 0.10 m: 98.2 % 0.10 - 0.30 m: 1.8 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD_DOP over 10.00: DOP over Tol: 2.3 % Baseline Distances: 21.850 (km) Maximum: Minimum: 5.906 (km) Average: 18.045 (km) First Epoch: 19.770 (km) Last Epoch: 5.960 (km)

Processing Summary Information Program: POSGPS Version: 4.20 Project: P:\Projects\FP6088.008_LIDAR-GrandCanyon\03_processing\GCS_GPS\2004-11-27-Flt2-Multi\GPS\Combined (1).gnv Solution Type: Combined Fwd/Rev Number of Epochs: Total in GPB file: 18874 No processed position: 10173 Missing Fwd or Rev: 0 With bad C/A code: 0 With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0161 (m) C/A Code: 0.78 (m) L1 Doppler: 0.048 (m/s) Fwd/Rev Separation RMS Values: 0.017 (m) East: 0.017 (m) North: Height: 0.043 (m) Fwd/Rev Sep. RMS for 25%-75% weighting (8701 occurances): East: 0.017 (m) North: 0.017 (m) Height: 0.043 (m) Quality Number Percentages: Q 1: 93.1 % Q 2: 6.7 % Q 3: 0.2 % Q 4: 0.0 % Q 5: 0.0 % 0 6: 0.0 % Position Standard Deviation Percentages: 0.00 - 0.10 m: 99.9 % 0.10 - 0.30 m: 0.1 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD_DOP over 10.00: DOP over Tol:1.6 % Baseline Distances: 22.361 (km) Maximum: 1.559 (km) Minimum: Average: 17.139 (km) First Epoch: 4.806 (km) Last Epoch: 5.863 (km)

Processing Summary Information Program: POSGPS Version: 4.20 Project: P:\Projects\FP6088.008_LIDAR-GrandCanyon\03_processing\GCS_GPS\2004-11-27-Flt3-Multi\GPS\2004-11-27-Flt3-Multi.gnv Solution Type: Combined Fwd/Rev Number of Epochs: Total in GPB file: 11990 No processed position: 6010 Missing Fwd or Rev: 3 With bad C/A code: 0 With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0277 (m) C/A Code: 0.99 (m) L1 Doppler: 0.106 (m/s) Fwd/Rev Separation RMS Values: 0.128 (m) East: 0.133 (m) North: Height: 0.286 (m) Fwd/Rev Sep. RMS for 25%-75% weighting (3130 occurances): East: 0.054 (m) North: 0.101 (m) Height: 0.155 (m) Quality Number Percentages: Q 1: 91.0 % Q 2: 5.9 % Q 3: 0.7 % Q 4: 1.8 % Q 5: 0.6 % 0 6: 0.2 % Position Standard Deviation Percentages: 0.00 - 0.10 m: 26.5 % 0.10 - 0.30 m: 70.4 % 0.30 - 1.00 m: 3.1 % 1.00 - 5.00 m: 0.0 % 5.00 m + over: 0.0 % Percentages of epochs with DD_DOP over 10.00: DOP over Tol:1.0 % Baseline Distances: 98.791 (km) Maximum: 1.535 (km) Minimum: Average: 66.809 (km) First Epoch: 98.790 (km) Last Epoch: 1.545 (km)

Processing Summary Information Program: POSGPS Version: 4.20 Project: P:\Projects\FP6088.008_LIDAR-GrandCanyon\03_processing\GCS_GPS\2004-11-28-Flt1-PAG1\GPS\2004-11-28-Flt1-PAG1.gnv Solution Type: Combined Fwd/Rev Number of Epochs: Total in GPB file: 5932 No processed position: 2966 Missing Fwd or Rev: 3 With bad C/A code: 0 With bad L1 Phase: 0 Measurement RMS Values: L1 Phase: 0.0148 (m) C/A Code: 1.12 (m) L1 Doppler: 0.056 (m/s) Fwd/Rev Separation RMS Values: East: 0.059 (m) North: 0.079 (m) 0.235 (m) Height: Fwd/Rev Sep. RMS for 25%-75% weighting (2889 occurances): East: 0.031 (m) North: 0.033 (m) Height: 0.058 (m) Quality Number Percentages: Q 1: 98.9 % Q 2: 1.1 % Q 3: 0.0 % Q 4: 0.0 % Q 5: 0.0 % 0.0 % Q 6: Position Standard Deviation Percentages: 0.00 - 0.10 m: 93.0 % 0.10 - 0.30 m: 7.0 % 0.30 - 1.00 m: 0.0 % 1.00 - 5.00 m: 0.0 % 0.0 % 5.00 m + over: Percentages of epochs with DD_DOP over 10.00: DOP over Tol:1.8 % Baseline Distances: 12.908 (km) Maximum: Minimum: 0.305 (km) Average: 6.675 (km) Average: 6.675 (km) First Epoch: 1.538 (km) Last Epoch: 1.530 (km)

FP6088.008– Lees Ferry and San Juan Lidar Study Areas

APPENDIX L : PERSONNEL

Fugro Pelagos – Field Personnel		
Survey Coordinator / GCS Operator	Dushan Arumugam	
Airborne Operator	Dennis Tobin	
Surveyor – Ground Control	Jose Martinez	
Fugro Pelagos – Office Personnel		
Project Manager	James Hailstones	
Data Analyst – GCS,GPS	Jose Martinez	
Project Manager – LIDAR	Carol Lockhart	