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Modeling utilization distributions in space and time
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Abstract. W. Van Winkle defined the utilization distribution (UD) as a probability
density that gives an animal’s relative frequency of occurrence in a two-dimensional (x, y)
plane. We extend Van Winkle’s work by redefining the UD as the relative frequency
distribution of an animal’s occurrence in all four dimensions of space and time. We then
describe a product kernel model estimation method, devising a novel kernel from the wrapped
Cauchy distribution to handle circularly distributed temporal covariates, such as day of year.
Using Monte Carlo simulations of animal movements in space and time, we assess estimator
performance. Although not unbiased, the product kernel method yields models highly
correlated (Pearson’s r¼ 0.975) with true probabilities of occurrence and successfully captures
temporal variations in density of occurrence. In an empirical example, we estimate the
expected UD in three dimensions (x, y, and t) for animals belonging to each of two distinct
bighorn sheep (Ovis canadensis) social groups in Glacier National Park, Montana, USA.
Results show the method can yield ecologically informative models that successfully depict
temporal variations in density of occurrence for a seasonally migratory species. Some
implications of this new approach to UD modeling are discussed.

Key words: bighorn sheep; Glacier National Park, Montana, USA; home range; kernel density
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INTRODUCTION

Van Winkle (1975:118) envisioned the utilization

distribution (UD) ‘‘as the two-dimensional relative

frequency distribution for the points of location of an

animal over a period of time.’’ His definition has

contributed greatly to the contemporary notion of the

home range as a probability density surface projected

onto a two-dimensional (x, y) plane. It also has seeded

important progress in home range modeling, as evi-

denced by numerous subsequent efforts to devise, adapt,

or refine methods for estimating two-dimensional

frequency distributions (Don and Rennolls 1983,

Worton 1989, Seaman and Powell 1996, Getz and

Wilmers 2004, Hemson et al. 2005, Hines et al. 2005,

Börger et al. 2006, Horne and Garton 2006, Fieberg

2007a, b, Moser and Garton 2007) and by the innumer-

able studies applying such methods. Nonetheless, Van

Winkle’s (1975) definition of the UD lacks generality.

Although the UD concept is entrenched in the

ecological literature as a strictly two-dimensional

phenomenon, animal frequency distributions clearly

occupy at least four dimensions. Van Winkle

(1975:118) acknowledged the existence of three of these,

stating that ‘‘[i]f the habitat is represented by a two-

dimensional (X, Y ) surface, the movements of an animal

over time may be represented by a path in 3-space, the

third dimension being time.’’ He then effectively

integrated time out of his model to gain a simplified

two-dimensional framework for comparing modeling

methods. By limiting the UD to the (x, y) plane,

however, one implicitly assumes that temporal and

elevation coordinates carry no ecologically important

information. This assumption may be appropriate for

studies such as Van Winkle’s (1975), but in general,

information associated with time and elevation can be

critical to ecological understanding. For example,

Spencer et al. (1991) found that spatial and temporal

distributions of pelagic organisms (specifically, their

elevations within the water column at different times of

the day) can alter trophic interactions, transforming a

predator–prey relationship into one of interspecific

competition. Thus, we argue for a more general

definition of the UD, one that fully encompasses the

four dimensions of space and time.

We extend Van Winkle’s (1975) work by defining the

UD as the relative frequency distribution of an animal’s

occurrence in space and time. Our definition acknowl-

edges that animal occurrence is distributed in four

dimensions with coordinates (x, y, z, t), where z and t

are, respectively, elevation and time. Our definition

allows for various special cases. For example, in our

notation Vokoun’s (2003) one-dimensional model is

designated UDx, Van Winkle’s (1975) two-dimensional

case is UDx,y, and Rader and Krockenberger’s (2006)

three-dimensional spatial model is UDx,y,z. Other special

cases are possible. In this paper, we emphasize UD

models for strictly terrestrial species, where z is uniquely
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specified by (x, y) and so conveys no additional

information. Thus, we omit z from our models and

consider the three-dimensional case UDx, y, t. We begin

by describing a product kernel model estimation

procedure. To handle circularly distributed covariates

(e.g., day of year) we devise a novel kernel based on the

wrapped Cauchy distribution. We then model move-

ments of a seasonally migratory animal to explore

estimator performance in a situation in which the true

UDx,y,t is known, focusing especially on the ability to

model temporal variations in density of occurrence.

Finally, we give an empirical example, estimating the

expected UDx,y,t for animals belonging to two distinct

bighorn sheep (Ovis canadensis) social groups in Glacier

National Park, Montana, USA.

PRODUCT KERNEL ESTIMATION

Product kernel algorithm

Our description of the product kernel method follows

from Silverman (1986) and Scott (1992). We begin with

the univariate case, in which an animal’s location is

measured along a single c-axis. For example, location

might be measured as distance from the mouth of a

stream, as in Vokoun (2003). The problem is to estimate

(dUDc) the value of the UD at a user-selected location, c,

given the vector u0¼ [u1, u2, . . . , un] of locations recorded

for a random sample of i ¼ 1, . . . , n occurrences of the

study animal. We might choose, for example, to estimate

the UD of an individual fish at a point c¼2 km from the

stream’s mouth, given a random sample of n occurrences

of that fish, where the location of each occurrence also is

measured as distance from the stream’s mouth. The

kernel density method calculates dUDc as the weighted

average of the n observed values in u; the closer an

observed value is to the c value at which we wish to

estimate density, the more weight it receives. This is

achieved by centering a weighting function (kernel) over

each observation u1, . . . , un, yielding a series of what

Silverman (1986:15) refers to as ‘‘bumps.’’ Estimated

density is proportional to the sum of those bumps at c.

This method is nonparametric, making no assumption

about the underlying form of the density. In our

notation, it is commonly formulated as follows (Silver-

man 1986, Scott 1992):

dUDc ¼
1

nh

X
n

i¼1

K
c� ui

h

� �

where h determines the width of the bumps (bandwidth)

and K is the kernel weighting function. For convenience,

we also use the notation vi ¼ (c � ui )/h.

In the multivariate case, in which the location of a

point is specified in d dimensions by the coordinates c0¼
(ci, . . . , cd), the problem is to estimate the UD at each

user-selected point of interest, given the coordinate

vectors u 0
i ¼ (ui,1, . . . , ui,d) recorded for our n randomly

sampled occurrences of the animal. To extend the kernel

method to d dimensions, we use the following product

kernel estimator (Silverman 1986, Scott 1992):

dUDc ¼
1

nh1h2 � � � hd

X
n

i¼1

Y
d

j¼1

Kj
cj � ui;j

hj

� �

" #

: ð1Þ

Eq. 1 yields estimates of density of use within the d-

dimensional parameter space, making no assumption
about the underlying form of the density. In the

applications we consider, d � 4 and c ¼ (x, y, z, t) or a
subset thereof.

Kernel choice

In general, the kernel function K/h must be a valid
probability density function (pdf ) to ensure thatdUDc is

a valid probability density estimate. Because the kernel
estimator’s performance is otherwise robust to the

particular form chosen for K (Silverman 1986, Scott
1992), we focused on choosing computationally conve-

nient kernels appropriate to our data types. For the
spatial coordinates x, y, and z we used the biweight

kernel:

KðviÞ ¼
15

16
1� v2

i

� �2
for jvij, 1

0 otherwise

8

<

:

due to its high efficiency (Silverman 1986:43, Scott
1992:140) and because Scott (1992:146–149) provides

formulations for biweight boundary kernels, which we
use in a separate but related study. The biweight kernel

is appropriate for continuous linear covariates with
support on the interval [�‘, ‘]. It is applicable to

temporal covariates when treating time as a continuous
linear variable. In our applications, however, we record

time as day of year (transformed to radians), which is a
continuous circular covariate with support on the

interval [–p, p] radians. To handle circular covariates,
we devise a kernel from the pdf for the wrapped Cauchy

distribution (Batschelet 1981:282, Eq. 15.4.2):

KðviÞ ¼
h 1� ð1� hÞ2
h i

2p½1þ ð1� hÞ2 � 2ð1� hÞcosðvihÞ�
ð2Þ

0 , h � 1. The quantity (1 � h) replaces mean vector
length in the wrapped Cauchy equation and determines

concentration of probability for this pdf. When h ¼ 1,
Eq. 2 yields a uniform circular distribution. As h

becomes small, probability becomes increasingly con-
centrated.

Bandwidth selection

Bandwidth selection is the main problem in applying

kernel density estimation. In general, choosing band-
widths that are too small yields noisy estimates with

spurious structure, while choosing bandwidths that are
too large yields oversmoothed estimates that obscure
important structure. To better ensure objective results,
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we use an objective bandwidth selection procedure.

Readers are reminded, however, that ‘‘[t]he importance

of choosing optimal bandwidth is easily overstated’’

(Scott 1992:161) and that it may sometimes be appro-

priate to choose bandwidths subjectively (Silverman

1986:44, Scott 1992:161).

For multivariate problems, Zhang et al. (2006)

suggest a Bayesian approach for choosing h, using a

likelihood cross-validation criterion. We use Zhang et

al.’s (2006) method for determining a diagonal

bandwidth matrix, which is equivalent to estimating

the vector h0 ¼ (h1, . . . , hd) for the product kernel

estimator of Eq. 1. Treating h as a d-dimensional

parameter vector, Zhang et al. (2006) assume the prior

density of each component of h is as follows (up to a

normalizing constant):

pðhjjkÞ}
1

1þ kh2
j

for j ¼ (1, 2, . . . , d ), where k is a hyperparameter

governing density shape. They further observe that,

conditional on h and u, an estimate of the sampling

distribution is given by the leave-one-out kernel density

estimate:

dUDck
¼ 1

ðn� 1Þh1h2 � � � hd

X
n

i¼1
i 6¼k

Y
d

j¼1

Kj
ck;j � ui;j

hj

� �

" #

: ð3Þ

Note that, here, the ck are the leave-one-out values

drawn from the pool of n randomly sampled instances of

occurrence, rather than user-specified points of interest

as in Eq. 1. From Bayes’ Rule, the posterior distribution

of h is as follows (up to a normalizing constant):

pðhju1; . . . ; unÞ}
Y

d

j¼1

1

1þ kh2
j

 !

Y
n

k¼1

dUDck

 !

: ð4Þ

Following Zhang et al. (2006), we set k¼ 1 and use a

Metropolis-Hastings algorithm (Gelman et al. 2004:289

et seq.) to sample from p(h j u1, . . . , un). Our implemen-

tation proceeds through m iterations, as follows:

1) Calculate starting bandwidth values, h0
1, h0

2, . . . , h0
d.

2) For iterations w ¼ 1, 2, . . . , m

a) for dimensions j ¼ 1, 2, . . . , d

i ) draw a proposal bandwidth value, h�j , from a

Gaussian proposal distribution with mean hw�1
j

and standard deviation rj,

ii ) using Eq. 4, calculate the ratio of densities,

r ¼
p h�ju1; . . . ; un

� �

p hw�1ju1; . . . ; un

� �

where h� is the bandwidth vector that includes

the new proposal value h�j and hw�1 is the

vector containing hw�1
j ,

iii ) draw a uniform random number in the range

[0, 1], then set

hw
j ¼

h�j with probability minðr; 1Þ
hw�1

j otherwise:

(

ð5Þ

This process yields a sample whose density converges to

p(h j u1, . . . , un) as m! ‘, but rates of convergence can

vary with starting values. To focus the process on the

region of parameter space in which values of hw
j are

associated with nontrivial probability densities, it is

usual to employ an initial burn-in period of some large

number of iterations. Details regarding starting band-

widths, choice of rj values, and numbers of total and

burn-in iterations for our specific applications are given

below. Code to implement the Metropolis-Hastings

algorithm (see Supplement) was written and compiled

using Intel Visual Fortran version 10.0 for Windows

(Intel, Santa Clara, California, USA).

MONTE CARLO SIMULATIONS

Using Monte Carlo simulations, we evaluated wheth-

er the product kernel method yields reasonable estimates

of density of occurrence for a seasonally migratory

animal. Our simulations used a 100 3 100 cell model

landscape in which the unit of distance for the x and y

axes was equal to the cell width. For each cell, we

calculated elevation (z) as a bivariate normal density

with mean lx ¼ ly ¼ 50 and standard deviation SDx ¼
SDy ¼ 15, scaled by an arbitrary constant (107). We

calculated aspect (h, in radians) as the direction from the

center of the landscape to the center of each cell.

Probability of occurrence for our model animal varied

with z, h, and t. Density of occurrence with respect to z

(Appendix A) was beta-distributed (Johnson et al. 1995)

as

fzðtÞ ¼
1

Bðat; btÞ
z� zmin

zmax � zmin

� �at�1

1� z� zmin

zmax � zmin

� �bt�1

ð6Þ

where zmin ¼ 0.132 and zmax ¼ 7063.085 were, re-

spectively, the minimum and maximum elevations

observed in our model landscape and B(at, bt) is the

beta function with parameters (at, bt) that varied with

time, measured as day of year (DOY). To induce

seasonally migratory behavior with respect to elevation,

we calculated (at, bt) as

at ¼
1

2
amin þ cos t

2p
365

� �

þ p
2
þ 1

� 	

ðamin � amaxÞ

 �

bt ¼
1

2
bmin þ sin t

2p
365

� �

þ 1

� 	

ðbmin � bmaxÞ

 �

ð7Þ

where amin ¼ bmin¼ 2, and amax ¼ bmax ¼ 6. Minimum

and maximum values of (at, bt) were chosen so that peak
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probabilities of occurrence cycled between high and low

elevations during the year (Appendix A).

We let density of occurrence with respect to aspect

(Appendix B) be circularly skew distributed (Batschelet

1981:286, Eq. 15.6.4) as

ghðtÞ ¼
1

2p
þ c

2p
cos h� jt þ scosðh� jtÞ½ � ð8Þ

where h is in radians, �1 � c � 1 is a concentration

parameter, s determines skewness, and jt is a time-

dependent location parameter. We set c ¼ 0.95 and s ¼
p/6, but let the distribution’s location vary with t

according to jt¼ 2pt/365. Thus, the shape of the density
distribution with respect to h was constant, but the

distribution’s mode revolved during the year around the

‘‘mountain’’ of our model landscape (Appendix B).

Letting elevation and aspect be independent effects,

we calculated probability of occurrence for each cell in

our landscape on any particular DOY as

UDðtÞ ¼ fzðtÞghðtÞ
X

fzðtÞghðtÞ
: ð9Þ

The summation in the denominator assures the neces-

sary unit sum constraint in the discrete space of our

model landscape.

Based on Eq. 9, we randomly allocated five locations

per day among the cells in our landscape, recording the

location (x, y) and time (t) of each. Repeating this

procedure for each DOY (t¼ 1, . . . , 365) gave a sample

of n¼ 1825 locations per year, a sampling rate we chose

as comparable to the observed rate in our empirical

example below. Using these samples and the product

kernel estimator (Eq. 1), we then estimated probability of

occurrence for each cell and DOY (dUDx;y;t). To determine

bandwidths, we set starting values at h0
x¼h0

y ¼ 5 and h0
t ¼

0.2. Following a small amount of experimentation, we

chose these values to avoid excessive convergence time

and, thereby, limit the Metropolis-Hastings procedure

to m ¼ 2000 iterations, including a burn-in period of

500 iterations. Standard deviations of rx ¼ ry ¼ 0.25

and rt ¼ 0.05 for the Gaussian proposal distributions

were similarly chosen to achieve acceptance rates (Eq.

5) of approximately 0.25 6 0.10. Repeating our

sampling procedure 50 times, we calculated the mean

estimate ðdUD x;y;tÞ for each cell and DOY and visually

compared these estimates with true UDx,y,t values to

assess estimator performance. Known and estimated

probability densities for each DOY also were linked in

video clips to allow visual comparison, show the time-

continuous nature of both the true density of occurrence

and the product kernel estimates, and illustrate the kinds

of temporally dynamic visualization tools made possible

by this method (Appendices C and D). Finally, for each

DOY we drew five cells randomly with replacement from

our model landscape and recordedUDx,y,t anddUD x;y;t for

each. Using this subsample, we calculated Pearson’s r to

assess the strength of the correlation between known and

estimated values, and we plotted dUD x;y;t on UDx,y,t to

identify biases.

Monte Carlo results indicated successful overall

performance of the product kernel method, as evidenced

by the strong correlation (Pearson’s r ¼ 0.975) between

UDx,y,t and dUD x;y;t values. Day-by-day comparisons

further showed that the product kernel estimator gave

UD models that successfully capture both spatial and
temporal variations in density of occurrence. For ex-

ample, dUD x;y;t values clearly and appropriately showed

peak concentrations of use at high elevations and

southwesterly aspects on approximately day 274 and
use that was least concentrated on approximately day

94, when low elevations and northeasterly aspects were

favored (Fig. 1). Full depictions of true and estimated
UD values are available as animations (Appendices C

and D). However, dUD x;y;t values were not unbiased.

Plotting dUD x;y;t on UDx,y,t for 1825 randomly selected

(x, y, t) coordinates showed that very low UD values
tended to be overestimated, whereas high values tended

to be underestimated (Fig. 2). This result is consistent

with the fact that kernel smoothing involves a bias–

variance trade-off that is mediated by bandwidth
(Silverman 1986:38–40, Fieberg 2007b). Because band-

widths in this study were chosen as a function of n, the

observed biases are ultimately attributable to sample size
effects.

EXAMPLE: MODELING UTILIZATION DISTRIBUTIONS

OF BIGHORN SHEEP (OVIS CANADENSIS CANADENSIS SHAW)

IN GLACIER NATIONAL PARK, MONTANA

To demonstrate our method, we modeled utilization

distributions of Rocky Mountain bighorn sheep in
Glacier National Park (GNP), Montana, USA. Twen-

ty-one ewes were captured in the Many Glacier area of

GNP during 2002–2005 using protocols approved by an
Animal Care and Use Committee and were fit with

Telonics radio collars (Telonics, Mesa, Arizona, USA)

equipped with global positioning systems and automatic
release mechanisms. The collars were programmed to

record location once every 5 h and release after

approximately one year. Collars recorded latitude and

longitude, as well as date and time referenced to
Greenwich Mean Time. Before analyses, location data

were transformed to Universal Transverse Mercator

coordinates using Corpscon version 5.11.08 (U.S. Army
Corps of Engineers, Topographic Engineering Center,

Alexandria, Virginia, USA). Time and date codes were

converted to Mountain Standard Time, then to decimal
DOY and, ultimately, to radians.

Our goal was to model expected UDs for animals

belonging to different social groups. Bighorn sheep are

gregarious and generally follow traditional movement
patterns that are learned, being passed from one

generation to the next (Geist 1971). Thus, they tend to

form distinct social groups, especially among females.

Our telemetry data revealed clear evidence of two ewe
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social groups in the Many Glacier area, the Sheep Curve
(SC) and Iceberg–Ptarmigan (IP) groups. To model

expected UDs of animals belonging to these groups, we
first assigned each study animal to a social group based
on visual examination of the telemetry data. Clear

separation in annual ranges of the groups made
unambiguous assignments possible. We then modeled

UDx,y,t for each individual. Using Scott’s rule in d
dimensions (Scott 1992:152, Eq. 6.42), we calculated
starting bandwidth values h0

x and h0
y as

h0
j ¼ r̂jn

�1=ðdþ4Þ

where r̂j is the estimated standard deviation calculated
from the n recorded coordinates for the jth dimension.
Following limited experimentation, we set h0

t ¼ 0.019.

Proposal distributions for all dimensions were Gaussian.
For the x and y dimensions, standard deviations for the

proposal distributions were initially set equal to h0
j /100.

For the t dimension, the standard deviation of the
proposal distribution was initially set at 0.01. For

proposal distributions for all dimensions, we used an

iterative procedure to choose final standard deviations
that achieved acceptance rates for proposal values (Eq.

5) of 0.25 6 0.10. Proposal values were constrained to
ensure h�x and h�y . 0, and 0 , h�t � 1. For each animal,
our Metropolis-Hastings procedure used 2000 iterations,

including 1000 burn-in iterations. The value of h used to
obtain final product kernel density estimates was
calculated as the median of the 1000 post-burn-in values

of hw. For each DOY, we calculated the expected UD of
animals belonging to each group by averaging estimated

UDs over all animals sampled from that group. Results
were then standardized to ensure estimated mean UDs
summed to 1 over all cells for each DOY. Finally,

estimated UDs for each DOY were linked in an
animation to show the time-continuous nature of the
product kernel estimates and to illustrate the kinds of

temporally dynamic visualization tools made possible by
this method (Appendix E).

We recorded 28 134 relocations of our study animals,
including 18 781 relocations of 15 ewes from the SC
group and 9353 relocations of six ewes from the IP

group. Mean sample size over all 21 animals was 1339.7

FIG. 1. Results of Monte Carlo simulations, comparing true vs. mean estimated density of use over the model landscape. The
top row shows results for day of year (DOY)¼ 91, when low elevations and northeast aspects were preferred, resulting in relatively
scattered animal use. The bottom row shows results for DOY¼ 271, when high elevations and southwest aspects were preferred,
resulting in more concentrated use. In each graph, density is scaled from zero (white) to the highest value observed over the entire
year (black). Upper bounds used to plot the true and mean estimated densities were 2.758 3 10�3 and 1.793 3 10�3, respectively.
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relocations (SD ¼ 470.4, range ¼ 346–2063). Median

bandwidths (6SE) chosen via the Bayesian method of

Zhang et al. (2006) averaged 0.537 (60.006) km, 0.715

(60.006) km, and 0.0072 (60.0002) for the x, y, and t

coordinates, respectively. Bandwidths for t were quite

narrow. On average, they placed 96% of the kernel

weight in a window of 67 d and 75% of the weight in a

window of 61 d. Thus, we expect that, given our sample

sizes, the product kernel method should capture

relatively fine-scale temporal variations in density of

occurrence. Mean UD models confirmed our expecta-

tion. For example, models clearly showed shifts in

density of use associated with lambing, movements to

salt licks, the late-summer dry season, and fall rut (Fig.

3). See Appendix E for a complete depiction of seasonal

changes in density of occurrence.

DISCUSSION

Reviewing nearly a century of animal home range

literature, Laver and Kelly (2008) found few studies that

consider the influence of elevation or time on an

animal’s UD and none offering a unified framework

for integrating elevation and temporal information with

information about an animal’s location in the (x, y)

plane. They conclude there is ‘‘much potential’’ for

‘‘development of home range theory to incorporate the

dimension of time, and eventually, time-volume consid-

erations’’ (Laver and Kelly 2008:293). We agree. Van

Winkle’s (1975) two-dimensional definition of the UD, a

cornerstone of home range studies for over 30 years, was

devised as a simplified framework to compare alterna-

tive home range estimators. Limiting the UD to only

two dimensions was a practical choice. Because he

compared only one- and two-dimensional models, Van

Winkle (1975) did not need a more general framework.

Also, limitations in statistical theory and computing

power at that time would have encouraged simplifica-

tion. We submit, however, that it is time to revisit the

two-dimensional paradigm, recognize that important

information may be sacrificed by discarding elevation

and temporal data, and consider whether a more general

model might, in many cases, provide greater ecological

insight. We argue for defining the UD as the relative

frequency distribution of an animal’s occurrence in

space and time. By generalizing the UD concept to

encompass all four dimensions of space and time, we

explicitly recognize the potential importance of infor-

mation associated with each spatial and temporal

coordinate (x, y, z, and t) and caution that no such

information should be discarded without conscious

deliberation.

Given this general framework, it is easy to see that

kernel density estimation, the prevalent method for

modeling two-dimensional UDs (Laver and Kelly 2008),

is readily applicable for modeling higher dimensional

UDs. Indeed, Scott (1992:24, 26) describes an analogous

application using spatial and temporal coordinates of

seismic events near Mount St. Helens. Kernel density

estimation exhibits some distinct advantages in this

setting. It permits direct use of all common data types

(including circular covariates, such as day of year)

without resorting to problematic transformations. It

also automatically accounts for interactions among

covariates. These traits are especially important when

assessing the effect of time on the UD. At first glance,

time is an unusual covariate to include in a UD model

because (barring death) density of occurrence is neces-

sarily uniform with respect to time. Thus, the special

one-dimensional case UDt is of little interest because,

unless the study animal dies or sampling of locations is

biased over time, it would necessarily yield only a

uniform distribution. However, considerable informa-

tion about an animal’s UD may reside in the interac-

tions between time and the spatial coordinates x, y, and

z, e.g., in the case of migratory or circadian movements,

in which probability of occurrence varies systematically

with day of year or time of day. Such an effect is evident

in our Monte Carlo simulations and in our empirical

example, where we show that the product kernel method

can be used to estimate temporally dynamic UDs,

thereby incorporating seasonally migratory behavior

directly into the UD model.

Time also is an unusual covariate because it can be

treated as either continuous linear or continuous

circular, depending on the question being addressed.

For example, if one is modeling changes in density of

occurrence over a period of years, time should be treated

as continuous linear, but when modeling seasonally

migratory behavior it is appropriate to treat time as

continuous circular. This duality poses a special

problem. Development of kernel density methods has

FIG. 2. Plot of mean estimated density of use on true
density for 1825 randomly selected (x, y, t) coordinates. The
solid line shows the ideal relationship between true and
estimated values. Low values tended to be overestimated, and
high values were underestimated.
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focused predominately on continuous linear variables

(Silverman 1986, Scott 1992), thus numerous kernels are

available to studies treating time as continuous linear.

When treating time as continuous circular, however, a

fundamentally different kernel, specific to this data type,

is needed to ensure observations are weighted appropri-
ately. For example, when estimating density of occur-

rence on day 365, observations of occurrence on day 1

merit greater weight than observations on day 360.

Because our literature search revealed no kernel

designed for circularly distributed data, we adapted the

wrapped Cauchy pdf (Batschelet 1981). Our approach

properly ensures (Silverman 1986:13–14) that the

resulting kernel is everywhere non-negative and inte-

grates to 1 over the range [–p, p] radians. Results of both

our Monte Carlo simulations and empirical example

confirm the usefulness of the wrapped Cauchy kernel for

incorporating continuous circular covariates into kernel
density models. We note, however, that the wrapped

Cauchy is not the only distribution that might be

employed. Theoretically, pdfs for other symmetric,

circular distributions, e.g., the von Mises, wrapped

normal, or cosine distributions (Batschelet 1981:275 et

seq.), might also be used. Because density estimates

FIG. 3. Modeled utilization distributions (UDs) for selected days of the year, showing mean estimated density of occurrence for
15 bighorn ewes belonging to the Sheep Curve group (red) and six belonging to the Iceberg–Ptarmigan group (green) in Glacier
National Park, Montana, USA. From darkest to lightest, variations in shading show the 10th, 30th, 50th, 70th, and 90th percentiles
of the kernel density estimates. Model UDs for these days illustrate the ability to depict seasonal changes in concentrations of use as
animals move to known lambing areas (red circles, day 147), a major salt lick (red circle, day 171), late-summer habitat (red ovals,
day 239), and rutting grounds (red ovals, day 331). See Appendix E for an animation showing the complete modeled relationship
between estimated density of use and day of year.

July 2009 1977MODELING UTILIZATION DISTRIBUTIONS



involving continuous linear covariates are generally

robust to kernel choice (Scott 1992:133), we expect that

estimates involving circular covariates should be simi-

larly robust. We use the wrapped Cauchy because it is

computationally straightforward and offers support

over the range 0 � h , 1 and because we experienced

numerical problems with the von Mises pdf.

Incorporating elevation and time directly into UD

models eliminates the need to bin data into discrete

categories of elevation (e.g., Rader and Krockenberger

2006) or time, predicated on subjective decisions about

where the boundaries of those categories occur. For

example, when developing seasonal models it is common

to begin with subjective decisions about when a given

season begins and ends. By including time directly in the

model as a continuous circular covariate, such subjective

decisions are unnecessary. Indeed, the resulting models

may challenge traditional notions about whether sea-

sonal movements can be reliably partitioned into

discrete periods. Geist (1971:63, 75) concludes that

bighorn ewes in Banff National Park, Canada, may have

up to four distinct seasonal ranges, winter, late winter/

spring, summer, and lambing, and indicates that long-

distance movements among them proceed in a rather

orderly fashion, with ewes moving to winter range in late

September–early October, to late winter/spring range in

late March and April, and to lambing areas, then on to

summer range in late May, June, and early July. In

contrast to this orthodox characterization of bighorn

seasonal movement patterns, our models paint a more

fluid picture (Appendix E). Ewes in our study used

multiple winter and late winter/spring ranges, moving

freely among them during both periods; salt licks were

used most often during late June–early July, but might

be visited almost any time during the year; and during

summer, although use tended to be concentrated in

certain areas, individual ewes repeatedly traversed the

full extent of their year-long range and might be found

in any part of it at any time.

Overall, probability of occurrence for the bighorn

sheep we studied varied with time according to predict-

able patterns, but it was not possible to neatly bin all

habitat patches according to season of use. Instead, our

models show bighorn UDs as stochastic in space and

time, with probability of occurrence peaking in different

locations during different seasons. These models also

suggest a cautionary tale regarding more traditional

seasonal models. Consider, for example, the situation in

which winter range is of primary importance and the

winter UD is estimated using only data gathered during

the winter period. In our bighorn sheep example, this

extends from approximately 15 November (DOY¼ 319)

through 1 May (DOY ¼ 121). Estimating the two-

dimensional density UDx,y for this period would yield a

model of density of occurrence averaged over the entire

winter period. Model UDx,y,t clearly indicates, however,

that use becomes more concentrated in late winter, with

peak concentration confined to only a brief period

(Appendix E; compare, for example, DOY ¼ 43 vs.

DOY¼121). This pattern has important implications for

both monitoring and impact assessment. For example,

observed changes in probability of occurrence within the

winter season underscore the importance of the timing of

annual monitoring surveys. Because concentration of use

varies greatly within the winter season, minimizing inter-

annual sampling variance (sensu White 2000) requires

that annual surveys be conducted during periods when

use is comparably concentrated, preferably during peak

concentration. Knowing how probability of occurrence

varies in space and time is, thus, important to optimizing

monitoring efforts.

Temporal changes in the spatial distribution of use

also have implications for impact assessment. For

example, McDonald and McDonald (2002) suggest

risks associated with alternative management scenarios

can be assessed by comparing the area under a spatially

explicit response surface (depicting relative probability

of occurrence) before and after proposed management

activities have been introduced. Incorporating a tempo-

ral component into this approach is relevant in two

respects. First, magnitude of impact may depend

critically on whether animal and human activities

overlap in both space and time. Second, if human

activity occurs in an area where animal use is hyper-

concentrated for only a brief period, but impacts are

evaluated using a response surface depicting mean

relative probability of occurrence over a longer time

period, then impacts may be underestimated.

Overall, we are encouraged by our results, which

indicate that a generalized four-dimensional UD offers a

useful conceptual framework for devising new ap-

proaches that incorporate information from elevation

and temporal coordinates directly into UD models.

They also demonstrate that product kernel density

estimation provides a viable statistical method for

estimating this higher dimensional model, one that is

at least as good as the kernel methods now widely used

for estimating two-dimensional UDs. Moreover, the

wrapped Cauchy kernel extends the utility of kernel

density estimation to include circularly distributed

covariates. Our results, however, also point to the need

for further work. In our bighorn study, for example, it

seems likely that bandwidths calculated for individual

bighorn sheep were too broad because we averaged

results over multiple animals, thereby achieving an

additional degree of smoothing outside the kernel

estimation process. Guidance regarding bandwidth

adjustment in this case would be helpful, but to our

knowledge, the topic has not been addressed in the

statistical literature. Such topics should provide fertile

ground for further research.
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APPENDIX A

Video showing seasonal changes in simulated density of occurrence with respect to elevation, as per Eqs. 6 and 7 (Ecological
Archives E090-136-A1).

APPENDIX B

Video showing seasonal changes in simulated density of occurrence with respect to aspect, as per Eq. 8 (Ecological Archives
E090-136-A2).

APPENDIX C

Video showing the true utilization distribution, by day of year, for our Monte Carlo simulations, as per Eq. 9 (Ecological
Archives E090-136-A3).
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APPENDIX D

Video showing the mean estimated utilization distribution, by day of year, as calculated in our Monte Carlo simulations
(Ecological Archives E090-136-A4).

APPENDIX E

Video showing estimated mean utilization distributions, by day of year, for bighorn ewes belonging to two social groups in
Glacier National Park, Montana, USA (Ecological Archives E090-136-A5).

SUPPLEMENT

FORTRAN source code and dynamic link library files for implementing the Bayesian Markov Chain Monte Carlo (MCMC)
bandwidth selection procedure used in this study (Ecological Archives E090-136-S1).
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