Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

1999 Progress Report: Elimination of VOC's in the Synthesis and Application of Polymeric Materials Using Atom Transfer Radical Polymerization

EPA Grant Number: R826735
Title: Elimination of VOC's in the Synthesis and Application of Polymeric Materials Using Atom Transfer Radical Polymerization
Investigators: Matyjaszewski, Krzysztof
Institution: Carnegie Mellon University
EPA Project Officer: Karn, Barbara
Project Period: October 1, 1998 through September 30, 2001
Project Period Covered by this Report: October 1, 1998 through September 30, 1999
Project Amount: $330,000
RFA: Technology for a Sustainable Environment (1998)
Research Category: Pollution Prevention/Sustainable Development

Description:

Objective:

Atom transfer radical polymerization (ATRP) is an innovative technology for the preparation of well-defined (co)polymers with controlled molecular weight, polydispersity, composition, and functionalities. Such polymers can be recycled as thermoplastic elastomers and used without plastifiers. The polymers also have a strongly reduced content of organic solvents. ATRP can help reduce or eliminate volatile organic compunds (VOCs) from chemical processes, thereby protecting the environment and lowering hazardous waste costs. ATRP uses a transition metal catalyst and has successfully polymerized styrenes, (meth)acrylics, acrylonitrile, and other monomers to prepare well-defined block copolymers, hyperbranched (co)polymers, graft copolymers, gradient copolymers, telechelic (co)polymers, and others.

There is considerable industrial interest in ATRP because of the wide range of materials that can be prepared. The proposed research is focused on further improving ATRP by performing fundamental studies to develop next-generation catalysts (lowered amounts of catalyst required, and the development of solid-supported catalysts); determine the use of water-borne polymerization systems (suspensions, emulsions, and homogeneous polymerizations); and develop environmentally friendly polymerization processes and products.

Progress Summary:

Research has focused on three areas during the last year:

  1. Development of More Efficient Catalysts. We have used Cu-catalysts complexed with polydentate and tripodal ligands. These more efficient catalysts allow for a reduction in their concentrations from 1 percent to 0.01 percent versus monomer. Ligands such as tris[2-(dimethylamino)ethyl]amine (TREN) are excellent for the polymerization of various acrylates. In addition, various immobilized catalysts have been used because their recovery is easier.
  2. Water and CO2 as Reaction Medium for ATRP. ATRP has been performed successfully in CO2 by applying fluorinated ligands to complex Cu-catalysts. Polymerization in water was carried out under homogeneous conditions (2-hydroxyethyl acrylate) and in heterogeneous systems (suspensions, emulsions, and miniemulsions). The water-borne ATRP leads to stable latexes for various acrylates, methacrylates, and styrenes. The block copolymerization also was successful for water-borne systems. A key for the control in water is a proper choice of ligands (strongly hydrophobic) and surfactants (nonionic).
  3. Environmentally Friendly Products. Several products have been prepared, including polar thermoplastic elastomers (based on [meth]acrylates), telechelic products for solventless coatings, and self-plasticizing polyvinyl chloride (PVC).

Future Activities:

Continued research is planned in three areas: further development of more efficient catalysts together with their recovery and potential recycling; ATRP in water-borne systems; and more environmentally friendly polymeric materials.


Journal Articles on this Report : 9 Displayed | Download in RIS Format

Other project views: All 46 publications 23 publications in selected types All 23 journal articles

Type Citation Project Document Sources
Journal Article Gaynor SG, Qiu J, Shipp D, Matyjaszewski K. Controlled/living radical polymerization applied to water-borne systems.. Polymeric Materials Science And Engineering Preprints. 1998;31(17):5954-5954. R826735 (1999)
R826735 (Final)
not available
Journal Article Kickelbick G, Paik HJ, Matyjaszewski K. Immobilization of the copper catalyst in atom transfer radical polymerization. Macromolecules 1999;32:2941-2947. R826735 (1999)
R826735 (Final)
not available
Journal Article Matyjaszewski K, Qiu J, Shipp D, Gaynor S. Controlled living radical polymerization applied to water-borne systems. Macromolecular Symposia 1999. R826735 (1999)
R826735 (Final)
not available
Journal Article Matyjaszewski K. Transition metal catalysis in controlled radical polymerization: atom transfer radical polymerization. Chemistry - A European Journal 1999;5:3095-3102. R826735 (1999)
R826735 (Final)
not available
Journal Article Matyjaszewski K. Environmental aspects of controlled radical polymerization. Macromolecular Symposia 2000;152(1):29-42. R826735 (1999)
R826735 (Final)
R824995 (Final)
not available
Journal Article Patten TE, Matyjaszewski K. Copper(I)-catalyzed atom transfer radical polymerizations. Accounts of Chemical Research 1999;32:895-903. R826735 (1999)
R826735 (Final)
not available
Journal Article Qiu J, Shipp D, Gaynor SG, Matyjaszewski K. The effect of ligands on atom transfer radical polymerization in water-borne systems. ACS Polymer Preprints 1999;40(2):418-419. R826735 (1999)
R826735 (Final)
not available
Journal Article Shipp DA, McMurtry GP, Gaynor SG, Qiu J, Matyjaszewski K. Waterborne block copolymer synthesis and a simple and effective one-pot synthesis of acrylate-methacrylate block copolymers by atom-transfer radical polymerization. Abstracts of Papers of the American Chemical Society 1999;218(POLY Pt 2):510 R826735 (1999)
R826735 (Final)
not available
Journal Article Xia JH, Johnson T, Gaynor SG, Matyjaszewski K, DeSimone J. Atom transfer radical polymerization in supercritical carbon dioxide. Macromolecules 1999;32(15):4802-4805 R826735 (1999)
R826735 (Final)
not available
Supplemental Keywords:

water, air, chemicals, solvents, heavy metals, volatile organic compound, waste minimization, green chemistry, waste reduction, innovative technology. , Sustainable Industry/Business, Scientific Discipline, RFA, Technology for Sustainable Environment, Sustainable Environment, Environmental Chemistry, heavy metals, chemical reaction systems, cleaner production, environmentally-friendly chemical synthesis, Volatile Organic Compounds (VOCs), catalysts, green chemistry, alternative chemical synthesis, environmentally benign solvents, polymer design, alternative materials, solvent substitute, atom transfer radical polymerization
Relevant Websites:

http://polymer.chem.cmu.edu/ Exit EPA icon

Progress and Final Reports:
Original Abstract
2000 Progress Report
Final Report

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.