Appendix

Glossary

algae: a group of chiefly aquatic plants (e.g., seaweed, pond scum, stonewort, phytoplankton) that contain chlorophyll and may passively drift, weakly swim, grow on a substrate, or establish root-like anchors (steadfasts) in a water body.

anoxia: the absence of dissolved oxygen.

benthic organisms: organisms living in association with the bottom of aquatic environments (e.g., polychaetes, clams, snails).

chlorophyll: pigment found in plant cells that are active in harnessing energy during photosynthesis.

copepod: zooplankton whose bodies are covered with a hard shell or crust; order of crustacea.

cyanobacteria: formerly known as blue-green algae.

demersal organisms: organisms that are, at times, associated with the bottom of aquatic environments, but capable of moving away from it (e.g., blue crabs, shrimp, red drum).

denitrification: nitrogen transformations in water and soil that make nitrogen effectively unavailable for plant uptake, usually returning it to the atmosphere as nitrogen gas.

diatom: a major phytoplankton group characterized by cells enclosed in silicon frustules, or shells.

edge-of-field nitrogen loss: a term that refers to the nitrogen that is lost or exported from fields in agricultural production.

eutrophic: waters, soils, or habitats that are high in nutrients; in aquatic systems, associated with wide swings in dissolved oxygen concentrations and frequent algal blooms.

eutrophication: an increase in the rate of supply of organic matter to an ecosystem.

hydrogen sulfide: a chemical, toxic to oxygen-dependent organisms, that diffuses into the water as the oxygen levels above the seabed sediments become zero.

hypoxia: very low dissolved oxygen concentrations, generally less than 2 milligrams per liter.

mesotrophic: intermediate between oligotrophic (low-nutrient) and eutrophic (high-nutrient) systems.

nitrate: inorganic form of nitrogen; chemically NO₃.

nonpoint: a diffuse source of chemical and/or nutrient inputs not attributable to any single discharge (e.g., agricultural runoff, urban runoff, atmospheric deposition).

nutrients: inorganic chemicals (particularly nitrogen, phosphorus, and silicon) required for the growth of plants, including crops and phytoplankton.

oligotrophic: waters or soils that have low concentrations of nutrients and have low primary productivity.

pelagic: living or growing in the water column or at the surface of the ocean near shore.

phytoplankton: plant life (e.g., algae), usually containing chlorophyll, that passively drifts in a water body.

plankton: organisms living suspended in the water column, incapable of moving against currents.

productivity: the conversion of light energy and carbon dioxide into living organic material.

pycnocline: the region of the water column characterized by the strongest vertical gradient in density, attributable to temperature, salinity, or both.

recruitment: the influx, initial survival, and establishment of new members into a population by reproduction or immigration.

respiration: the consumption of oxygen during energy utilization by cells and organisms.

riparian areas: area adjacent to a river or other body of water.

senescence: the aging process in mature individuals; in plants, the process that occurs before the shedding of leaves.

stratification: a multilayered water column, delineated by pycnoclines.

zooplankton: animal life that drifts or weakly swims in a water body, often feeding on phytoplankton.

-	Conversion Table			
	Multiply	Ву	To Obtain	
	meter (m)	3.281	foot	
	kilometer (km)	0.6214	mile	
	square kilometer (km2)	0.3861	square mile	
	square kilometer (km2)	100	hectare	
	hectare (ha)	2.471	acre	
	kilogram (kg)	2.205	pound	
	metric ton (t)	1,000	kilogram	
	cubic meters (m3) per second	35.31	cubic feet per second	
	kilogram per sq. kilometer (kg/km2)	0.008924	pounds per acre	

References

Bierman, Victor J., et al. 1994. A Preliminary mass balance model of primary productivity and dissolved oxygen in the Mississippi River plume/inner Gulf shelf region. Estuaries 17(4):886-99.

Bricker, S.B., et al. 1999. National eutrophication assessment: Effects of nutrient enrichment in the nation's estuaries. Silver Spring, MD: NOAA National Ocean Service. 71 pp.

Bureau of the Census. 1999. Statistical Abstract of the United States 1998. Washington, DC: U.S. Government Printing Office.

Caddy, J.F. 1993. Toward a comparative evaluation of human impacts on fishery ecosystems of enclosed and semi-enclosed seas. Reviews in Fisheries Science 1(1):57-95.

Carey, Anne E., et al. 1999. The Role of the Mississippi River in Gulf of Mexico hypoxia, Report No. 70, Tuscaloosa, AL: Environmental Institute, University of Alabama. 79 pp.

Diaz, R.J., and R. Rosenberg. 1995. Marine benthic hypoxia: A Review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology: An Annual Review 33:245-303.

Dodds, W.K., et al. 1998. Suggested classification of stream trophic state: Distribution of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research 32(5):1455-62.

Dole, R.B. 1909. The Quality of surface waters in the United States: Part I-Analysis of waters east of the one-hundredth meridian. U.S. Geological Survey Water Supply Paper 236. Washington, DC: U.S. Government Printing Office. 123 pp.

Downing, John A., et al. 1999. Gulf of Mexico byboxia: Land and sea interaction, Task Force Report No. 134. Ames IA: Council for Agricultural Science and Technology. 44 pp.

Jansson, Bengt-Owe, and Kristina Dahlberg. 1999. The environmental status of the Baltic Sea in the 1940s, today, and in the future. Ambio 28(4):312-19.

Jickells, T.D. 1998. Nutrient biogeochemistry of the coastal zone. Science 281:217-21.

Johansson, J.O.R., and H.S. Greening. 1999. Sea grass restoration in Tampa Bay: A Resourcebased approach to estuarine management. In: Sea grasses: Monitoring ecology, physiology, and management, ed. S.A. Bortone, pp. 270-93. Boca Raton, FL: CRC Press.

Justić, Dubravko, et al. 1996. Effects of climate change on hypoxia in coastal waters: A Doubled CO₂ scenario for the northern Gulf of Mexico. Limnology and Oceanography 41(5):992-1003.

Justić, Dubravko, et al. 1997. Impacts of climate change on net productivity of coastal waters: Implications for carbon budgets and hypoxia. Climate Research 8:225-37.

Kunkel, Kenneth E., et al. 1999. Long term trends in extreme precipitation events over the conterminous United States and Canada. Journal of Climate 12:2515-27.

Leighton, M.O. 1907. Pollution of the Illinois River by Chicago sewage. U.S. Geological Survey Water Supply Paper 194. Washington, DC: U.S. Government Printing Office. 369 pp.

Meade, R.H., ed. 1995. Contaminants in the Mississippi River. U.S. Geological Survey Circular 1133. Washington, DC: U.S. Government Printing Office. 140 pp.

National Research Council (NRC). 1992. Restoration of aquatic ecosystems. Washington DC: National Academy Press. 552 pp.

National Research Council (NRC). 1993. Managing wastewater in coastal urban areas. Washington DC: National Academy Press. 477 pp.

Nixon, Scott W. 1995. Coastal marine eutrophication: A Definition, social causes, and future concerns. Ophelia 41:199-219.

Palmer, Arthur W. ca. 1903. Chemical survey of the waters of Illinois: Report for the years 1897-1902. Champaign, IL: University of Illinois. 254 pp.

Ryther, J.H., and W.M. Dunstan. 1969. Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science 171:375-80.

Turner, R. Eugene. 1999. A Comparative mass balance budget (C, N, P and suspended solids) for a natural swamp and overland flow systems. In Nutrient cycling and retention in natural and constructed wetlands, ed. J. Vymazal, pp. 61–71. Leiden, The Netherlands: Backhuys Publishers.

U.S. Environmental Protection Agency (EPA). 1997. Proceedings of the first Gulf of Mexico hypoxia management conference, December 1995. Stennis Space Center, MS: Gulf of Mexico Program Office. 198 pp.

U.S. Geological Survey (USGS). 1999. The Quality of our nation's waters: Nutrients and pesticides. U.S. Geological Survey Circular 1225. Washington, DC: U.S. Government Printing Office. 82 pp.

Vitousek, Peter M., et al. 1997. Human alteration of the global nitrogen cycle: Sources and consequences, ecological applications. Ecological Applications 7(3):737-50.

World Bank. 1998. World Development Indicators 1998. Washington, DC. 388 pp.

Proper citation of this document is as follows:

CENR. 2000. Integrated Assessment of Hypoxia in the Northern Gulf of Mexico. National Science and Technology Council Committee on Environment and Natural Resources, Washington, DC.

For additional copies or information, please contact:
National Oceanic and Atmospheric Administration
National Centers for Coastal Ocean Science
Coastal Ocean Program
1315 East—West Highway, Room 9700
Silver Spring, MD 20910
Telephone: 301-713-3338

Fax: 301-713-4044

E-mail: coastalocean@cop.noaa.gov

This report is also available via the World Wide Web at http://www.nos.noaa.gov/products/pubs_hypox.html

