

Clouds and the Earth’s Radiant Energy System
(CERES)

Data Management System

(DMS)

Software Coding Guidelines
Version 2

for

Tropical Rainfall Measuring Mission

(TRMM),

Earth Observing System
(EOS),

and

National Polar-orbiting Operational Environmental

Satellite System (NPOESS) Preparatory Project
(NPP)

September 2008

Software Coding Guidelines V2 10/28/2008

Document Revision Record

The Document Revision Record contains information pertaining to approved document changes.
The table lists the Version Number, the date of the last revision, a short description of the
revision, and the revised sections. The document authors are listed on the cover. The Chairman
of the CERES Data Management Team Configuration Control Board approves or disapproves
the requested changes.

Document Revision Record

Version
Number Date Description of Revision Section(s)

Affected
V1 11/1994 • Original release. All
V2 08/14/2008 • Updated guidelines from Version 1 (November

1994).
All

 • Added C++ section. Section 16

iv

Software Coding Guidelines V2 10/28/2008

Preface

The CERES DMS supports the data processing needs of the CERES Science Team to increase
understanding of the Earth’s climate and radiant environment. The CERES DMT works with the
CERES Science Team to develop the software necessary to support the science algorithms. This
software, being developed to operate at the Langley ASDC, produces an extensive set of science
data products. The DMS consists of 12 subsystems; each of which contains one or more PGEs.

The purpose of the CERES Software Coding Guidelines is to provide the software development
team with a coding standard to use across the various CERES missions – TRMM, Terra, Aqua,
and NPP.

v

Software Coding Guidelines V2 10/28/2008

vi

Acknowledgements

This document reflects the collaborative efforts of the CERES DMT (in conjunction, as
appropriate, with the CERES Science Team). The primary contributors to this document are:

SSAI – Mark Bowser, Thomas E. Caldwell, Lisa H. Coleman, Arthur T. Grepiotis, Walter F.

Miller, Mark Timcoe, Dale R. Walikainen

Documentation support was provided by the CERES Documentation Team (Tammy O. Ayers
(SSAI) and Joanne H. Saunders (SSAI)).

Erika Geier (NASA) is the CERES DMT Lead. At the time of publication of this document
members of the CERES DMT from SSAI are:

J. Ashley Alford Walter F. Miller
Tammy O. Ayers Cathy Nguyen
Mark Bowser Raja Raju
Ricky R. Brown John L. Robbins
Thomas E. Caldwell Joanne H. Saunders
Churngwei Chu Rita Smith
Lisa H. Coleman K. Dianne Snyder
Denise L. Cooper Victor E. Sothcott
Elizabeth D. Filer Sunny Sun-Mack
Arthur T. Grepiotis Mark Timcoe
Carla O. Grune Dale R. Walikainen
Elizabeth Heckert

The DMT wishes to recognize the original contributions to this document by Scott Quier, Joseph
Stassi, and Troy Anselmo, all former team members who are no longer associated with the
CERES project.

Software Coding Guidelines V2 10/28/2008

TABLE OF CONTENTS
Section Page

vii

Document Revision Record ... iv

Preface ... v

Acknowledgements .. vi

1.0 Introduction .. 1

2.0 Design Guidelines .. 3

2.1. Languages and Operating Systems .. 3

2.2. Modules .. 3

2.2.1. Module Naming .. 3

2.2.2. Module Partitioning .. 3

2.2.3. Module Interfaces ... 4

3.0 Files .. 5

4.0 Comments .. 6

4.1. General Commenting Standards ... 6

4.2. Prologue Comments ... 7

4.3. Data Comments .. 8

4.4. Statement Comments .. 8

4.5. Marker Comments .. 8

5.0 Code Presentation .. 9

5.1. General Code Presentation ... 9

6.0 Data .. 10

6.1. Naming ... 10

6.2. Constants .. 10

6.3. Global Data .. 10

7.0 Miscellaneous .. 11

Software Coding Guidelines V2 10/28/2008

TABLE OF CONTENTS
Section Page

viii

8.0 Programming Constructs ... 12

8.1. Naming ... 12

8.2. Statements .. 12

8.3. Looping and Branching .. 12

9.0 Functions and Subroutines ... 13

10.0 Error Handling ... 14

11.0 Portability ... 15

12.0 Numerical Methods .. 16

13.0 Fortran 77 Coding Guidelines .. 17

13.1. General Style Rules .. 17

13.2. COMMON Blocks .. 17

13.3. Labels.. 17

13.4. Constants .. 17

13.5. Arrays ... 18

13.6. Loop Constructs .. 18

14.0 Fortran 90 Coding Guidelines .. 19

14.1. General Style Rules .. 19

14.2. Obsolete Fortran Features ... 20

14.3. Guidance for the use of Dynamic Memory .. 20

15.0 C Coding Standards ... 22

15.1. General Style Rules .. 22

15.1.1. Include Files .. 22

15.1.2. Data Declarations .. 22

15.1.3. Functions: Declarations, Prototypes, Calling... 23

Software Coding Guidelines V2 10/28/2008

TABLE OF CONTENTS
Section Page

ix

15.1.4. Flow Control, Loops, and Braces ... 23

15.1.5. Switch ... 24

15.1.6. IF-ELSE-IF Constructs ... 25

15.1.7. Operators ... 25

15.1.8. Portability .. 26

16.0 C++ Coding Standards ... 30

17.0 Ada Coding Standard ... 32

18.0 References .. 33

Appendix - A Applicable Terms ... A-1

Appendix B - Module Prologue .. B-1

Software Coding Guidelines V2 10/28/2008

1.0 Introduction
CERES is a key component of EOS and NPP. The first CERES instrument (PFM) flew on
TRMM, four instruments are currently operating on the EOS Terra (FM1 and FM2) and Aqua
(FM3 and FM4) platforms, and FM5 will fly on the NPP platform currently scheduled for launch
in June 2010. CERES measures radiances in three broadband channels: a shortwave channel (0.3
- 5 μm), a total channel (0.3 - 200 μm), and an infrared window channel (8 - 12 μm). The last
data processed from the PFM instrument aboard TRMM was March 2000; no additional data are
expected. Until June 2005, one instrument on each EOS platform operated in a fixed azimuth
scanning mode and the other operated in a rotating azimuth scanning mode; now all are typically
operating in the fixed azimuth scanning mode. The NPP platform will carry the FM5 instrument,
which will operate in the fixed azimuth scanning mode though it will have the capability to
operate in a rotating azimuth scanning mode.

CERES climate data records involve an unprecedented level of data fusion: CERES
measurements are combined with imager data (e.g., MODIS on Terra and Aqua, VIIRS on NPP),
4-D weather assimilation data, microwave sea-ice observations, and measurements from five
geostationary satellites to produce climate-quality radiative fluxes at the top-of-atmosphere,
within the atmosphere and at the surface, together with the associated cloud and aerosol
properties.

The CERES project management and implementation responsibility is at NASA Langley. The
CERES Science Team is responsible for the instrument design and the derivation and validation
of the scientific algorithms used to produce the data products distributed to the atmospheric
sciences community. The CERES DMT is responsible for the development and maintenance of
the software that implements the science team’s algorithms in the production environment to
produce CERES data products. The Langley ASDC is responsible for the production
environment, data ingest, and the processing, archival, and distribution of the CERES data
products.

The purpose of this document is to provide a set of guidelines for source code development for
the CERES ground data processing system. Primarily, the guidelines define format and
presentation style for source code. However, it also provides several design guidelines which are
necessary to set the context for understanding the coding guidelines. These standards should be
distributed to developers at the beginning of the project and used as a measurement instrument in
design and code reviews.

The contributors to this document recognize that there is a broad range of opinion on design and
coding standards, and that in many cases the benefits of flexibility in adapting standards to a
particular situation outweigh the advantages of adhering to a rigid set of standards. However, the
value of establishing guidelines for software engineering is clearly demonstrated by the problems
related to program accuracy, maintainability, and portability which are encountered by projects
where standards have not been used to a sufficient degree.

These guidelines are intended to be followed by all CERES subsystems. However, it is
recognized that cases will arise where one must deviate from these guidelines in the interest of

1

Software Coding Guidelines V2 10/28/2008

performance, reusability, or other mitigating circumstances. To avoid establishing a bureaucracy
for granting waivers, code inspections may be used for approving deviations from these
guidelines. The rationale is that if the author must convince a group of peers that a deviation is
warranted, an adequate level of control on compliance to these guidelines will be achieved.

All acronyms used in this document are defined in Appendix A; they are not defined in the text.

2

Software Coding Guidelines V2 10/28/2008

2.0 Design Guidelines

2.1 Languages and Operating Systems
Software/Data File Install Procedure:

1. Software will be implemented in ANSI compliant Ada, C, C++, Fortran 77, or
Fortran 90. Language extensions are strongly discouraged.

2. The source code interface to the operating system should be limited to the call
interface specified by the POSIX standard.

3. All CERES code written for delivery to the ASDC TRMM/Terra/Aqua Data
Processing System shall use the SDP Toolkit to the extent required by the Data
Production Software and Science Computing Facility (SCF) Standards and
Guidelines (see Reference 1). This includes, but is not limited to, system and
resource accesses, error message transaction, and metadata formatting. Use of SDP
Toolkit resources beyond these minimal requirements is strongly encouraged.
Software deliveries beginning with FM5 are not required to use the Toolkit.

4. Inherited code which does not conform to the standards will be considered for porting
on a case-by-case basis by the appropriate subsystem lead.

2.2 Modules
The term “module” is used to represent a named procedure, subroutine, or function.

2.2.1 Module Naming

1. Module names should correspond to the names used in program structure charts.

2. Module names should describe what the routine does.

3. Names for utility modules should be prefixed by the name (or abbreviation) of the utility
set to which they belong:

a. Prefixes must be unique. In C++, class names serve as prefixes.

b. Prefixes which might be confused with the naming conventions of common
commercial libraries must be avoided (for example, routines beginning with “db”
might be confused with Sybase DB-Library routines).

c. The non-C++ prefix must be separated from the rest of the module name with an
underscore.

2.2.2 Module Partitioning

1. A block of code which appears in more than two places should be considered for
packaging as a separate module.

2. Blocks of code which perform nearly the same function should be considered for
packaging in a single, general-purpose module.

3

Software Coding Guidelines V2 10/28/2008

3. A module whose length exceeds 100 lines of code should be looked at closely for
partitioning into smaller modules.

2.2.3 Module Interfaces

1. Isolate and minimize external program interfaces (such as file I/O) as much as possible.

2. Minimize the number of formal parameters. A long list of formal parameters is suspect
as an indication of a module that is attempting to accomplish too much. However, do not
group unrelated data elements into a single structure for the sole purpose of reducing the
number of parameters.

3. Only pass data that the module requires to perform its task.

4. As a general rule, be careful when passing variables or using global variables to control
the internal logic of a module. Passing a parameter into a module which controls the
internal logic of that module can be an indication of poor coupling between modules.

5. Reduce the “distance” (i.e., the number of times data passes across a call interface)
between where a variable is initialized and where it is used.

6. Include files should be organized hierarchically according to scope and content.
Examples of item categories include the following:

a. System-wide parameters.

b. Parameters specific to a single program set.

c. Parameters specific to a single program.

d. Symbolic error and function return values.

e. Instrument/device parameters.

f. Physical constants.

g. Structure, union and type definitions.

4

Software Coding Guidelines V2 10/28/2008

3.0 Files
1. Every source module (both executable source and include modules) must begin with a

prologue. Appendix B contains an annotated prologue template.

2. Files should be named according to the following conventions:

File Type Name Template (replace italics
with relevant information)

Fortran 77 module module_name.f

Fortran 90 module module_name.f90

Ada package specification module_name.ads

Ada package body module_name.adb

C module module_name.c

Include files module_name.h

Bourne Shell scripts module_name.ch

C Shell scripts module_name.csh

C++ module module_name.cpp

Perl scripts module_name.pl

5

Software Coding Guidelines V2 10/28/2008

4.0 Comments
Comments can be either beneficial or harmful to software maintenance. A minimum number of
comments is desired, especially if they explain aspects of the code that are otherwise not readily
apparent. Harmful comments contain inaccurate information or are not visually distinct enough,
which can cause them to obscure the structure of the code. As a general rule, one should strive
to write code which is clear and unambiguous without comments. However, we recognize that
this goal is not always attainable, and comments can provide information that is useful for
understanding and maintaining the code. This section provides the guidelines for writing
effective comments.

4.1 General Commenting Standards

1. Make the code as clear as possible to reduce the need for comments.

2. Misspelled, ungrammatical, ambiguous, or incomplete comments defeat their usefulness.
If a comment is worth adding, it is worth adding correctly to increase its usefulness.

3. Never repeat information in a comment which is readily available in the code.

4. Use comments to emphasize the structure of the code and to draw attention to deliberate
and necessary violations of standards.

5. Where a comment is required, make it concise and complete.

6. Avoid lengthy explanations within the body of the code. If long explanations are
necessary, place them within the prologue of the module.

7. Indent comments to conform to the indentation of the code so as not to obscure the code’s
structure or readability.

8. Use stars “***” to make comments visually distinct from the code.

9. Use blocked comments to highlight divisions between different sections of the code.
! *****************************
! * Process 16-bit float data *
! *****************************
 if (data_type .eq. DFNT_INT16) then

! *** Get the dimension scales into the array
 iflag = get_dim_scales(dim, size, rscale)
 if (iflag .ne. 0) then
 write(*, 1050) dim
 goto 9999
 end if
 endif

The C language example of the above concepts might look like:

6

Software Coding Guidelines V2 10/28/2008

/***************************
* Process 16-bit float data
***************************/
if (dataType == DFNT_INT16)
{
 /* Get the dimension scales into the array */
 iflag = GetDimScales(dim, size, rscale);
 if (iflag != 0)
 {
 printf(stderr, “ERROR.... %d\n”, dim);
 }/* end of if */
}/* end of if */

4.2 Prologue Comments

1. Per requirements set forth in Reference 1, each module will contain a prologue (see
Appendix B for language specific examples). Each module prologue will contain, as a
minimum, the following information:

a. Module name.

b. Language.

c. Subsystem/module code number.

d. Module type (e.g., include file, source code, package spec, package body).

e. Purpose.

f. Input parameters.

g. Output parameters.

h. Revision history appearing in chronological order to contain the date, name, and
organization of the person making the change, summary of each change, version
number, configuration management authorization information (SCCR #), and source
for contributed or reused code.

2. The following items should be included in the module prologue as appropriate.

a. Explanation of how and why the module does what it does.

b. Summary of complex algorithms.

c. Reasons for significant or controversial implementation decisions.

d. Names of other modules called by the module along with a one line description of
what the called module does.

e. Names of all global, local, and constant (PARAMETER and #define) data symbols
referenced or set in the module. This will include a short description of the purpose
of the data symbol.

f. Explanation of nonportable features within the module

g. Failure modes

7

Software Coding Guidelines V2 10/28/2008

3. The following items should not be included in the prologue comments.

a. Information about how the unit fits into the enclosing software system

b. Names of modules which call the module

4.3 Data Comments

1. Comment on all data types, objects, and exceptions unless their names are self-
explanatory.

2. Include information on the semantic structure of complex pointer-based data structures
that are maintained between data objects.

4.4 Statement Comments

1. Minimize comments embedded among statements.

2. Use comments only to explain parts of the code that are not obvious.

3. Comment intentional omissions from the code.

4. Do not use comments to paraphrase the code.

5. Do not use comments to explain remote pieces of code, such as subprograms called by
the current module.

6. Where comments are necessary, make them visually distinct from the code.

4.5 Marker Comments
For long or heavily nested if and case statements, mark the else and end of the statement with a
comment summarizing the condition governing the statement.

8

Software Coding Guidelines V2 10/28/2008

5.0 Code Presentation

5.1 General Code Presentation

1. Make generous use of vertical and horizontal white space. Indentation and spacing
reflect the block structure of the code. Appropriate use of white space and variable
names adds significantly to the readability of code.

2. Use spaces for indenting, not tabs. Editors are inconsistent in how they handle tab
characters.

3. Indent and align nested control structures, continuation lines, and embedded
functions/subroutines consistently. Use an indentation scheme which visually
distinguishes nested structures from continuation lines from labels.

4. Use spacing in equations to reveal operators and reinforce precedence. Use blanks to
make code more readable.

5. Use parentheses to specify the order of subexpression evaluation for complex logical or
arithmetic expressions.

6. Write only one simple statement per line.

7. Avoid clever code constructs which may be difficult for maintenance programmers to
understand.

8. Eliminate unreachable code or code that is never called.

9. Always capitalize the E in scientific notation. Use upper case for alphabetic characters
representing digits in bases above 10.

10. Use of mixed case characters for reserved words will follow language conventions. Be
consistent in the use of upper and lower case.

11. Write code for clarity rather than speed. Where optimization is required to meet
performance requirements, a justification and explanation of how the optimization has
been done should be included in the optimized code. Comments should include a
discussion of all design factors which lead to the particular optimization strategy.

9

Software Coding Guidelines V2 10/28/2008

6.0 Data

6.1 Naming

1. Variable names should be composed of English words (and possibly numeric characters),
or easily recognizable abbreviations thereof (except as indicated below).

2. Choose names that are as self-documenting as possible. Use names found in the problem
domain but not obscure jargon.

3. Choose identifiers that describe the object's value during execution. Use singular,
specific nouns as variable identifiers.

4. Use a consistent abbreviation strategy. Do not use an abbreviation of a long word as an
identifier where a shorter synonym exists. Variable names may contain acronyms only
where their meaning is readily understood by persons other than the code writer.

6.2 Constants

1. The names of symbolic constants (C and C++ #defines, Fortran 90 PARAMETERs)
follow the rules for variable names, except that symbolic constants should be in all
capital letters.

2. Use symbolic values instead of literals wherever possible. Use of a symbolic constant for
PI (3.141593) defined for the entire CERES DMS is appropriate where one for a loop
limit may not be.

3. The following types of constants should be defined symbolically in a separately included
file:

a. Physical and geometric constants.

b. Threshold values.

c. Dimension of program arrays.

d. Dimensions and offsets associated with input or output data.

e. Loop limits.

f. Function return values.

g. Error and other types of flag values (Error codes must be integers).

6.3 Global Data
Global variables should be avoided since their presence increases coupling. If a global variable
must be used, the design factors leading to its use shall appear in the code as comments. In
addition, it shall be set only in the module in which it is defined.

10

Software Coding Guidelines V2 10/28/2008

7.0 Miscellaneous
1. Initialize all variables to a known value before being referenced. Do not assume

variables will be initialized by the operating system, language, computer hardware, or by
any other agency.

2. Avoid using unions (C and C++) and EQUIVALENCE statements (Fortran 90).

3. Ensure that all variables, symbols, and labels are referenced within the program.

4. Avoid self modifying code.

5. If possible, do not rely on the internal representation of data objects. Examples are:

a. Signed Integers - not all implementations are sign extended. Do not substitute shift
operations for multiplication and division.

b. Floating Point - not all implementations are IEEE (bit 31:sign, bits 30-23:exponent,
bits 22-0: fraction). Do not modify individual bits to modify a floating point value.

c. Alignment - not all implementations require integers to be long-word aligned (starting
on a 32-bit boundary). At least one implementation allows integers to be aligned on
16 bit boundary. Avoid extracting information from memory outside of language
provided operations.

d. Padding - between any two variables in a list there may or may not be areas of
user/programmer inaccessible memory (padding). Avoid extracting information from
memory outside of language provided operations.

e. Enumerated types - the first item of an enumerated type may or may not start at zero
and may or may not be defined in terms of a primitive data type (e.g., integer).
Testing the value of an enumerated type against other than a member of the type will
produce undefined behavior.

11

Software Coding Guidelines V2 10/28/2008

8.0 Programming Constructs

8.1 Naming

1. Use a consistent abbreviation strategy.

2. Use abbreviations that are well-accepted in the application domain.

3. Use self-documenting names.

8.2 Statements

1. Do not make multiple assignments on a single line of source code.

2. Do not nest expressions or control structures beyond a nesting level of five.

3. The terminating symbol or keyword in nested statements longer than about 12 lines
should contain an in-line comment explaining which nesting level is being terminated.

4. Separate control logic and computation as much as possible.

5. Choose names of flags so they represent states that can be used in positive form. Use:

if (Operator_Missing) then

rather than

if (not Operator_Found) then

8.3 Looping and Branching

1. All loops shall have a testable condition for exit.

2. Keep if...then...else constructs as short as possible with the most frequently executed
branch coming first.

3. Avoid use of unconditional branching (GOTO).

4. All loop control variables will be of type integer. For C++ iterators may be used.

5. Loops shall only be entered from the top. Do not branch into the middle of a loop.

12

Software Coding Guidelines V2 10/28/2008

9.0 Functions and Subroutines
1. A routine should have only one entry point.

2. Minimize the number of returns from a subprogram.

3. Variable names that cross a module interface (i.e., that appear as parameters to another
routine) should be the same as the parameter names used in program structure charts.

4. Highlight returns with comments or white space to keep them from being lost in other
code.

5. Formal parameters should be listed in the Input, Both, Output order where it is reasonable
to do so.

6. Identify all formal parameters as Input, Both, or Output through use of comments
whenever this identification is not clear through language syntax.

7. Minimize the use of parameters which are both Input and Output.

8. Use “intent (in)” for all Fortran 90 input parameters and “const” for all C and C++ input
parameters.

9. In modules which do not have default parameters, define parameters in the sequence:
Input, Both, Output (see C example below).

void geolocate_Pixel (
 float coefficient, /* inputs */
 pixelStructure thePixel, /* in/out */
 int errorCode); /* output */

13

Software Coding Guidelines V2 10/28/2008

10.0 Error Handling
Errors should be reported from the module that both detects and knows the nature of the error.
Error messages should be as informative as possible. For example, printing a message like
“Can’t open file,” is not nearly as helpful to the user as “Parameter file ‘program.parms’ not in
current path.” With the right strategy, error reporting can also make a program much easier to
maintain. If the previous example was modified to read, “Error in module parameter_fetch:
Parameter file ‘program.parms’ not in current path,” a maintenance programmer would know
exactly where the problem occurred.

The ASDC will maintain a process log containing all messages generated by a program. In
situations where data processing is done with little or no human interaction, such processing logs
may be the only way to trace problems back to when they first appeared. Here, the more
information stored in the log, the better.

1. Failure modes of each module should be documented in the prologue and then as
appropriate within the body of the code.

2. Each module should return error status information to the module that called it.

3. Each module calling another should check the error status information returned to it
before proceeding further.

4. Modules should be designed and implemented to detect and easily handle all foreseeable
failures.

5. The error reporting mechanism should report: (1) the name of the routine where the error
was detected; (2) an intuitively clear statement of the error that is both unambiguous and
unencumbered by technical jargon; and (3) suggested remedies.

14

Software Coding Guidelines V2 10/28/2008

11.0 Portability
The advantages of portable code are well known. As the expected life span of the CERES DMS
is very long, issues of portability need to be of particular concern during design and
implementation. This section gives some general guidelines for writing portable code.
Additional guidelines are included in the five language-specific sections to follow.

Within this document, “portable” means that a source file can be compiled and executed on
different machines with only minor (if any) changes being made. In general, a “new machine”
may be different hardware, a different operating system, a different compiler, or any combination
of these. The following is a list of pitfalls to be avoided and recommendations to be considered
when designing portable code:

1. Write portable code first. Optimized code is often obscure and may produce code of
lesser quality on another machine. Document performance optimizations, localize them
as much as possible and explain how it works and why it was needed.

2. Recognize that some things are inherently non-portable. Examples are code to deal with
particular hardware registers, such as the program status word, and code that is designed
to support only a particular piece of hardware.

3. Isolate machine dependent code into separate modules as much as possible. This will
ease the task of porting the code to a new machine. Comment the machine dependence in
the module prologue.

4. Any behavior that is described as “implementation defined” (this would include
authorized use of compiler extensions) should be treated as a machine (compiler)
dependency. Assume that the compiler or hardware does it in a completely unexpected
way.

5. Whenever possible, explicitly declare variable size. Do not depend on system default
sizes, which often vary from machine-to-machine.

6. If language features allow it, and where it is appropriate, define precision and/or range for
floating point numbers and range for integer values.

7. On some machines, the first half of a double precision may be a single precision with
similar value. Do not depend on this.

8. Code that takes advantage of two’s complement representation of numbers on most
machines should not be used. Optimizations that replace arithmetic operations with
equivalent shifting operations are particularly suspect.

9. The bytes of a word are of increasing significance with increasing address on machines
such as the VAX (little-endian) and of decreasing significance with increasing address on
other machines (big-endian). The order of bytes in a word and of words in larger objects
(say a double word) might not be the same. Hence, any code that depends on the left-
right orientation of bits in an object deserves special scrutiny. For this reason, it is
decidedly non-portable to concatenate any two variables into a larger third variable.

15

Software Coding Guidelines V2 10/28/2008

12.0 Numerical Methods
1. Use <= and >= in relational expressions with real (floating point) operands instead of

equality (e.g., == or .eq.).

2. Use explicit type conversion when using mixed mode arithmetic.

3. Do not rely on implicit rounding behavior when converting from one data type to
another.

16

Software Coding Guidelines V2 10/28/2008

13.0 Fortran 77 Coding Guidelines

13.1 General Style Rules

1. Never pass literal constants as arguments in calls to subprograms.

2. Do not abbreviate .TRUE. or .FALSE.

3. Do not use alternate returns.

4. Avoid using EQUIVALENCE statement.

5. Explicitly declare all variables. Use IMPLICIT NONE to ensure declaration.

6. Avoid the use of GOTO statements except as in Section 13.6.

7. Adhere to strict Fortran 77 as closely as possible, with the following exceptions:

a. Identifier names may be up to 31 characters.

b. INCLUDE statements may be used.

13.2 COMMON Blocks

1. Avoid unnecessary use of COMMON blocks.

2. Declare COMMON blocks in INCLUDE files rather than multiple times in separate
modules.

3. Use of data statement to Initialize COMMON block variables only in BLOCK DATA
modules.

4. SAVE all COMMON blocks (if code gets upgraded to Fortran 90, standards do not
require that COMMON block variables get “saved”).

5. Do not group unrelated variables in COMMON blocks

6. Do not mix CHARACTER and noncharacter types in a COMMON block.

7. Use the following ordering of numeric types within COMMON blocks: double precision,
real, integer.

13.3 Labels

1. Assign labels in ascending order.

2. Assign a separate sequence of labels to FORMAT statement labels, and group them at the
end of the module.

3. Right-adjust labels on column 5.

13.4 Constants

1. Use PARAMETERs to symbolically name all compile-time constants.

2. Use only constant expressions to define PARAMETERs.

17

Software Coding Guidelines V2 10/28/2008

13.5 Arrays

1. Declare array dimensions in the type declaration rather than in a separate DIMENSION
statement.

2. Use only INTEGER subscript expressions.

13.6 Loop Constructs

1. Terminate or begin every loop with a distinct CONTINUE (see item (3) below).

2. Do not modify the loop control variable.

3. Do not send the loop control variable as a parameter to a subroutine.

4. The following loop constructs are permitted:

a. Iterative Loop

 do 10 I = 1, iterations
 ...
10 continue

b. While Loop

10 CONTINUE
 ...
 IF (condition) GOTO 20
 ...
 GOTO 10
20 CONTINUE

c. Do-while or repeat-until (all statements in loop execute at least once)

10 CONTINUE
 ...
 IF (condition) GOTO 10

18

Software Coding Guidelines V2 10/28/2008

14.0 Fortran 90 Coding Guidelines
Section 14.1 contains recommended guidelines on how to best use Fortran 90 features.

Section 14.2 lists remnant Fortran 77 features which should no longer be used.

Section 14.3 contains coding guidelines for the use of dynamic memory.

14.1 General Style Rules

1. Use free-format syntax.

2. Use IMPLICIT NONE in all program modules. In other words, explicitly declare all
variables.

3. Use labels only for FORMAT statements or to jump to error handling code (see item 9a
in Section 14.2 below).

4. Collect all FORMAT statements together at the bottom of the module.

5. Always name ‘program modules’ and always use the END PROGRAM; END
SUBROUTINE; END INTERFACE; END MODULE; constructs, again specifying the
name of the ‘program module’.

6. Use >, >=, ==, <, <=, /= instead of .gt., .ge., .eq., .lt., .le., .ne. in logical comparisons.
This syntax, being closer to standard mathematics, should be clearer.

7. Use the following conventions for variable declarations:

a. Do not use the DIMENSION statement or attribute: declare the shape and size of
arrays inside parentheses after the variable name on the declaration statement.

b. Declare the length of a character variable using the (len =) syntax.

8. Use the USE statement only to specify which of the variables, type definitions, and
subprograms defined in a module are to be made available to the USEing routine.

9. Use INTERFACE blocks for all external f90 routines. This allows the compiler to check
that the type, shape, and number of arguments are correct.

10. Use array notation whenever possible. To improve readability, show the array’s shape in
parentheses, e.g.:
1dArrayA(:) = 1dArrayB(:) + 1dArrayC(:)
2dArray(:, :) = scalar * Another2dArray(:, :)

11. Use the INTENT attribute to specify dummy arguments in subprograms as IN, OUT, or
INOUT.

12. A module shall refer only to its own subprograms and to those intrinsic routines included
in the Fortran 90 standard.

19

Software Coding Guidelines V2 10/28/2008

14.2 Obsolete Fortran Features
The following features are considered obsolescent in Fortran 90, or are made redundant by other
Fortran 90 features. They should not be used.

1. COMMON blocks - Use MODULEs instead.

2. EQUIVALENCE - Use POINTERs or derived data types instead.

3. Assigned and computed GO TOs - Use the CASE construct instead.

4. Arithmetic IF statements - Use the block IF construct instead.

5. Labelled DO constructs - Use END DO instead.

6. I/O routine’s (END =) and (ERR =) - Use IOSTAT instead.

7. Alternate return - Use the CASE construct instead.

8. H Editing - Use quotations instead.

9. GO TO

a. The only recommended use of GO TO is to jump to the error handling section at the
end of a routine on detection of an error. The jump must be to a CONTINUE
statement, and the label used must be 9999.

b. Any other use of GO TO should be avoided by making use of IF, CASE, DO
WHILE, EXIT or CYCLE statements.

10. PAUSE.

Use of the following features are discouraged on the basis that they are bad programming
practice and can degrade the maintainability of code.

1. ENTRY statements - A subprogram may only have one entry point.

2. FUNCTIONs with side effects - This is common practice in C programming, but can be
confusing.

a. Functions should not alter variables in their argument list or in modules used by the
function.

b. Functions should not perform I/O operations.

3. Implicitly changing the shape of an array when passing it into a subroutine.

14.3 Guidance for the use of Dynamic Memory
There are three ways of obtaining dynamic memory in Fortran 90: automatic arrays, pointer
arrays, and allocatable arrays.

Automatic arrays: These are arrays which are initially declared within a subprogram whose
extents depend upon variables known at runtime (e.g., variables passed into the subprogram via
arguments).

Pointer arrays: Array variables declared with the POINTER attribute may be allocated space at
run time by using the ALLOCATE command.

20

Software Coding Guidelines V2 10/28/2008

Allocatable arrays: Array variables declared with the ALLOCATABLE attribute may be
allocated space at run time by using the ALLOCATE command. However, unlike pointers,
allocatables are not allowed inside derived data types.

1. Use automatic arrays in preference to the other forms of dynamic memory allocation.

2. Space allocated using Pointer arrays or Allocatable arrays must be explicitly freed using
the DEALLOCATE statement.

3. Always test the success of a dynamic memory allocation. The ALLOCATE statement
has an optional argument to let you do this.

21

Software Coding Guidelines V2 10/28/2008

15.0 C Coding Standards

15.1 General Style Rules

15.1.1 Include Files
Include files are files that are included in other files prior to compilation by the C preprocessor.
Some, such as stdio.h, are pre-defined by the computer system or are delivered as part of the
compiler package and must be included by any program using the standard I/O library. Include
files (both private - those defined by the programmer and system) are also used to contain data
declarations and defines that are needed by more than one module or program.

1. Do not name private include file names the same as library include files.

2. Do not use absolute path names when specifying them for inclusion in program modules.
Use, instead, the “#include <name>” convention for getting them from system standard
locations, or use the compiler “include path” option for private include paths.

3. Include files should not be nested (one include file “including” another). In extreme
cases, where a large number of include files are to be included in several different module
files, it is acceptable to put all common #include statements in one include file.

4. Do not include local.h which may change formatting to culture specific settings.

5. Do not include signal.h which is implementation defined.

6. Do not use the poorly defined function offset() from stddef.h.

7. All header (include) files should include a mechanism to prevent multiple inclusion of the
same header file; i.e. using the following macro:

 #ifndef __MYHEADER_H // beginning

 #define __MYHEADER_H

 …

 #endif // __MYHEADER_H // end

 to surround all declarations/definitions inside “myheader.h” header file.

15.1.2 Data Declarations

1. The “pointer” qualifier, ‘*’, will be with the variable name rather than with the type.

char *s, *t, *u;

instead of

char* s, t, u;

which is wrong, since ‘t’ and ‘u’ are not then declared as pointers.

2. Unrelated declarations, even of the same type, should be on separate lines.

22

Software Coding Guidelines V2 10/28/2008

3. Constants used to initialize or set the value of variables of type long (whether in
executable code or in data declaration statements) will be explicitly long. Use capital
letters, (2L) two long (2l) looks like (21), the number twenty-one.

4. For structure template declarations, each element of the structure should be alone on a
line with an in-line comment describing it.

5. Structures may be “typedefed” when they are declared. Give the structure and typedef
the same name.

typedef struct NickNamesT
{
 int nick_count; /* Ord position in array */
 char *RealName; /* The real name */
 char *NickName /* Person’s favorite name */
}NickNamesT;

15.1.3 Functions: Declarations, Prototypes, Calling

1. The return type of functions should always be declared. If the function does not return a
value, it will be declared to return type void.

2. If function prototypes are available, use them.

3. The types of all parameters in the function parameter list will be declared. Do not default
them to type int.

4. Function return type, function name, and formal parameter list should all appear on a
single line if feasible.

5. Avoid passing expressions as function call parameters. Instead, evaluate the expressions
prior to the function call.

6. Where NULL is passed as an actual function parameter, cast it as a pointer to the
appropriate type:

retVal = funct_call((int*)NULL)

7. The number of arguments for a function should not exceed eight. Do not pack unrelated
data into a STRUCT to bypass this rule.

8. Do not code declarations that override declarations found at higher levels. The following
is an example of the discouraged, though ANSI C legal, construct:

{
 int count;
 ...
 {
 int count;
 ...
 }
}

15.1.4 Flow Control, Loops, and Braces
Flow control statements and loop structures include, but are not limited to, “if-else,”
“for,” “while,” “switch,” and “do-while.” The “best” brace style (the placement of

23

Software Coding Guidelines V2 10/28/2008

braces within program code) has become a very personal point of contention among many C
language programmers. When writing CERES DMS code, the choice of brace style should
follow two rules:

1. Each Subsystem team should determine their own brace style.

2. When writing new code, or modifications to “heritage” code, the bodies of all flow
control, loop, and switch structures will be enclosed by braces, irrespective of the number
of lines of code contained in such bodies. For examples:

for(count = 0; count < MAXSCAN; ++count)
{
 ...
}

while(count < MAXSCAN)
{
 ...
}

do
{
 ...
}while(notDone == TRUE);

if(iscaps(c) == TRUE)
{
 ...
}
else
{
 ...
}

15.1.5 Switch

1. Avoid using “fall-through” program code in switch statements. Where it absolutely must
be implemented, comment it as in the following example:

switch(expr)
{
case ABC:
case DEF:
 statement;
 break;
case UVW:
 statement
 /* FALLTHROUGH */
case XYZ:
 statement;
 break;
default:
 break;
}

24

Software Coding Guidelines V2 10/28/2008

2. The default case may not be strictly required and may not make sense. However, if there
is even the slightest possibility that “expr” (from the above example) will not be an
anticipated value, the default case will be coded.

3. The last case of a switch statement will terminate with a break statement. This may
eliminate maintenance problems in the future.

15.1.6 IF-ELSE-IF Constructs
An IF-ELSE-IF construct should be written with the ELSE conditions left-justified:

#define STREQ(s1, s2) (strcmp((s), (s2) == 0)

if(STREQ(reply, “yes”))
{
 statements for yes
}
else if(STREQ(reply, “no”))
{
 statements for no
}
else if(STREQ(reply, “maybe”))
{
 statements for maybe
}
else
 statements for default
}

15.1.7 Operators

1. Most binary operators should be separated from their operands by blanks. In the C
language, a couple of notable exceptions are the ‘->’ and ‘.’ operators, which should not
be delimited by white space.

2. Expressions involving mixed operators (e.g., use of +, -, *, and / in a single expression)
should be parenthesized as C language has some unexpected precedence rules. However,
because humans do not match parentheses well, too many can make code much more
difficult to read.

3. The binary comma (‘,’) operator should generally be avoided except in, for example, the
for statement where it is very useful in implementing multiple initialization or
incrementation operations.

4. Complex operations, such as those using nested ternary (‘?:’) operators, can be
confusing and should be avoided in favor of multiple or nested if statements (which in
many cases will compile to the same instructions).

5. The ‘++’ and ‘--’ operators can be used with operands of either type integer or any
pointer type. They are particularly suited to the task of setting a pointer to the next
(previous) element in an array.

6. Do not use the ‘++’ and ‘--’ operators in actual function or macro parameters, e.g.:

25

Software Coding Guidelines V2 10/28/2008

retVal = call_fn(x++, y++);

instead, code it as:

retVal = call_fn(x, y);
++x;
++y;

15.1.8 Portability
This section describes portability issues that, in addition to those discussed in Section 11.0, need
to be considered during design and implementation of the CERES DMS.

1. Pay attention to word sizes. Objects may be non-intuitive sizes. Pointers are not always
the same size as ints, the same size as each other (e.g., void * may not be same size as
char * or int *), or freely interconvertible. Some machines have more than one
possible size of a given type. The size you get can depend both on the compiler and on
various compile-time flags.

2. The void * type is guaranteed to have enough bits of precision to hold a pointer of any
data object. The void(*)() type is guaranteed to be able to hold a pointer to any function.
Use these types when you need a generic pointer. (Use char * and char(*)(),
respectively, with older compilers). Be sure to cast pointers back to the correct type
before using them.

3. Even when, say an int* and a char* are the same size, they may have different formats.
For example, the following will fail on some machines that have sizeof(int*) equal
to sizof(char*). The code fails because free expects a char* and gets passed an
int*.

int *p = (int *)malloc(sizeof(int) * 10);
if(p != NULL)
{
 free(p);
}

4. Note that the size of an object does not guarantee the precision of that object. The Cray-2
may use 64 bits to store an int, but a long cast into an int and back to a long may be
truncated to 32 bits.

5. The integer constant zero may be cast to any pointer type. The resulting pointer is called
a null pointer for that type, and is different from any other pointer of that type. A null
pointer always compares equal to the constant zero. A null pointer might not compare
equal with a variable that has the value zero. Null pointers are not always stored with
all bits reset to zero. Null pointers for two different types are sometimes different. A
null pointer of one type cast to a pointer of another type will be cast in to the null pointer
for that second type.

6. On ANSI compilers, when two pointers of the same type access the same storage, they
will compare as equal. When non-zero integer constants are cast to pointer types, they
may become identical to other pointers. On non-ANSI compilers, pointers that access the
same storage may compare as different. Two such pointers (e.g., (int *)2) and (int *)3),

26

Software Coding Guidelines V2 10/28/2008

for instance, may or may not compare equal, and they may or may not access the same
storage.

7. Avoid signed characters. For example, on some VAX machines, characters are sign
extended when used in expressions. This is not the case on many other machines. Code
that assumes signed/unsigned is non-portable.

8. In general, if the word size or value range is important, typedef “sized” types. Large
programs should have a central header file which supplies typedefs for commonly-used
width-sensitive types, to make it easier to change them and to aid in finding width-
sensitive code. Unsigned types, other than unsigned int, are highly compiler-dependent.
If a simple loop counter is being used where either 16 or 32 bits will do, then use int,
since it will get the most efficient (natural) unit of the current machine.

9. Data alignment is also important. For instance, on various machines, a 4-byte integer
may start at any address, start only at an even address, or start only at a multiple-of-four
address. Thus, a particular structure may have its elements at different offsets on different
machines, even when given elements are the same size on all machines. Indeed, a
structure containing a 32-bit pointer and an 8-bit character may be three sizes on three
different machines. As a corollary, pointers to objects may not be interchanged freely;
saving an integer through a pointer to 4 bytes starting at an odd address will sometimes
work (depending on the machine), sometimes cause a core dump, and sometimes fail
silently (destroying other data in the process). Pointer-to-character is a particular trouble
spot on machines which do not address to the byte. Alignment considerations and loader
peculiarities make it very rash to assume that two consecutively declared variables are
together in memory, or that a variable of one type is aligned appropriately to be used as
another type.

10. Because there may be unused holes in structures, suspect unions used for “type cheating.”
Specifically, a value should not be stored as one type and retrieved as another.

11. Different compilers use different conventions for returning structures. This causes a
problem when libraries return structure values to code compiled with a different
compiler. Pointers to structure are not a problem.

12. Do not make assumptions about the parameter passing mechanism, especially pointer
sizes and parameter evaluation order, size, etc. The following code, for instance is very
non-portable. This example has lots of problems. The stack may grow up or down
(indeed, there need not even be a stack!). Parameters may be widened when they are
passed, so a char might be passed as an int, for instance. Arguments may be pushed left-
to-right, right-to-left, in arbitrary order, or passed in registers (not pushed at all). The
order of evaluation may differ from the order in which they are pushed. One compiler
may use several (incompatible) calling conventions for different situations.

{
 char c;
 ...
 c = foo(getchar(), getchar());
 ...
}

char foo(char c1, char c2)

27

Software Coding Guidelines V2 10/28/2008

{
 char bar = *(&c1 + 1);
 return(bar);

13. On some machines, the null character pointer ((char *)0) is treated the same way as a
pointer to a null string. Do not depend on this.

14. Do not modify string constants. Two particularly notorious (bad) examples are:

char *s = “/dev/tty??”;
strcpy(&s[8], ttychars);

or

char *s = “/dev/tty??”;
strcat(s, ttychars);

 use instead, something analogous to the following:

char *s = “/dev/tty??”;
char thePath[MAXPATHLEN];
strcpy(thePath, s);
strcat(s, ttychars);

15. The address space may have holes. Simply computing the address of an unallocated
element in an array (before or after the actual storage of the array) may cause the program
to crash. If the address is used in a comparison, sometimes the program will run but
destroy data, give wrong answers, or loop forever. In ANSI C, a pointer into an array of
objects may legally point to the first element after the end of the array; this is usually safe
in older implementations as well. This “outside” pointer may not be dereferenced.

16. Only the == and != comparisons are defined for all pointers of a given type. It is only
portable to use <, <=, >=, or > to compare pointers when they both point in to (or to the
first element of) the same array. It is likewise, only portable to use arithmetic operators
on pointers that both point into the same array or the first element afterwards.

17. Become familiar with existing library functions and defines. (But not too familiar. The
internal details of library facilities, as opposed to their external interfaces, are subject to
change without warning. They are also often quite nonportable.) You should not be
writing your own string compare routine, terminal control routines, or making your own
defines for system structures. If possible, be aware of the differences between the
common libraries (such as ANSI, POSIX, and so on).

18. Use lint when it is available. If your compiler has switches to turn on warnings, use
them.

19. Function parameters should be cast to the appropriate type. Always cast NULL when it
appears in nonprototyped function calls.

20. Initialize all raw pointers to an appropriate value or NULL.

21. Do not use the functions setjmp() and longjmp() which may change the environment.

28

Software Coding Guidelines V2 10/28/2008

22. Do not use the functions atof(), atoi() and atol() which are implementation dependent and
can be replaced by the corresponding functions strtol(), strtod() and strtoul().

23. Avoid using the functions getenv() and system() which are implementation dependent
and reduce portablility.

29

Software Coding Guidelines V2 10/28/2008

16.0 C++ Coding Standards
Many of the rules in this section were copied from Reference 2.

1. Refer to the C coding standards in Section 15.0.

2. For the sake of clarity, every acronym within an identifier shall be an upper-case letter.
Example: enum RGB_colors {red, green, blue}; // RGB is an acronym so all letters are in upper
case.

3. Bit-fields will not be used to pack data into a word for the sole purpose of saving space.
Bit-packing should be reserved for use in interfacing to hardware or conformance to
communication protocols.

4. Header files should include only those header files that are required for them to
successfully compile. Files that are only used by the associated .cpp file should be placed
in the .cpp file—not the .h file.

The #include statements in a header file define the dependencies of the file. Fewer
dependencies imply looser couplings and, hence, smaller side effects when the header
file is required to change.

5. All the members of a structure (or class) shall be named and shall only be accessed via
their names.

6. Bit-fields shall have explicitly unsigned integral or enumeration types only.

7. For the sake of greater robustness, declare const variables instead of using #define’s for
simple constants. This should be done for type safety and maintainability. Preprocessor
constants do not have a type other than the literal type and this allows for misuse. In
addition, most debuggers do not understand #define’d values, whereas values with
symbolic names can be accessed. The compiler will provide a level of type checking
when the constants are used.

8. Identifiers must vary from one another in such a way that even a non-programmer shall
be able to determine that the identifier entities involved ARE NOT one and the same.
Similarity of identifiers impairs readability, can cause confusion and can often lead to
mistakes. Thus the following types of identifiers SHALL NOT be allowed:

a) Identifiers that differ by only a mixture of case,
b) Identifiers that differ by the presence/absence of the underscore character,
c) Identifiers that differ by the interchange of the letter ‘O’ with the number ‘0’ or

the letter ‘D’,
d) Identifiers that differ by the interchange of the letter ‘I’ with the number ‘1’ or

the lower-case letter ‘l’,
e) Identifiers that differ by the interchange of the letter ‘S’ with the number ‘5’,
f) Identifiers that differ by the interchange of the letter ‘Z’ with the number ‘2’, or
g) Identifiers that differ by the interchange of the lower-case letter ‘n’ with the

lower-case letter ‘h’.

9. Organize all “class” definitions by access level, in the following order: “public,”
“protected,” “private.” By doing so, you’re ordering the definitions by decreasing scope

30

Software Coding Guidelines V2 10/28/2008

of audience. Client program designers (and maybe the public) need to know public
members; designers of potential subclasses need to know about protected members; and
only implementers of the class need to know about private members and friends.
Example:

 class C // correct access order

 {

 public:

 // …

 protected;

 // …

 private:

 // …

 };

31

Software Coding Guidelines V2 10/28/2008

17.0 Ada Coding Standard
The document Ada Quality and Style: Guidelines for Professional Programmers, (see Reference
3), was followed for all Ada source code.

Ada code development for Aqua and Terra referenced the document above. It is not anticipated
that development in Ada will continue past FM5.

32

Software Coding Guidelines V2 10/28/2008

33

18.0 References
1. Data Production Software and Science Computing Facility (SCF) Standards and

Guidelines, EOSDIS document 423-16-01. (https://cicero.eos.nasa.gov/bin/esdis/entry -
Users need to request an account for the ESDIS/ESMO CCR System via this Web page
to view the document)

2. Joint Strike Fighter Air Vehicle C++ Coding Standards for the System Development and
Demonstration Program, Document Number 2RDU00001 Rev C, December 2005.
(http://www.scribd.com/doc/3969122/Joint-Strike-Fighter-C-Coding-Standards)

3. Ada Quality and Style: Guidelines for Professional Programmers.
(http://www.adaic.org/docs/95style/html/cover.html)

https://cicero.eos.nasa.gov/bin/esdis/entry
http://www.scribd.com/doc/3969122/Joint-Strike-Fighter-C-Coding-Standards
http://www.adaic.org/docs/95style/html/cover.html

Software Coding Guidelines V2 10/28/2008

Appendix A
Acronyms

ANSI American National Standards Institute

ASDC Atmospheric Science Data Center

CERES Clouds and the Earth’s Radiant Energy System

DMS Data Management System

DMT Data Management Team

EOS Earth Observing System

EOSDIS EOS Data and Information System

FM Flight Module

IEEE Institute of Electrical and Electronics Engineers

MODIS Moderate Resolution Imaging Spectroradiometer

NASA National Aeronautics and Space Administration

NPOESS National Polar-orbiting Operational Environmental Satellite System

NPP NPOESS Preparatory Project

PGE Product Generation Executable

POSIX Portable Operating System Interface for Computer Environments

SCCR Software Configuration Change Request

SCF Science Computing Facility

SDP Science Data Processing

SSAI Science Systems and Applications, Inc.

TRMM Tropical Rainfall Measuring Mission

VIIRS Visible Infrared Imaging Radiometer Suite

A-1

Software Coding Guidelines V2 10/28/2008

A-2

Definitions

function A code module that receives all input through the calling interface, performs

defined operations based upon that input or data known only within that
module, and returns one, and only one value - not through the calling
interface.

module A source code file containing the definition of a function or subroutine

designed to accomplish one, and only one, task. For C++ a class is considered
a module.

subroutine A code module that receives none, some, or all of its input through the calling

interface; performs defined operations based upon that input on data that may
or may not be known only to the module, and returns zero or more values
through the calling interface formal parameters.

subsystem A coherent set of code (usually compiled into one executable program) which

performs a major part of the functions of the DMS.

symbol The “label” or string of characters used to represent either a module, variable,

or constant.

variable A symbol referencing a location in the program data address space.

Software Coding Guidelines V2 10/28/2008

Appendix B
Module Prologue

01 /**
02 !C
03
04 Name: char *foo(int Input1, int Input2)
05
06 !Description:
07 Module ID : 4.1.3.6
08 Module Type: C Module
09
10 Purpose:
11
12 This function will take the input values, allocate a buffer to
13 hold floating point value, perform black magic, load the
14 results of the black magic (one value at a time) into the buffer
15 and return the address of this buffer to the calling routine.
16
17 !Input Parameters:
18 int Input1 - This does something.
19 int Input2 - This does something else.
20
21 !Output Parameters:
22 Return value is the address of the black magic buffer.
23
24 !Revision History:
25
26 SCCR # N/A (Initial code write).
27 Revision 1.0 1994/07/27 01:01:24
28 Scott Quier (s.r.quier@larc.nasa.gov)
29 Initial delivery of software.
30
31 SCCR # 0001
32 Revision 1.1 1994/07/27 13:01:34
33 Scott Quier (s.r.quier@larc.nasa.gov)
34 Had to modify the code to comply with standards. No problem.
35
36 !Team-unique Header:
37
38 Discussion of Complex Algorithms:
39
40 Significant/Controversial Implementation Decisions:
41
42 Called Modules:
43
44 Global Variables:
45
46 Local Variables:
47
48 Constants:
49
50 Non-Portable Features/Language Extensions:
51
52 Error Handling:
53
54 !end
55 **/

<code follows here>

B-1

Software Coding Guidelines V2 10/28/2008

Line 02: Initial marker to take the following values:
!FXY FortranXY source code (XY = 77 or 90)
!FXY-INC FortranXY include file
!C C language source code
!C-INC C include file
!ADA Ada source code
!ADA-INC Ada include file

Line 04: Name of the procedure or include file. If this is not the main procedure or an
include file, it should contain the function statement. This serves two
purposes. First, it shows the module’s name and type. Secondly, it shows the
input/output parameter names and types.

Line 06: A concise but complete description of the module. This includes module ID,
module type, and a summary of the purpose of the module. Any references
for methods and/or algorithms should be included in the summary. Use as
many lines as desired.

Line 17: Header for formal input parameters.
Line 18-19: Formal input parameters in the order they appear in the module declaration

statement. Parameters should appear with a short 1 or 2 line description and
its units (if appropriate).

Line 21: Header for formal output parameters and function return values.
Line 22: Output parameters and function return values (not global variables) in the

order they are contained in the module declaration.
Line 24: Revision History header. If you are using an automated tool for revision

control, you should insert any statements required immediately after this line.
Line 26-35: Revision History. Each revision should contain a minimum of the revision

number, date and time of revision, name and e-mail of person making
revision.

Line 36: Team-unique Header. Each team may design its own header section.
Line 38: In addition to mentioning them in the description, complex algorithms should

be discussed in some detail here. The area is separate from that above to
highlight code that has been identified as difficult.

Line 40: Where an algorithm has been implemented in a controversial (as opposed to
non-portable) manner, discussion to this effect should appear here.

Line 42: Other modules called from this module, listed in alphabetical order with a
short (1-2 line) description of the called module’s purpose.

Line 44: List all global variables (those found in common blocks, etc.) either
referenced or set. Include a short (1-2 line) description of the variable’s use.
For C, the order should be struct, double, float, long,
short, char, and void. For Fortran, the order should be complex,
double precision, real, integer, logical, and char.

B-2

Software Coding Guidelines V2 10/28/2008

B-3

Line 46: List all local variables declared in the module. Listing order is the same as for
globals. Include a short (1-2 line) description of the variable’s use.

Line 48: List all symbolic constants referenced in the module, in alphabetical order.
Include a short (1-2 line) description of the variable’s use.

Line 50: Discuss the implementation of non-portable code or the use of language
extensions.

Line 52: Error Handling: Describe here any errors which may be returned or
exceptions which may be raised by this module. Describe any error handling
provided by the module and uses made of the SDP Toolkit error handling
services.

Line 55 End of the source code prologue.

	Stakeholder-Commitment Sheet
	Document Revision Record
	Preface
	Acknowledgements
	Table of Contents
	1.0 Introduction
	2.0 Design Guidelines
	2.1 Languages and Operating Systems
	2.2 Modules
	2.2.1 Module Naming
	2.2.2 Module Partitioning
	2.2.3 Module Interfaces

	3.0 Files
	4.0 Comments
	4.1 General Commenting Standards
	4.2 Prologue Comments
	4.3 Data Comments
	4.4 Statement Comments
	4.5 Marker Comments

	5.0 Code Presentation
	5.1 General Code Presentation

	6.0 Data
	6.1 Naming
	6.2 Constants
	6.3 Global Data

	7.0 Miscellaneous
	8.0 Programming Constructs
	8.1 Naming
	8.2 Statements
	8.3 Looping and Branching

	9.0 Functions and Subroutines
	10.0 Error Handling
	11.0 Portability
	12.0 Numerical Methods
	13.0 Fortran 77 Coding Guidelines
	13.1 General Style Rules
	13.2 COMMON Blocks
	13.3 Labels
	13.4 Constants
	13.5 Arrays
	13.6 Loop Constructs

	14.0 Fortran 90 Coding Guidelines
	14.1 General Style Rules
	14.2 Obsolete Fortran Features
	14.3 Guidance for the use of Dynamic Memory

	15.0 C Coding Standards
	15.1 General Style Rules
	15.1.1 Include Files
	15.1.2 Data Declarations
	15.1.3 Functions: Declarations, Prototypes, Calling
	15.1.4 Flow Control, Loops, and Braces
	15.1.5 Switch
	15.1.6 IF-ELSE-IF Constructs
	15.1.7 Operators
	15.1.8 Portability

	16.0 C++ Coding Standards
	17.0 Ada Coding Standard
	18.0 References
	Appendix A Acronyms
	Appendix B Module Prologue

