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Abstract

The CERES measured radiances at satellite altitude are inverted to instantaneous fluxes at the top
of the atmosphere (TOA).  First, the observed scene is identified by its surface type and cloud parame-
ters.  For each scene type a corresponding angular distribution model (ADM) is used to convert from
radiance to flux.  The scene identification is discussed in Subsystems 4.0 - 4.4.  This subsystem dis-
cusses inversion with the current ERBE ADM’s and the development of a new generation of CERES
ADM’s.

The inputs necessary to invert the CERES radiances to fluxes are as follows: orbital geometry and
filtered scanner radiances recorded in the IES product, spectral correction coefficients, and the Angu-
lar Distribution Models (see Appendix A).The outputs of this process are the unfiltered radiances,
scene type, and TOA fluxes.  These computed values are recorded in the SSF product (see Appendix
B).

4.5.1 INTRODUCTION

The unfiltered radiances are inverted to the top of the atmosphere (TOA) by

(4.5-1)

where Ij (j=SW, LW, WN) are the CERES radiances,  are the corresponding flux estimates at the TOA,

and Ri(Ω) are the angular distribution models (ADM) that relate radiance to flux.  The viewing geometry is
represented byΩ and the index i denotes different scene types.  The longwave radiance ADM’s (limb-
darkening models) are a function of viewing zenith while the shortwave radiance ADM’s (bidirectional
models) are a function of three angles: viewing zenith, solar zenith, and relative azimuth.  Thus, the inver-
sion of radiances to fluxes at the TOA involves determining the scene type (i), evaluating Ri(Ω), and apply-
ing equation (4.5-1).

CERES will require a new generation of ADM’s.  The best available set of ADM’s are the ERBE
(Barkstrom 1984) production ADM’s (Suttles et al. 1988, 1989) based on 12 scene types.  These models
are not adequate for CERES for two reasons.  First, the ERBE models describe all of the cloud anisotropic
effects with only four course cloud cover classes.  This choice was dictated in part by scene identification
which was based only on the ERBE radiances (Wielicki and Green 1989).  The ERBE processing system
was self-sufficient and used no ancillary data.   The second reason the ERBE models are not adequate for
CERES is their bias.  The purpose of the ADM’s is to correct for the anisotropy so that the flux can be esti-
mated independent of the viewing geometry.  However, post flight analysis (Suttles et al. 1992) has shown
that the estimated shortwave albedo systematically increases with viewing zenith and the estimated long-
wave flux decreases with viewing zenith.  It is generally accepted that the ERBE ADM models underesti-
mate both longwave limb-darkening and shortwave limb-brightening.

The ERBE biases could be the result of either the Nimbus-7 ERB data from which the models were
constructed, or the SAB algorithm (Sorting by Angular Bins) which produced the models.  Since the
ERBE models produce a bias even when applied to the Nimbus-7 data from which they were derived (Sut-
tles et al. 1992), it seems that the SAB is the problem and not the data.  Specifically, the assumptions
needed to apply the SAB (see section 4.5.2.4) may not hold.  Another possibility is FOV size.  Ye (1993)

F̂j
πI j

Ri Ω( )
---------------=

F̂j
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has shown that on ERBE the increasing FOV size from nadir to limb can cause systematic differences in
estimated fluxes.  In any case CERES is developing a totally new approach to constructing ADM’s from
radiance data.  This next generation algorithm searches for radiance pairs that view the same area at the
same time.  Constructing the ADM’s with radiance pairs eliminates the questionable SAB assumptions.

The goal of CERES is to reduce the ADM errors on ERBE by a factor of 4.  This would imply that a
reasonable number of CERES scene types is about 200.  Where ERBE modeled only cloud cover, CERES
will model cloud cover plus visible optical depth, particle phase and size for shortwave models.  For long-
wave, CERES will model cloud cover plus cloud emissivity, cloud height, column water vapor, lapse rate,
and surface emittance.  The 200 scene types for CERES will represent a discretization of these cloud
parameters.

The new CERES ADM’s will be developed with CERES radiance data.  This follows from the fact that
radiance data must be classified and sorted according to the cloud types within its field-of-view (FOV) so
that scene dependent ADM’s can be constructed.  This full cloud characterization will only become avail-
able on CERES where a full complement of ancillary data together with a library of remote sensing algo-
rithms will be used to identify the scene (subsystems 4.1-4.3).  Once the FOV is identified the data is sorted
into scene types and accumulated over a period of time to determine the mean models in the presence of
natural variation.  The 12 ERBE models were built with 205 days of Nimbus-7 data and constructed over a
4 year period.  The CERES models will require 2 to 3 years to collect the data and construct the 200 mod-
els.

During this 2- to 3-year period, the CERES radiances will be inverted to the TOA with the best avail-
able set of ADM’s.  Initially the CERES extensive cloud properties will be mapped into the 12 ERBE
scene types.  Although inadequate for the CERES advanced goals, the ERBE models applied to the
CERES data will still yield better results than for ERBE.  The main improvement comes from the CERES
cloud characterization which will eliminate much of the misidentification on ERBE.  In addition the cloud
contamination in the clear scenes will be greatly reduced.  The cloud cover classes will be more exact and
the smaller CERES FOV will increase the resolution and sharpen the results.  After the new CERES
ADM’s are constructed and tested for validity, the CERES radiances will be inverted to the TOA with the
full set of 200 ADM’s.

  This CERES inversion subsystem and the ERBE-like inversion (subsystem 2.0) are very different.
ERBE-like processing uses no ancillary data, identifies the scene with the MLE algorithm, and inverts the
radiances with the 12 ERBE scene types for the duration of the mission.  The CERES inversion will make
extensive use of ancillary data to characterize the cloud parameters and invert the radiances with 200
CERES scene types.

This subsystem will describe the conversion of the CERES cloud parameters on the SSF product to the
12 ERBE scene types.  There is a discussion of the 200 CERES scene types and how they will be deter-
mined. The assumptions associated with the SAB algorithm for constructing ADM’s are established and a
new algorithm RPM (Radiance Pairs Method) is derived.  There is also a discussion of modeling studies to
determine an initial set of CERES scene types.

4.5.2 ALGORITHM DESCRIPTION

4.5.2.1  The 12 CERES scene types

The 12 ERBE scene types and their corresponding ADM’s will be used initially for CERES inversion
until the new comprehensive set of CERES ADM’s are validated and ready for use.  The 12 ERBE scene
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types were derived by combining 5 surface types (ocean, land, snow, desert, mixed or coastal) with 4 cloud
conditions (clear, partly cloudy, mostly cloudy, and overcast).  These four cloud conditions are defined by
clear (0%-5% cloud cover), partly cloudy (5%-50% cloud cover), mostly cloudy (50%-95% cloud cover),
and overcast (95%-100% cloud cover).  The surface types and cloud conditions were combined to give the
following scene types.

Each of the CERES measurements must be classified as viewing one of these 12 scene types based on
the cloud parameters on the SSF product (Table 4.4-5).  First, we define the surface type.  The SSF records
the surface type percent coverage for the 8 most prevalent types within the FOV.  We can sum the percent
coverage for the ocean types, snow types, and desert types.  If the ocean percent is greater than 67%, then
we define the entire FOV as ocean.  Likewise, the FOV is entirely snow if its percent is greater than 50%,
and similarly for desert.  The land percent is (100 - ocean percent). If the land percent is greater than 67%,
then the FOV is classified as land.  Otherwise the FOV is mixed or coastal.

The next step is to define the cloud cover over the CERES FOV.  The SSF records the clear percent cov-
erage from which we define the cloud cover as (100 - clear percent).  With cloud cover we can define the
FOV as clear, partly cloudy, mostly cloudy, or overcast as given above.  And finally, surface type and cloud
cover will define one of the 12 CERES scene types.

4.5.2.2 The CERES scene types

One of the major tasks is to define the CERES scene types so that the maximum amount of anisotropic
variance is explained.  In general this is a clustering problem.  In practice we must define an initial set of
parameters that define reasonable scenes and iterate on their definitions.  The scene parameters with the
strongest effect on anisotropy will receive further discretization while the scene parameters with weak or
no effect will be grouped together.

How many CERES scene types will be necessary?  In general, the number of scene types will be a
function of three criteria:

1. Sufficient data to obtain statistical significance of the mean anisotropy model for a given scene
type class.  CERES will have a finite amount of data from the Rotating Azimuth Plane (RAP)
Scanner: an attempt to develop too many models will lead to poor statistical significance in
many of the model classes.

Table 4.5-1:  ERBE Scene Types

Index Scene Types

1
2
3
4
5
6
7
8
9
10
11
12

Clear ocean
Clear land
Clear snow
Clear desert
Clear land-ocean mix (coastal)
Partly cloudy over ocean
Partly cloudy over land or desert
Partly cloudy over land-ocean mix
Mostly cloudy over ocean
Mostly cloudy over land or desert
Mostly cloudy over land-ocean mix
Overcast
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2. The anisotropic models should be distinguishable.  In general, this means that the rms difference
in anisotropic factor between two ADM scene classes exceeds the rms statistical uncertainty in
each individual model.

3. The ADM scene classes should significantly reduce the errors in the derived TOA fluxes (in
either ensemble mean bias error or the instantaneous standard deviation error).  The goal for
CERES is roughly a factor of 4 improvement over ERBE: implying that sufficient ADM classes
exist to reduce instantaneous errors below a 1 sigma value of 10 W/m-2.  If errors were to
reduce as  where N is the number of distinct ADM classes, then we might expect to require

 ADM classes for CERES shortwave ADMs.

The final number of ADM classes will depend on the CERES data itself, and the application of criteria
1 through 3.  As pre-launch preparation, we have used plane-parallel theory simulations to anticipate a
rough order of magnitude for the ADM classes required. As an example, Subsection 4.5.2.6 shows that for

plane parallel clouds, 6 cloud optical depth classes are sufficient to reduce errors to below the 10 W/m-2

accuracy requirement. Because clouds are known to violate simple plane-parallel theory (Davies 1984), we
have retained cloud fraction as a physical property to classify shortwave ADMs: this will allow for implicit
inclusion of the non-plane parallel anisotropy effects for broken 3-D cloud fields within the CERES foot-
print scale (typically 20 to 50 km).  A pre-launch strawman set of shortwave ADM classes is listed below:

1. Cloud amount (5 intervals on %: 1-25, 25-50, 50-75, 75-99, 99-100)
2. Cloud optical depth (6 intervals: 0.3-2.5,2.5-6,6-10,10-18,18-40, 40-300 (see section 4.5.2.6))
3. Cloud particle phase (2 types: water, ice)
4. Cloud background surface (2 types: ocean, land)
5. Cloud layers (2 types: single, multiple)
6. Clear surface (22 types: 17 IGBP (see SSF-27 definition), tundra, fresh snow, sea ice, 3 ocean

types on wind speed in m/s: 0-2, 2-10, >10. (note: IGBP water bodies or
ocean is expanded into 3 types with wind speed))

This initial set of shortwave scenes has 5 x 6 x 2 x 2 x 2 = 240 models plus 22 clear models (a clear scene
has <1% cloud cover in a CERES footprint).  We will also investigate the dependence of anisotropy on
aerosol optical depth for ocean and dark vegetation.

These 262 models plus aerosols models will be examined against the criteria 1 through 3 discussed
above, and redundant models will be combined into coarser class discretizations.  We anticipate having
sufficient sampling for 200 to 300 shortwave ADMs with roughly 2 years of continuous CERES RAP data
on EOS-AM and EOS-PM.  Since the TRMM mission has only a single CERES scanner operating in RAP
mode for only 1 day out of every 3, we may only be able to define a third of these models for TRMM.
EOS-AM and EOS-PM both carry dedicated RAP mode CERES scanners and should be able to com-
pletely sample the entire ADM set.

The largest uncertainty in the list of ADMs is the multiple cloud layer cases (expected to be roughly 1/
3 to 1/2 of the CERES FOVs). This is an area that will be explored further during validation.  There are two
basic kinds of multi-layer cloud which might be significant for ADM development:

1. Two distinct cloud layers appearing within a single CERES footprint, each with fractional cov-
erage.

In this case, we will test the ability to combine single layer empirical cloud ADMs into multi-layer
cases (weight each ADM by the area coverage and reflected flux based on imager data within the CERES
footprint).

N
12 4

2–× 200≈
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2. Two overlapped cloud layers in a single CERES footprint.

For optically thick high cloud (τ > 10) over mid/low cloud, this is not a problem: the high cloud will
dominate the lower cloud levels in the solar and the thermal infrared, and this case acts like a single lay-
ered high cloud.  Multiple overlapping layers of a single water phase (water/ice) will also proba-
bly present only minor difficulties.  The major issue is expected to be the case of a low to
moderate optical depth ice cloud overlaying a large optical depth water cloud.  In this case it may
be necessary to combine the single layer anisotropic models using a simple weighting scheme
based on scaled optical depths for each layer (i.e. modified for asymmetry parameter) and the
expected two way solar flux transmission through the upper layer down to the lower layer.  This
may prove effective because thin cirrus tends to be extensive in area, so that any single CERES
footprint will tend to have 0 or 100% cloud cover (see Landsat spatial resolution studies in Sub-
system 4.0).  In this case, we can concentrate on ADMs as a function of cirrus optical depth (3
classes from 0 to 10) for 99-100% cloud cover, over all low cloud optical depth/amount classes
(30).  This strategy gives a total of only 90 multi-layer ADMs which are expected to be fundamen-
tally different from single layer cases. Multi-layer ADM studies will begin with theoretical mod-
eling of plane-parallel overlapped cloud cases, and will continue using EOS-AM RAP mode data
for actual overlapped cloud. Note that the cloud retrieval solutions for thin cirrus over low cloud
are expected to be derived using a combination of the MODIS sounder channels for the high
cloud, and imager channels for the low cloud (see Subsystem 4.2).

The ERBE12 production ADMs were discretized on 4 intervals of cloud amount and 3 cloud
background surface types.  The CERES shortwave models will retain the cloud amount effect, but
will model only the two surface types of ocean and land.  Why have we eliminated mixed or
coastal surface types?  For ERBE the surface map was very course at 2.5 deg regions (250x250

km2) so that large areas along the coast were error prone by calling the region either land or
ocean.  Also, the collection of all coastal 2.5 deg regions amounted to a significant percent of the
globe.  Thus, to minimize the rms error, we defined mixed regions for ERBE.  For CERES the sur-

face map is at 10 minute (20x20 km2) resolution and the FOV is smaller so that coastal areas are
less frequent and their errors less significant.  For CERES coastal areas will be defined by the pre-
dominant type as either land or ocean.  Thus, the CERES scene types will retain the main features
of the ERBE scene types and expand on optical depth and particle phase.

For longwave radiation we hypothesize the following sensitivity of cloud parameters:

1. Cloud relative temperature (5 intervals in [∆Tcs=cloud temperature-surface temperature
= Tc-Ts] in K: <20, 20-40, 40-60, 60-80, >80)

2. Cloud amount (5 intervals on %: 1-25, 25-50, 50-75, 75-99, 99-100)
3. Cloud emissivity (5 intervals: 0.0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, 0.8-1.0)
4. Cloud layers (2 types: single, multiple)
5. Cloud background surface (3 types in surface temperature in K: <260, 260-280, >280)
6. Clear surface/atmosphere (27 types:

- surface emittance at 11µm (3 intervals: <0.95, 0.95-0.99, 0.99-
1.00);
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- lapse rate (3 intervals in [(T(surface pressure-300 hPa) - T(sur-
face)) / (Z(surface pressure-300 hPa) - Z(surface))]) in K/km:
<4, 4-6, >6);

- precipitable water in cm (3 intervals: <1, 1-2, >2))

This initial set of longwave scenes has 5 x 5 x 5 x 2 x 3 = 750 models plus 27 clear models.  Since
each shortwave model has 810 angular bin values and each longwave models has only 9, these777
longwave models are equivalent to only about 6 shortwave models in required input data and storage.  In
order to minimize the number of models, the same significance criteria used for shortwave ADMs will be
applied to longwave ADMs.

The ERBE12 longwave ADMs have the same discretization in cloud amount and surface types as the
ERBE12 shortwave ADMs.  This selection was limited by the simple ERBE MLE scene identification, and
by the lack of auxiliary data sets to determine more physically based discrimination of ADMs based on
surface emissivity, column water vapor, temperature lapse rate, and cloud physical properties other than
cloud amount (including cloud emissivity and cloud height).  In order to make up for some of this lack of
information, ERBE defined longwave ADMs as a function of latitude zone (every 18 degrees) and season
(4), giving a final ADM set of 12 x 10 x 4 = 480 longwave models, only a factor of 2 less than the pre-
launch strawman for CERES longwave ADMs.  Indeed, the ERBE ADM classes were optimized for short-
wave ADMs and application of the ERBE MLE scene identification required a consistent set of SW and
LW ADMs.  For the ERBE12 ADM classes, the bias toward shortwave models was reasonable in light of
the fact that anisotropy in reflected shortwave radiances is a order of magnitude larger than that for long-
wave radiance (Suttles et al. 1988, 1989).  The CERES models are not required to follow the same classes
for shortwave and longwave ADMs and allow use of an improved set of physical surface, atmosphere, and
cloud properties which more closely follow the expected anisotropy in longwave fluxes.

In simplest terms, longwave anisotropy is dependent primarily on two things:

1. The opacity of the variable atmospheric absorber (water vapor or cloud)
2. The difference in thermal emission between the surface and the atmospheric absorbing (emit-

ting) layer.

This suggests that clear-sky longwave anisotropy depends primarily on the column water vapor and cloud
amount/emittance for absorber opacity, on temperature lapse rate and surface emissivity for clear-sky
emission difference, and finally on Tc - Ts for the cloudy sky emission difference.  The dependence of the
cloud anisotropic models on surface temperature is simply to put a second order correction for the depen-
dence of clear-sky anisotropy on climate region, recognizing that both column water vapor and lapse rate
are strongly correlated with surface temperature.

In pre-launch studies using broadband plane-parallel radiative transfer models, it was found that the
most non-lambertian longwave models are found for high altitude ice clouds which are either optically
thick and broken (cloud amount in a CERES FOV less than 1; Duvel and Kandel, 1985) or more com-
monly cirrus which is optically thin (emissivity less than 1; Wielicki and Green, 1989).  A small table of

the value of nadir (viewing zenith = 0o) longwave anisotropy as a function of clear-sky atmosphere or
cloud condition motivates the selection of longwave CERES ADM classes chosen as the starting point.

We conclude that the single most important category is high cloud emissivity, which can change broad-
band longwave nadir anisotropy by a total range of 24% (0.988 to 1.221).  For comparison, the difference
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in clear sky anisotropy from Tropical to Sub-arctic winter conditions varied by only 4%, or a factor of 6
less.  The second most important factor is optically thick cloud height: which causes a maximum variation
in nadir anisotropy of 10%.  Note that cloud height and emissivity work together as expected: as cloud
height decreases, the thermal contrast between the cloud emission and surface emission decreases: thereby
lowering the effect of the cloud on anisotropy, even for optically thin cloud.  A 6 km high non-black cloud
causes only 1/2 the effect of a 15 km non-black cloud.  For this reason, as cloud altitude decreases (i.e. Tc -
Ts decreases), we expect to require fewer cloud emissivity and cloud amount classes for a given uncer-
tainty in anisotropy.  High altitude cirrus (Ts - Tc > 80) may have 10 cloud emissivity classes, while low
altitude stratus (Ts - Tc < 20) may have only 2 or 3.  This also suggests that boundary layer broken cloud
effects, while potentially large in shortwave anisotropy, should be a relatively minor effect for longwave
anisotropy.  For clear-sky cases, note that the use of the temperature lapse rate in the first 300 hPa of the
atmosphere above the surface (roughly 1 scale height for atmospheric water vapor) and the column precip-
itable water as longwave ADM classes should allow for anisotropy dependence on day/night temperature
inversions, polar temperature inversions, and mountain regions with low column water vapor.

Finally, the strong dependence of longwave anisotropy on cloud height suggests that it may be reason-
able to predict the anisotropy of multi-layered clouds in the CERES FOV as a simple weighting of the
anisotropy of individual single layered cloud cases.  This will be especially true for the case of multiple
optically thick cloud layers in the CERES FOV.  For the case of thin cirrus over low cloud, the longwave
anisotropy will probably not differ much from a single layer of thin cirrus over a slightly cooler surface
temperature.  The initial classification of overlapped cloud with optically thin cloud above optically thick
cloud will sort the anisotropy by the temperature difference of between the two cloud layers and by the
emittance of the upper cloud layer.  Similar to shortwave anisotropy, the case of an optically thick upper
cloud over any lower level cloud will be the same anisotropy as a single level optically thick upper level
cloud.

Table 4.4-2: Longwave Aniostropy at Nadir

Atmosphere Cloud Height (km) Cloud Emittance Nadir Anisotropy

Clear Sky Anisotropy Variation Total Range 4%

Tropical
Midlatitude Summer
Midlatitude Average
Subarctic Summer
Midlatitude Winter
Subarctic Winter

-
-
-
-
-
-

-
-
-
-
-
-

1.093
1.080
1.075
1.067
1.063
1.051

Optically Thick Cloud Height Variation Total Range 10%

Tropical
Tropical
Tropical
Tropical
Tropical

15
10
6
3
0

1.0
1.0
1.0
1.0
1.0

0.988
1.030
1.058
1.076
1.093
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We conclude that in all respects, longwave anisotropy is much less difficult than shortwave anisotropy.
We expect from the pre-launch theoretical simulations that the classes defined above will distinguish long-
wave ADM anisotropy differences of 2% or less, thereby meeting the CERES instantaneous longwave

ADM error goal of 4 W/m-2 (1 sigma).

Because the longwave anisotropy is expected to be a much more tractable problem than the shortwave,
we will also examine as part of the longwave ADM validation activities the possibility of parameterizing
the longwave anisotropy as a function of the physical parameters used to define the ADM classes, includ-
ing a parameterization which determines multi-layer cloud anisotropy as a function of single layer cloud
properties.

4.5.2.3  Formulation of Angular Distribution Model (ADM)

For simplicity we will formulate only the longwave ADM.  The shortwave ADM involves three direc-
tional angles instead of one, but is formulated similarly.  The outgoing longwave radiance I at a point in

Wm-2sr-1  is

(4.5-2)

where F is the flux in Wm-2 and R(θ) is the longwave ADM as a function of the zenith angleθ.  Integrating
both sides of (4.5-2) over the hemisphere defined by the zenith and azimuth angles, we get the normaliza-
tion condition for R as

. (4.5-3)

Optically Thin High Cloud Variation Total Range 24%

Tropical
Tropical
Tropical
Tropical
Tropical
Tropical

15
15
15
15
15
15

1.00
0.90
0.75
0.50
0.25
0.10

0.988
1.093
1.181
1.221
1.182
1.133

Optically Thin Mid Cloud Variation Total Range 6%

Tropical
Tropical
Tropical
Tropical
Tropical

6
6
6
6
6

1.00
0.90
0.75
0.50
0.25
0.10

1.058
1.079
1.100
1.118
1.115
1.103

Table 4.4-2: Longwave Aniostropy at Nadir

I θ( ) π 1– FR θ( )=

2 R θ( ) θ θdθcossin

0

π 2⁄

∫ 1=
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Let us model the longwave limb-darkening function as

(4.5-4)

where fi(θ) are basis functions, andβi are the parameters of the model which are estimated from radiance
measurements.  Substituting (4.5-4) into (4.5-3) gives the normalization condition as

(4.5-5)

where

. (4.5-6)

In this subsystem we will use the piecewise constant basis set given by

(4.5-7)

where theθi’s span the space 0≤ θ ≤ 90o.  From (4.5-6) and (4.5-7) we have

. (4.5-8)

4.5.2.4  Sorting by Angular Bins (SAB)

The sorting of observed radiances into angular bins was the technique used by Taylor and Stowe (1984)
to develop the current ERBE angular distribution models.  Radiances are sorted into angular bins, aver-
aged, and numerically integrated to determine the mean flux.  Dividing the average bin radiance by the
mean flux yields the anisotropy for the angular bin.  We define the SAB method as follows:

(4.5-9)
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(4.5-10)

. (4.5-11)

where   is the rth  measured radiance in the ith angular bin and .

Let us define the characteristics of the SAB.  From (4.5-2), (4.5-4), and (4.5-7) we model the radiance
as

(4.5-12)

where , , and  are random variables.  We define the means and standard deviations as

, , and , respectively.  The main characteristics of the SAB

are the expected values and variances of .  We will need three assumptions to proceed:

(4.5-13)

The first assumption is a statement of uniform sampling or the expected flux observed over the ith angu-

lar bin is the same for all bins.  This assumption is necessary to determine .  The second and third

assumptions state that the anisotropy  and field strength  are uncorrelated or an increase in flux does
not change the scene type’s anisotropy.  Both of these assumptions are questionable and seen as weak-

nesses of the SAB.  With these assumptions, however, we can show that

and .  Furthermore, taking the expected value of (4.5-9), we have

(4.5-14)

and the estimate is unbiased.
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The variance of the estimate is determined by

(4.5-15)

We can approximate this variance from data by , , and

, or

(4.5-16)

It is instructive to simplify the variance further with the following assumptions: (1)  is constant, (2)

, (3) , (4) .  This results in

(4.5-17)

Thus, the SAB must average out the field variance  with  where .

4.5.2.5  Radiance Pairs Method (RPM)

The Radiance Pairs Method searches the radiance data to find radiances that view approximately the
same area at approximately the same time.  The purpose of a radiance pair is that flux can be eliminated
between the two measurements.  By dividing one radiance by the other, we eliminate the influence of flux
and form the ratio of anisotropies.  In contrast a single radiance measurement gives the product of flux and
anisotropy which cannot be separated without questionable assumptions.  The SAB assumes uniform sam-
pling to isolate the anisotropy.  In this section we will derive the Radiance Pairs Method.

We can consider (4.5-5) a constraint on the admissibleβ’s, or we can eliminate one of theβ’s.  We
choose to eliminateβN.  Thus, (4.5-4) becomes
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. (4.5-18)

We now define a new set of basis functions Gi(θ) so that

(4.5-19)

where

(4.5-20)

Although we chose to eliminateβN from the estimation process, the above equation can be generalized to

eliminate any one of theβ’s.  Note that in (4.5-19) satisfies the normalization (4.5-3) independent of
the βi’s which can take on any value including all zeros.  We will estimate the values ofβ from satellite
data.

A useful data type to estimate theβ’s is scanner radiance I.  We model the radiance measurement from
(4.5-2) as

(4.5-21)

where  F  is the true instantaneous flux,  R(θ)  is a random variable since it varies for different scenes, and

  is a random measurement error with mean 0 and standard deviation .  Normally with satellite radi-

ance data we assume a model of  and estimate the flux F.  Here we want to estimate  which

necessitates a value for F.  If we pair two radiance measurements (I1 and I2)  observing about the same area
at about the same time so that F is common to both measurements, then we can ratio the radiance measure-
ments and eliminate F. The measurement equation is

(4.5-22)
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(4.5-23)

where  and  are the two viewing zenith angles for the kth measurement pair.  However, it can be

shown that the measurement equation is biased, or the expected value of mk is not the desired ratio of
anisotropies, that is

(4.5-24)

whereξ is the bias.  Thus, we redefine the measurement statistic as

(4.5-25)

where   can be estimated from the radiance data ratios.  We then model this measurement as

. (4.5-26)

Since (4.5-25) is unbiased, we modelεk as a random measurement error where  and

.

We now write the measurement in terms of the parameters to be estimated.  Substituting (4.5-19) into
(4.5-26) gives

(4.5-27)
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It will be expeditious to use linear estimation theory.  Since the measurement equation (4.5-27) is a nonlin-

ear function ofβ, we linearize about an initial estimate .  Thus,

(4.5-28)

and retaining only the linear terms

(4.5-29)

where

(4.5-30)

and

. (4.5-31)

If we have K measurements (k = 1, 2,...,K), then we can form a matrix measurement equation and estimate
the∆β vector with the Gauss-Markoff Theorem.  Let us define

(4.5-32)
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(4.5-33)

The matrix measurement equation is given by

(4.5-34)

and the weighted estimate is (Liebelt, p.148)

(4.5-35)

and the covariance of  is

(4.5-36)

where W is the weighting matrix or

. (4.5-37)

It follows from (4.5-30) that  and from (4.5-19) that the estimate of R is

. (4.5-38)

And finally the variance of the estimate is

(4.5-39)
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4.5.2.6 Modeling Studies of Cloud Scene Types

4.5.2.6.1 Introduction.

The angular distribution models (ADMs), which convert the observed radiances into fluxes, change
with the optical properties of the atmosphere and the surface. In order to construct the ADMs from limited
amount of radiance observations, it is necessary to divide the atmosphere and the surface into a limited
number of scene types. Assuming that the anisotropy functions for the same scene type are the same, the
ADMs for each scene type can be computed by compositing all radiance measurements over the same
scene type. When the anisotropy of different scenes with the same scene type vary, the ADMs will induce
both instantaneous errors and biases.

The 12 ERBE scene types produce reasonably accurate monthly mean fluxes (Wielicki and Green
1989). The instantaneous flux retrieval is much less accurate, because the anisotropy functions for the same
scene type vary significantly.

Clouds with similar cloud amount but different optical properties are considered as the same scene type
for ERBE. The mixing of ADMs for clouds with different microphysical properties and 3-D structures
induces biases and instantaneous errors. The comparison of fluxes derived from different scene identifica-
tion and ADM algorithms shows strong viewing zenith dependence of the derived albedoes (Suttles et al.
1992), which can be explained with better ADMs (Green and Hinton 1996) and better scene identifications
(Smith and Manalo-Smith 1995; Ye and Coakley 1996a,b).

For solar radiation, the ADMs are most sensitive to the cloud optical depth, cloud fractional cover,
cloud phase (water/ice) and droplet size, and the BRDF of the surface underneath the clouds. The main
contributors of the longwave limb darkening are temperature and humidity profile, cloud fraction, cloud
optical depth and cloud heights, surface temperature and emittance.

With the knowledge of cloud optical properties and some information about cloud horizontal inhomo-
geneity, CERES is able to construct improved ADMs. To minimize both biases and instantaneous errors,
theoretical modeling simulation studies are performed to understand the nature of the ADMs for different
clouds. The error analysis of the CERES ADM simulation shows a significant improvement in accuracy
over ERBE ADMs.

It is not feasible to build ADMs for every possible combination of cloud cover, phase, optical depth,
particle size and surface type. So the theoretical study is performed to reduce the number of scene types

while preserving the accuracy. A goal is set of random anisotropy error less than 10 Wm-2 and bias error

less than 1 Wm-2. This then defines the minimum set for new empirical ADMs.

4.5.2.6.1.1 Model Introduction

A discrete ordinate model (Stamnes et al. 1988) with phase function correction (Nakajima and Tanaka
1988) is adopted for solving the radiative transfer equation. Gas absorptions are considered using the cor-
related-K distribution (Fu and Liou 1992) approximations. Cloud optical depth and single scattering
albedo are parameterized for water (Hu and Stamnes 1993) and ice (Fu and Liou 1993). The water cloud
scattering phase functions are generated from Mie theory. The phase functions of ice clouds are generated
from ray-tracing (Takano and Liou 1989). Different surface bi-directional phase functions for land
(LeCroy et al. 1997) and ocean are fitted into different double Henyey-Greenstein phase functions and then
the surface is included as a additional layer so that the interaction between the surface and the atmosphere
can be considered appropriately for the ADM studies.
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To account for cloud inhomogeneity, a stochastic model with radiance calculations has been developed.
This model will be used in the future for understanding the ADMs of randomly distributed non-plane-par-
allel cloud.

The modeling study is performed to qualitatively understand the characteristics of the anisotropy.
Assumptions such as the plane-parallel approximation are made with the theoretical simulation studies. As
opposed to the modeling simulations, CERES ADMs will be constructed using observations and will
include non-plane-parallel effects. The modeling simulation here uses the sort-by-angular-bins (SAB)
method. With the RPM (Green and Hinton 1996) technique, the biases shown will be reduced.

4.5.2.6.2 Simulated Cloud ADMs Database

Based on the computer models, different cloud ADMs, cloud radiance and reflectance fields are simu-
lated and a database is generated. The simulated ADMs include:

a.  50 optical depths ranging from optical depth 0.3 to 300 (logarithmic scale).
b.  50 solar zenith angles and 50 relative azimuth angles (equal distance in degree).
c.  50 solar zenith angles (equal distance in degree).
d.  8 droplet sizes (5 for water and 3 for ice).
e.  ocean, desert, forest surfaces.

The database includes both directional (solar zenith angle dependence of albedo) and bi-directional (view
zenith, relative azimuth dependence of reflectance) ADMs. The high resolution calculations are used for
testing the effect of coarse angular and optical depth bins needed for practical empirical ADMs.

4.5.2.6.3 Optical Depth and ADM Error Analysis.

The anisotropy function is very sensitive to cloud optical depth: the thinner the clouds, the stronger the
limb brightening. The ADM cloud optical depth dependence induces both instantaneous errors and biases.

Clouds with 50 different optical depths between 0.3 and 300 (logarithmic intervals) have an average
optical depth of about 10, which is about the global average cloud optical depth. It gives an average cloud
shortwave reflectance about 0.46, which is close to the average albedo from ERBE directional models and
thus a reasonable starting point for cloud ADM sensitivity studies.

Similar to the ERBE ADMs, we first divide the solar zenith angle, view zenith angle and azimuth angle
into 1000 bins and compute the anisotropy function R for all of the angular bins:

a.  10 solar zenith angle (in degree): 0-9, 9-18, 18-27, 27-36, 36-45, 45-54, 54-63, 63-72, 72-81, 81-90.
b.  10 viewing zenith angle (in degree): 0-9, 9-18, 18-27, 27-36, 36-45, 45-54, 54-63, 63-72, 72-81,81-

90.
c.  10 azimuth angle (in degree): 0-10, 10-30, 30-50, 50-70, 70-90, 90-110, 110-130, 130-150, 150-170,

170-180.

The mean anisotropy factor of an angular bin is:

(4.5-40)R
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where R is the model calculated individual anisotropy factor for a specific cloud optical depth, solar zenith
angle, relative azimuth angle and view zenith angle.α is the model computed albedo for a specific cloud
optical depth and solar zenith angle:

(4.5-41)

Here we assume that we know the albedoes (directional models) already, which is not the case for ERBE
and CERES, where the albedoes are computed from the compositing of the measured radiances and the
albedo estimation also induces errors. We use the exact albedoes here to isolate the anisotropy function
related problems. Only water clouds with effective radius 10µm are considered in the current results.

The procedure of the error analysis is as following:

1.  Considering all 50 different optical depths as one single bin (this is similar to what ERBE has), com-
pute the mean anisotropy function of every coarse angular bin (10x10x10 bins) using all of
the higher angle resolutions (50x50x50).

2.  Calculate reflected fluxes with the radiances and the simulated anisotropy functions (10x10x10
angular bin averages) at each simulated data point (50x50x50x50):

3.  Replace the simulated anisotropy functions by the true anisotropy function and get the true flux.
4.  Compare the two fluxes above and perform an analysis for bias and standard deviation of the result-

ing error.
5.  Using the bin-averaged anisotropy function as the anisotropy function at the center of the bin, per-

form a linear interpolation of the anisotropy function over the solar zenith angle, viewing
zenith angle and azimuth angle for all the data points. Then repeat step 2, 3 and 4.

6.  Using 6 optical depth bins: 0.3-2.5, 2.5-6, 6-10, 10-18,18-40, 40-300 instead of 1 optical depth bin,
repeat steps 1 to 5 (for step 5, the linear interpolation should include the interpolation over
the logarithmic of optical depth as well as the angles, except for optical depth bin 40-300
where the optical depth interpolation is not necessary.)

The standard deviationσ and the biasε are calculated from:

(4.5-42)
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(4.5-43)

 Figure 4.5-1. Standard deviations of shortwave flux induced by different ADMs.
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Figure 4.5-1 shows the standard deviation of shortwave fluxes with different ADMs, which is a measure of
the instantaneous error. Four different lines represent the standard deviations induced by four types of
ADMs considered here:

1.  dashed lines: 10x10x10 angular bins, 1 optical depth bin, no interpolation.
2.  thin solid lines: 10x10x10 angular bins, 1 optical depth bin, with linear interpolation over the angles.
3.  dotted lines: 10x10x10 angular bins, 6 optical depth bins, no interpolation.
4.  thick solid lines: 10x10x10 angular bins, 6 optical depth bins, with linear interpolations over the

optical depths as well as the angles.

 Figure 4.5-2. Possible shortwave flux biases induced by different ADMs
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The standard deviation of the fluxes analyzed with one optical depth bin (similar to the ERBE ADMs)

is 36 Wm-2. The standard deviation is small when the optical depth is close to 10, the logarithmic average

of cloud statistics. The minimum standard deviation also appears at around viewing angle 53o. This is

because, on angular average, the anisotropy function at around 53o are close to 1 for both thin and thick
clouds. The reason for the small deviation for large solar zenith angle is that the total flux is small. The for-
ward scattering (azimuth angle 0-90 degree) varies more with optical depth and has a larger standard devi-
ation than the back scattering.

For one optical depth bin, the angular interpolation improves the instantaneous error, but not signifi-
cantly (comparing thin solid lines with dashed lines).  When the single optical depth bin is replaced by 6

optical depth bins, the standard deviation drops from 36 Wm-2 to 11 Wm-2 (dashed lines). With a linear

interpolation over the optical depth bins and the angular bins, the instantaneous reduces to 5.8 Wm-2, well

below the 10 Wm-2 goal.  With 6 optical depth bins, the biases (retrieved - truth) reduce as well (Figure
4.5-2).  Single optical depth bin imposes significant biases over optical depths, viewing zenith angles, solar
zenith angles (latitudes) and azimuth angles. It causes an albedo increase with viewing zenith angle of

about 30 Wm-2. A similar  albedo increase has been found with ERBE data (Suttles et al. 1992). The solar
zenith angle dependence of the albedo also effects the latitudinal albedo dependence.  The bias error goes
to zero after the single optical depth bin is replaced by 6 bins, especially after the linear interpolation over
the angular bins as well as the optical depth bins (the thick solid lines).

There are several important caveats, however, to comparing the current simulation results with a single
optical depth bin to errors expected for past ERBE data.  In particular:

- The current results apply the ERBE “overcast” ADM to all cloud optical depth results (0.3 to 300),
while for actual ERBE data, the ERBE scene identification algorithm would only allow scenes
with albedos larger than roughly 0.3 to 0.4 (depending on cloud height) to be classified as overcast.
Lower albedo scenes would be changed to “mostly-cloudy” or “partly-cloudy” scene classes.

- The current results represent errors from a uniform sampling of cloud optical depth, solar zenith,
viewing zenith, and viewing azimuth.  ERBE angular sampling and cloud optical depth sampling
would depend greatly on latitude, longitude, and season.

- The current results include only water droplet clouds.  Later simulations will add ice clouds.
- The current results include only a constant albedo lambertian surface beneath the cloud.

The analysis will be extended to more realistic cases as part of ongoing CERES validation studies.

4.5.2.6.4 The Different Cloud Inhomogeneity Sensitivities: Albedo and Anisotropy

4.5.2.6.4.1 The Unique Anisotropy for Differentτ Variance: Results from IPA Studies

In most cases, clouds within CERES footprint are not homogeneous. The cloud reflectance varies with
the shape of the optical depth distributions as well as the mean optical depths.

If the shape of the optical depth distribution is not considered, the radiance as well as the reflectance
computed from the mean optical depth can have a 20% error (Cahalan et al. 1994). This raises a question
for CERES: are ADMs sensitive to the shape of the optical depth distribution as well?

Landsat data analysis shows that, for marine boundary layer clouds, the optical depths follow different
Γ-distributions (Barker et al. 1996). It means that within a certain grid-box such as the CERES footprint,
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the cloud optical depth can be described with the mean (the first moment) and the variance (the second
moment) of the optical depth distribution. Using the independent pixel approximation, the albedo and the
anisotropy function (ADMs) for the inhomogeneous clouds with optical depth distributionΓ(τ) are com-
puted from:

(4.5-44)

Hereα(τ) and R(τ) are the albedo and anisotropy function for cloud with optical depthτ.

The albedoes and ADMs for clouds with different mean optical depths and optical depth variances have
been examined using the independent pixel approximation. Figure 4.5-3 is a typical example of the sensi-
tivity studies.

For two cloud optical depth distributions (Figure 4.5-3(a).) with the same mean optical depthτ (10) and

different variancesσ2 (ν=τ2/σ2, ν=0.5, 10), Figure 4.5-3(b) shows that the albedoes of cloud with broader
optical depth distribution (ν=0.5) is much lower than the ones with more uniform optical depth distribution
(ν=10). The radiances as well as the bi-directional reflectance for the two distributions are also very differ-
ent (Figure 4.5-3(e) and (f)). Comparing with the true fluxes, the fluxes estimated from the ADMs have a

standard deviation of 2.3 Wm-2 and bias 0.01 Wm-2.

Figure 4.5-3(c) and (d) are the anisotropy functions for the clouds with the above two distributions. The
solar zenith angles for both cases are 36 degree.

While the albedoes and radiances are very different for different width of the distributions, the anisot-
ropy functions (Figure 4.5-3(c) and (d)), on the other hand, are relatively unchanged. This is also true for
other solar zenith angles and different mean optical depths.

4.5.3  IMPLEMENTATION ISSUES

4.5.3.1  Spectral Correction

A general discussion of converting from filtered radiances to unfiltered radiances is given in section
2.2.1.  The ERBE-like spectral correction and the CERES spectral correction will use the shortwave and
total channels to derive the unfiltered shortwave and longwave radiances.  The unfiltered window radiance
will be a function of only the window channel.
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 Figure 4.5-3.  Albedoes and ADMs sensitivities of cloud inhomogeneity
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Appendix A

Nomenclature

Acronyms

ADEOS Advanced Earth Observing System

ADM Angular Distribution Model

AIRS Atmospheric Infrared Sounder (EOS-AM)

AMSU Advanced Microwave Sounding Unit (EOS-PM)

APD Aerosol Profile Data

APID Application Identifier

ARESE ARM Enhanced Shortwave Experiment

ARM Atmospheric Radiation Measurement

ASOS Automated Surface Observing Sites

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer

ASTEX Atlantic Stratocumulus Transition Experiment

ASTR Atmospheric Structures

ATBD Algorithm Theoretical Basis Document

AVG Monthly Regional, Average Radiative Fluxes and Clouds (CERES Archival Data
Product)

AVHRR Advanced Very High Resolution Radiometer

BDS Bidirectional Scan (CERES Archival Data Product)

BRIE Best Regional Integral Estimate

BSRN Baseline Surface Radiation Network

BTD Brightness Temperature Difference(s)

CCD Charge Coupled Device

CCSDS Consultative Committee for Space Data Systems

CEPEX Central Equatorial Pacific Experiment

CERES Clouds and the Earth’s Radiant Energy System

CID Cloud Imager Data

CLAVR Clouds from AVHRR

CLS Constrained Least Squares

COPRS Cloud Optical Property Retrieval System

CPR Cloud Profiling Radar

CRH Clear Reflectance, Temperature History (CERES Archival Data Product)

CRS Single Satellite CERES Footprint, Radiative Fluxes and Clouds (CERES Archival Data
Product)

DAAC Distributed Active Archive Center

DAC Digital-Analog Converter

DAO Data Assimilation Office
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DB Database

DFD Data Flow Diagram

DLF Downward Longwave Flux

DMSP Defense Meteorological Satellite Program

EADM ERBE-Like Albedo Directional Model (CERES Input Data Product)

ECA Earth Central Angle

ECLIPS Experimental Cloud Lidar Pilot Study

ECMWF European Centre for Medium-Range Weather Forecasts

EDDB ERBE-Like Daily Data Base (CERES Archival Data Product)

EID9 ERBE-Like Internal Data Product 9 (CERES Internal Data Product)

EOS Earth Observing System

EOSDIS Earth Observing System Data Information System

EOS-AM EOS Morning Crossing Mission

EOS-PM EOS Afternoon Crossing Mission

ENSO El Niño/Southern Oscillation

ENVISAT Environmental Satellite

EPHANC Ephemeris and Ancillary (CERES Input Data Product)

ERB Earth Radiation Budget

ERBE Earth Radiation Budget Experiment

ERBS Earth Radiation Budget Satellite

ESA European Space Agency

ES4 ERBE-Like S4 Data Product (CERES Archival Data Product)

ES4G ERBE-Like S4G Data Product (CERES Archival Data Product)

ES8 ERBE-Like S8 Data Product (CERES Archival Data Product)

ES9 ERBE-Like S9 Data Product (CERES Archival Data Product)

FLOP Floating Point Operation

FIRE First ISCCP Regional Experiment

FIRE II IFO First ISCCP Regional Experiment II Intensive Field Observations

FOV Field of View

FSW Hourly Gridded Single Satellite Fluxes and Clouds (CERES Archival Data Product)

FTM Functional Test Model

GAC Global Area Coverage (AVHRR data mode)

GAP Gridded Atmospheric Product (CERES Input Data Product)

GCIP GEWEX Continental-Phase International Project

GCM General Circulation Model

GEBA Global Energy Balance Archive

GEO ISSCP Radiances (CERES Input Data Product)

GEWEX Global Energy and Water Cycle Experiment
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GLAS Geoscience Laser Altimetry System

GMS Geostationary Meteorological Satellite

GOES Geostationary Operational Environmental Satellite

HBTM Hybrid Bispectral Threshold Method

HIRS High-Resolution Infrared Radiation Sounder

HIS High-Resolution Interferometer Sounder

ICM Internal Calibration Module

ICRCCM Intercomparison of Radiation Codes in Climate Models

ID Identification

IEEE Institute of Electrical and Electronics Engineers

IES Instrument Earth Scans (CERES Internal Data Product)

IFO Intensive Field Observation

INSAT Indian Satellite

IOP Intensive Observing Period

IR Infrared

IRIS Infrared Interferometer Spectrometer

ISCCP International Satellite Cloud Climatology Project

ISS Integrated Sounding System

IWP Ice Water Path

LAC Local Area Coverage (AVHRR data mode)

LaRC Langley Research Center

LBC Laser Beam Ceilometer

LBTM Layer Bispectral Threshold Method

Lidar Light Detection and Ranging

LITE Lidar In-Space Technology Experiment

Lowtran 7 Low-Resolution Transmittance (Radiative Transfer Code)

LW Longwave

LWP Liquid Water Path

LWRE Longwave Radiant Excitance

MAM Mirror Attenuator Mosaic

MC Mostly Cloudy

MCR Microwave Cloud Radiometer

METEOSAT Meteorological Operational Satellite (European)

METSAT Meteorological Satellite

MFLOP Million FLOP

MIMR Multifrequency Imaging Microwave Radiometer

MISR Multiangle Imaging Spectroradiometer

MLE Maximum Likelihood Estimate
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MOA Meteorology Ozone and Aerosol

MODIS Moderate-Resolution Imaging Spectroradiometer

MSMR Multispectral, multiresolution

MTSA Monthly Time and Space Averaging

MWH Microwave Humidity

MWP Microwave Water Path

NASA National Aeronautics and Space Administration

NCAR National Center for Atmospheric Research

NCEP National Centers for Environmental Prediction

NESDIS National Environmental Satellite, Data, and Information Service

NIR Near Infrared

NMC National Meteorological Center

NOAA National Oceanic and Atmospheric Administration

NWP Numerical Weather Prediction

OLR Outgoing Longwave Radiation

OPD Ozone Profile Data (CERES Input Data Product)

OV Overcast

PC Partly Cloudy

POLDER Polarization of Directionality of Earth’s Reflectances

PRT Platinum Resistance Thermometer

PSF Point Spread Function

PW Precipitable Water

RAPS Rotating Azimuth Plane Scan

RPM Radiance Pairs Method

RTM Radiometer Test Model

SAB Sorting by Angular Bins

SAGE Stratospheric Aerosol and Gas Experiment

SARB Surface and Atmospheric Radiation Budget Working Group

SDCD Solar Distance Correction and Declination

SFC Hourly Gridded Single Satellite TOA and Surface Fluxes (CERES Archival
Data Product)

SHEBA Surface Heat Budget in the Arctic

SPECTRE Spectral Radiance Experiment

SRB Surface Radiation Budget

SRBAVG Surface Radiation Budget Average (CERES Archival Data Product)

SSF Single Satellite CERES Footprint TOA and Surface Fluxes, Clouds

SSMI Special Sensor Microwave Imager

SST Sea Surface Temperature
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SURFMAP Surface Properties and Maps (CERES Input Product)

SW Shortwave

SWICS Shortwave Internal Calibration Source

SWRE Shortwave Radiant Excitance

SYN Synoptic Radiative Fluxes and Clouds (CERES Archival Data Product)

SZA Solar Zenith Angle

THIR Temperature/Humidity Infrared Radiometer (Nimbus)

TIROS Television Infrared Observation Satellite

TISA Time Interpolation and Spatial Averaging Working Group

TMI TRMM Microwave Imager

TOA Top of the Atmosphere

TOGA Tropical Ocean Global Atmosphere

TOMS Total Ozone Mapping Spectrometer

TOVS TIROS Operational Vertical Sounder

TRMM Tropical Rainfall Measuring Mission

TSA Time-Space Averaging

UAV Unmanned Aerospace Vehicle

UT Universal Time

UTC Universal Time Code

VAS VISSR Atmospheric Sounder (GOES)

VIRS Visible Infrared Scanner

VISSR Visible and Infrared Spin Scan Radiometer

WCRP World Climate Research Program

WG Working Group

Win Window

WN Window

WMO World Meteorological Organization

ZAVG Monthly Zonal and Global Average Radiative Fluxes and Clouds (CERES Archival
Data Product)

Symbols

A atmospheric absorptance

Bλ(T) Planck function

C cloud fractional area coverage

CF2Cl2 dichlorofluorocarbon

CFCl3 trichlorofluorocarbon

CH4 methane

CO2 carbon dioxide

D total number of days in the month
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De cloud particle equivalent diameter (for ice clouds)

Eo solar constant or solar irradiance

F flux

f fraction

Ga atmospheric greenhouse effect

g cloud asymmetry parameter

H2O water vapor

I radiance

i scene type

mi imaginary refractive index

angular momentum vector

N2O nitrous oxide

O3 ozone

P point spread function

p pressure

Qa absorption efficiency

Qe extinction efficiency

Qs scattering efficiency

R anisotropic reflectance factor

rE radius of the Earth

re effective cloud droplet radius (for water clouds)

rh column-averaged relative humidity

So summed solar incident SW flux

integrated solar incident SW flux

T temperature

TB blackbody temperature

t time or transmittance

Wliq liquid water path

w precipitable water

satellite position atto
x, y, z satellite position vector components

satellite velocity vector components

z altitude

ztop altitude at top of atmosphere

α albedo or cone angle

β cross-scan angle

γ Earth central angle

γat along-track angle

N̂

So′

x̂o

ẋ ẏ ż, ,
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γct cross-track angle

δ along-scan angle

ε emittance

Θ colatitude of satellite

θ viewing zenith angle

θo solar zenith angle

λ wavelength

µ viewing zenith angle cosine

µo solar zenith angle cosine

ν wave number

ρ bidirectional reflectance

τ optical depth

τaer (p) spectral optical depth profiles of aerosols

spectral optical depth profiles of water vapor

spectral optical depth profiles of ozone

Φ longitude of satellite

φ azimuth angle

single-scattering albedo

Subscripts:

c cloud

cb cloud base

ce cloud effective

cld cloud

cs clear sky

ct cloud top

ice ice water

lc lower cloud

liq liquid water

s surface

uc upper cloud

λ spectral wavelength

Units

AU astronomical unit

cm centimeter

cm-sec−1 centimeter per second

count count

day day, Julian date

τH2Oλ p( )

τO3
p( )

ω̃o
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deg degree

deg-sec−1 degree per second

DU Dobson unit

erg-sec−1 erg per second

fraction fraction (range of 0–1)

g gram

g-cm−2 gram per square centimeter

g-g−1 gram per gram

g-m−2 gram per square meter

h hour

hPa hectopascal

K Kelvin

kg kilogram

kg-m−2 kilogram per square meter

km kilometer

km-sec−1 kilometer per second

m meter

mm millimeter

µm micrometer, micron

N/A not applicable, none, unitless, dimensionless

ohm-cm−1 ohm per centimeter

percent percent (range of 0–100)

rad radian

rad-sec−1 radian per second

sec second

sr−1 per steradian

W watt

W-m−2 watt per square meter

W-m−2sr−1 watt per square meter per steradian

W-m−2sr−1µm−1 watt per square meter per steradian per micrometer


