Neutrino factories from muon storage rings

H. Schellman Northwestern University/FNAL

Several studies of neutrino factory experiments

- FNAL++ study
 - 20-50 GeV
 - 10¹⁹-10²⁰ muon decays
 - 732km, 3000 km, 7000km
- CERN/Espana ...
 - 50 GeV
 - 10²⁰-10²¹ muon decays
 - 732km, 3500 km, 7000 km
- Lots of new work shown at NUFACT00
 - Bueno et al. hep-ph 0005007
 - Cervera et al. hep-ph 0002108
 - Albright et al. FNAL-FN 692
 - Barger et al., hep-ph 9911524 + later

What doe we know about electron neutrino oscillations

- Solar neutrinos give low mass region
- Reactor experiments explore high ∆m² region

What we know about muon neutrino oscillations

- From SuperK, Soudan, Macro ... know sin²2θ₂₃ ~ 1.
- K2K, CGS, MINOS will tell us more.
- Muon neutrino expts require high energy, hence long baselines to be sensitive to low Δm²

$$\begin{aligned} \mathcal{J}-\text{flavor mixing} \\ \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} &= \begin{pmatrix} U_{e1} & U_{e2} & U_{e2} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \end{aligned}$$

$$U = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{13}s_{23}c_{12}e^{i\delta} & c_{23}c_{12} - s_{13}s_{23}s_{12}e^{i\delta} & c_{13}s_{23} \\ s_{23}s_{12} - s_{13}c_{23}c_{12}e^{i\delta} & -s_{23}c_{12} - s_{13}c_{23}s_{12}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

3angles $\theta_{12} \theta_{13}$ and θ_{23} and complex phase δ

 $P(\nu_{\alpha} \to \nu_{\beta}) = \left| \langle \nu_{\beta} | e^{-iH_0 L} | \nu_{\alpha} \rangle \right|^2 = \sum_{i,j} U_{\alpha i} U^*_{\beta i} U^*_{\alpha j} U_{\beta j} e^{-i\delta m^2_{ij} L/2E}$

3 masses -> only 2 mass differences So far we know:

 θ_{23} is large (atmospheric) Δm_{23}^{2} is > 10⁻³ ev² (atmospheric) θ_{13} is small (reactor)

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4|U_{\mu3}|^{2}(1 - |U_{\mu3}|^{2})\sin^{2}(\frac{\delta m_{atm}^{2}L}{4E})$$

= 1 - 4\sin^{2}(\theta_{23})\cos^{2}(\theta_{13})(1 - \sin^{2}(\theta_{23})\cos^{2}(\theta_{13}))\sin^{2}(\frac{\delta m_{atm}^{2}L}{4E}).

$$P(\nu_{\mu} \to \nu_{e}) \simeq 4|U_{e3}|^{2}|U_{\mu3}|^{2}\sin^{2}\left(\frac{\delta m_{atm}^{2}L}{4E}\right) \text{ LSND?}$$

= $\sin^{2}(2\theta_{13})\sin^{2}(\theta_{23})\sin^{2}\left(\frac{\delta m_{atm}^{2}L}{4E}\right)$

$$P(\nu_{\mu} \to \nu_{\tau}) \simeq 4|U_{\mu3}|^{2}|U_{\tau3}|^{2}\sin^{2}(\frac{\delta m_{atm}^{2}L}{4E}) \qquad \Delta m_{23}^{2}, \theta_{23}$$
$$= \sin^{2}(2\theta_{23})\cos^{4}(\theta_{13})\sin^{2}(\frac{\delta m_{atm}^{2}L}{4E})$$

$$P(\nu_e \to \nu_e) \simeq 1 - 4|U_{e3}|^2 (1 - |U_{e3}|^2) \sin^2\left(\frac{\delta m_{atm}^2 L}{4E}\right) = 1 - \sin^2(2\theta_{13}) \sin^2\left(\frac{\delta m_{atm}^2 L}{4E}\right),$$

$$P(\nu_e \to \nu_\mu) \simeq 4|U_{e3}|^2|U_{\mu3}|^2\sin^2\left(\frac{\delta m_{atm}^2 L}{4E}\right) = \sin^2(2\theta_{13})\sin^2(\theta_{23})\sin^2\left(\frac{\delta m_{atm}^2 L}{4E}\right),$$

$$P(\nu_e \to \nu_\tau) \simeq 4|U_{\tau 3}|^2|U_{e3}|^2\sin^2\left(\frac{\delta m_{atm}^2 L}{4E}\right)$$

= $\sin^2(2\theta_{13})\cos^2(\theta_{23})\sin^2\left(\frac{\delta m_{atm}^2 L}{4E}\right)$

6/14/00

What we are looking for in 10–15 years?

Assume Δm_{23}^2 and θ_{23} are well measured the next things to do are:

- Measure $\sin^2\theta_{13}$ to ~ 0.001
- See $v_e < -> v_\tau$
- Measure sign of ΔM^2
- Measure CP violation?
- All of these need a measurement of $v_e^{<->v_X}$
- A complete check of 3-flavor requires $v_e <->v_e$ $v_\mu <->v_e$ $v_e <->v_\mu$ $v_\mu <->v_\mu$ and anti-particles $v_e <->v_\tau$ $v_\mu <->v_\tau$

	1R1
cenarios	$1 \Delta 3$
avor Sc	$6\Delta 1$
3 H	1 \ 1

1C1	0.3	$7 imes 10^{-4}$	0.53	0.036	0.89	$0,\pm\pi/2$		I	I	0.036	0.015
1B1	3.5×10^{-3}	0.3	1.0	0.015	0.015	$0,\pm\pi/2$	0.99	0.03	I	0.03	0.002
IA3	3.5×10^{-3}	$1 imes 10^{-7}$	1.0	0.04	0.9	$0,\pm\pi/2$	0.98	0.04	0.88	I	0.02
IA2	3.5×10^{-3}	6×10^{-6}	1.0	0.04	0.006	$0,\pm\pi/2$	0.98	0.04	0.006	I	0.002
IA1	3.5×10^{-3}	5×10^{-5}	1.0	0.04	0.8	$0,\pm\pi/2$	0.98	0.04	0.78	ı	0.02
parameter	$\delta m^2_{32} ~({ m eV}^2)$	$\delta m^2_{21}~({ m eV}^2)$	$\sin^2 2\theta_{23}$	$\sin^2 2 heta_{13}$	$-\sin^2 2\theta_{12}$	δ	$\sin^2 2 heta_{atm}$	$\sin^2 2\theta_{reac}$	$\sin^2 2 heta_{solar}$	$\sin^2 2 heta_{LSND}$	J

Why not use conventional beam

- Conventional beam is great for measuring v_{μ} related parameters to ~1%.
- Limitations are electron detection in hadron showers limits v_µ->v_e
- To go beyond 1% on $v_{\mu} < -> v_e$ or get mass effects and CP violation, need:
 - long baseline,
 - higher energy,
 - way to see $v_{\mu} < -> v_e$ transitions with better accuracy.

The Neutrino Source

Muon Storage Ring as a Neutrino Source

Medium baseline experiment eg Fermi -> SLAC/LBNL 2900 km

Parameters for the Muon Storage Ring						
Energy	GeV	50				
decay ratio	%	>40				
Designed for inv. Emittance	m*rad	0.0032				
Cooling designed for inv. Emitt.	m*rad	0.0016				
β in straight	m	160				
N _µ /pulse	10^{12}	6				
typical decay angle of $\mu = 1/\gamma$	mrad	2.0				
Beam angle $(\sqrt{\epsilon}/\beta_o) = (\sqrt{\epsilon} \gamma)$	mrad	0.2				
Lifetime c*γ*τ	m	3×10^5				

$$6/14/00^{\gamma} = (1-\alpha^2)/\beta$$

Properties of neutrino beams from muon decay

$$\frac{dN(\nu_{\mu})}{dzd\cos\theta_{CM}} = 2z^{2}[(3-2z) \mp P(1-2z)\cos\theta]$$
$$\frac{dN(\nu_{e})}{dzd\cos\theta_{CM}} = 6z^{2}[(1-z) \mp P(1-z)\cos\theta]$$
$$z = \frac{E_{\nu}}{E_{max}} \quad \text{where} \quad E_{max} = -m_{\mu}/2$$

Single decay mode and well defined kinematics

6/14/00

Neutrino interaction rates as a function of scaled neutrino energy

Beam is a mixture of v_{μ} and anti- v_e or v_e and anti- v_{μ} .Peaked towards high energies, Polarization is hard to get but can be used to remove backgrounds from the mixture.

Why bother with muon decay?

• Goal is maximum neutrino/proton

- Decay pions/kaons at low energy
- More decay in decay volume
- (~3% at FNAL high energy v beam)
- Then accelerate
- 40% of muons decay in the right direction
- Very well understood source
 - Only one decay process
 - Parent particles ~ monochromatic
 - Around long enough to monitor

See $v_e \rightarrow v_\mu$ in the $v_e \rightarrow v_\mu \rightarrow \mu^+ X$ channel Wrong sign muons'

 $\overline{\nu}_{\mu} \sim \overline{\nu}_{\mu} \rightarrow \mu^{+} X$ is the conventional muon source

Spread of beam scales as $1/E^2$ Event rate/neutrino scales as E For same L event rate/unit area scales as E^3

Spread of beam scales as L^2 For fixed E/L, event rate/unit area scales as E

Event rates for a 10 kton detector

	L=7400 km	2270	680	875	300	1000	350	1980	580
	L=2900 km	14400	4120	5530	1990	6380	2240	12900	3670
Rates	L=732 km	226000	67300	87100	30200	101000	35300	197000	57900
		$ u_{\mu} ext{ CC} $	$ \nu_{\mu} \text{ NC} $	$\bar{\nu}_e~{ m CC}$	$\bar{\nu}_e \mathrm{NC}$	$\bar{\nu}_{\mu}$ CC	$\bar{\nu}_{\mu}$ NC	$ u_e { m CC} $	$ u_e \text{ NC} $
			μ^-	10^{20} decays			μ^+	10^{20} decays	

Mario Campanelli

6/14/00

No polarization No beam divergence

No oscillations

 E_{μ} =30 GeV

Experiments can be described by their E/L coverage

•P($v_{\alpha} \rightarrow v_{\beta}$) ~ sin²2 θ sin²[1.27 Δ m² L/E] •m in eV, L in km, E in GeV

If E/L << Δm^2 , P($v_{\alpha} \rightarrow v_{\beta}$) $\sim \frac{1}{2} \sin^2 2\theta$ If E/L >> Δm^2 , P($v_{\alpha} \rightarrow v_{\beta}$) ~ 0 If E/L $\sim \Delta m^2$, can measure both Δm^2 and $\sin^2 2\theta$

Numbers of muon neutrino interactions for fixed number of muon decays $\Delta m^2 = 0.0035 \text{ eV}^2$

E/L, GeV/km

Numbers of electron neutrino interactions for fixed number of muon decays $\Delta m^2 = 0.0035 \text{ eV}^2$

6/14/00

Detectors

`Protons are cheaper than muons'

- Tau detection
 - Emulsion/msgc ~ 1-20 kTons
 - Tau id, electron id
- Liquid argon drift
 - 10-20 kTons
 - Electron id!
- Magnetized Iron Scintillator
 - 20-100 kTons
 - Good muon id!
- Water Cerenkov with magnet tail
 - 50-500 kTons
 - Electron id, limited muon charge

Liquid Argon with drift readout

6/14/00

Steel-Scintillator MINOS/MONOLITH/anon.

50 kT version of MINOS

10xSuperK?

Water detector followed by analyzing magnet

10²⁰ muon decays

- Right sign muons
 - Dip due to oscillation
- Tau's contribute
 - Signal?
 - Background?

Bueno et al.

6/14/00

Mario Campanelli, ETH Zurich

What determines the machine energy?

- We're interested in $v_e v_{\mu}$
- Need to tag wrong sign muons with very low backgrounds
- there are also anti- V_{μ} in the beam
- Wrong sign muons from
 - Hadron decay
 - Charm decay
 - Non-interacting hadrons
 - Charge confusion
- How do you tell a 2 GeV pion from a 2 GeV muon at the 0.01% level?

Pions which do not interact!

Bernstein, Harris, McFarland, Spentzouris

10²¹ muon decays

V. Barger, S. Geer, R.Raja, K. Whisnant

What optimal CP violation looks like

Assume Solar LMA solution, large θ_{12}, θ_{13}

Wrong-sign muons

 10^{21} µ, 3500 km

$\mathbf{P}=0:$	$\delta = 1.57 \pm 0.20$
$P= \pm 40\%$	$\delta = 1.57 \pm 0.15$
$P = \pm 100\%$	$\delta = 1.57 \pm 0.10$

Blondel NUFACT00 - CP/polarization

Kinematic cuts can increase sensitivity at high event rates.

Cervera et al.

35

Near Experiments

- Place detectors 50 m from end of straight section
- Get 1000 times current statistics!
 - Hydrogen targets
 - Polarized targets
 - Charm
 - Beauty? (not at 50 GeV)
 - Rare phenomena

Charged current event rates at near detectors

At 50 GeV, 7.9M events/gr/cm²/year But only 22% are within 20 cm radius (82% pass loose kinematic cuts)

1000 times current experiments!

Deep Inelastic Scattering Experiments

Detector like NOMAD

10 kg targets in front of tracking/calorimetry

Conclusions

- Baselines of ~3000-7000 are very interesting
- Large detectors are needed (and the cheap way to go
- Intensities >~ 10²⁰/year open allow
 - very accurate measure of $\Delta m^2_{\ 23}$ and $\theta_{\mbox{23}}$
 - Measure $\sin^2 2\theta_{13}$ and sign of Δm^2_{23}
- May be sensitive to CP violation if $\sin^2 2\theta_{13}$, $\sin^2 2\theta_{12}$ and Δm^2_{12} are large (lucky LMA solution)

Near detector physics factor of 1000 better than present or foreseen expts.

Standard Model of
Elementary Particles

Masses are in MeV