\contentsline {figure}{\numberline {1}{\ignorespaces Muon decays in a straight section \textit {vs.} muon energy}}{14}{} \contentsline {figure}{\numberline {2}{\ignorespaces Schematic of the Neutrino Factory Study-II version}}{15}{} \contentsline {figure}{\numberline {3}{\ignorespaces Error ellipses in $\delta m^2$ sin$^2 2\theta $ space for a Neutrino Factory}}{26}{} \contentsline {figure}{\numberline {4}{\ignorespaces Wrong sign muon appearance rates and sign of $\delta m^2_{32}$}}{28}{} \contentsline {figure}{\numberline {5}{\ignorespaces $\delta m_{32}^2$ sign determination at a Neutrino Factory}}{29}{} \contentsline {figure}{\numberline {6}{\ignorespaces CP violation effects in a Neutrino Factory}}{32}{} \contentsline {figure}{\numberline {7}{\ignorespaces Error ellipses for superbeams for electron appearance}}{34}{} \contentsline {figure}{\numberline {8}{\ignorespaces Error ellipses for Neutrino Factory for muon appearance}}{35}{} \contentsline {figure}{\numberline {9}{\ignorespaces Comparison of superbeams and Neutrino Factories}}{36}{} \contentsline {figure}{\numberline {10}{\ignorespaces Scan of the Higgs resonance using a muon collider}}{42}{} \contentsline {figure}{\numberline {11}{\ignorespaces Separation of $A$ and $H$ signals for $\qopname \relax o{tan}\beta =5$ and $10$}}{47}{} \contentsline {figure}{\numberline {12}{\ignorespaces AGS proton driver layout.}}{49}{} \contentsline {figure}{\numberline {13}{\ignorespaces FNAL proton driver layout from Ref. \cite {FNALbooster}.}}{50}{} \contentsline {figure}{\numberline {14}{\ignorespaces Target, capture solenoids and mercury containment }}{52}{} \contentsline {figure}{\numberline {15}{\ignorespaces Induction cell and mini-cooling solenoid}}{53}{} \contentsline {figure}{\numberline {16}{\ignorespaces Cooling channel Lattice 2, two cavities per cell.}}{55}{} \contentsline {figure}{\numberline {17}{\ignorespaces The longitudinal and transverse emittances}}{55}{} \contentsline {figure}{\numberline {18}{\ignorespaces $\mu /p$ yield ratio for the two transverse emittance cuts}}{56}{} \contentsline {figure}{\numberline {19}{\ignorespaces Layouts of cryomodules.}}{56}{} \contentsline {figure}{\numberline {20}{\ignorespaces Layout of an RLA linac period.}}{57}{} \contentsline {figure}{\numberline {21}{\ignorespaces Top view and cross section through ring and berm}}{60}{} \contentsline {figure}{\numberline {22}{\ignorespaces Schematic of a Neutrino Factory at Brookhaven}}{61}{} \contentsline {figure}{\numberline {23}{\ignorespaces Schematic of a Neutrino Factory at Fermilab}}{62}{} \contentsline {figure}{\numberline {24}{\ignorespaces A possible 50 kton Steel/Scintillator/PDT detector at WIPP}}{63}{} \contentsline {figure}{\numberline {25}{\ignorespaces Block schematic of the UNO detector}}{63}{} \contentsline {figure}{\numberline {26}{\ignorespaces Sizes of various proposed high energy colliders}}{66}{} \contentsline {figure}{\numberline {27}{\ignorespaces Schematic of a muon collider}}{67}{} \contentsline {figure}{\numberline {28}{\ignorespaces Plan of a 0.1-TeV-CoM muon collider}}{69}{} \contentsline {figure}{\numberline {29}{\ignorespaces Layout and parameters of the solenoid based ring cooler }}{70}{} \contentsline {figure}{\numberline {30}{\ignorespaces Evolution of the beam emittance/transmission at the ring cooler. }}{71}{} \contentsline {figure}{\numberline {31}{\ignorespaces Layout of an RFOFO cooling ring. }}{72}{} \contentsline {figure}{\numberline {32}{\ignorespaces Three cells of the RFOFO lattice. }}{73}{} \contentsline {figure}{\numberline {33}{\ignorespaces Transmission, normalized transverse emittance, normalized longitudinal emittance, normalized 6-dimensional emittance, and the merit factor, as a function of distance. }}{75}{} \contentsline {figure}{\numberline {34}{\ignorespaces Top view of the 16 cell muon cooling ring.}}{76}{} \contentsline {figure}{\numberline {35}{\ignorespaces Schematic diagram of half of the 22.5 degree bending cell. A wedge absorber is located in the middle of the cell.}}{76}{} \contentsline {figure}{\numberline {36}{\ignorespaces The $\beta _{x}$, $\beta _{y}$, and $D$(dispersion) in a 22.5 degree bending cell. SYNCH input(solid curves) and ICOOL simulation(marked points) are compared.}}{77}{} \contentsline {figure}{\numberline {37}{\ignorespaces The evolution of x, y, z normalized emittances in 30 full turns.}}{77}{} \contentsline {figure}{\numberline {38}{\ignorespaces The transmission and the figure of merit factor as a function of s \nobreakspace {}in 16 full turns.}}{77}{} \contentsline {figure}{\numberline {39}{\ignorespaces Strawman Geant detector for a muon collider}}{79}{} \contentsline {figure}{\numberline {40}{\ignorespaces Conceptual layout of MICE upstream spectrometer: following an initial time-of-flight (TOF) measurement, muons are tracked using detector planes located within a solenoidal magnetic field. Although in principle three $x,y$ measurements as shown suffice to determine the parameters of each muon's helical trajectory, in practice additional measurement redundancy will be employed; for example, a fourth measurement plane can be used to eliminate very-low-momentum muons that would execute multiple cycles of helical motion. A similar spectrometer (but with the time-of-flight measurement at the end) will be used downstream of the cooling apparatus.}}{92}{} \contentsline {figure}{\numberline {41}{\ignorespaces Schematic layout of MICE apparatus.}}{93}{} \contentsline {figure}{\numberline {42}{\ignorespaces A possible MICE tracking-detector configuration.}}{94}{} \contentsline {figure}{\numberline {43}{\ignorespaces Generated and measured ratios of output to input six-dimensional emittance for 1000 simulated experiments, each with 1000 accepted muons.}}{94}{} \contentsline {figure}{\numberline {44}{\ignorespaces Results from ICOOL simulation of MICE: normalized transverse (left) and longitudinal (right) emittances {\em vs.}\ distance.}}{95}{} \contentsline {figure}{\numberline {45}{\ignorespaces Simulation results for 88-MHz variant of MICE apparatus: a) output emittance {\it vs.}\ input emittance, with 45$^\circ $ line (dashes) superimposed; b) beam transmission {\it vs.}\ input emittance; c) cooling performance (see text) {\it vs.}\ input emittance for various beam kinetic energies (top to bottom: 140, 170, 200, 230 MeV).}}{96}{}