\relax \citation{gaisser} \citation{CCFRsigma} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{3}} \@writefile{toc}{\contentsline {section}{\numberline {2}Beam properties}{3}} \newlabel{eq:n_numu}{{2}{3}} \newlabel{eq:n_nue}{{3}{3}} \newlabel{eq:numu}{{4}{3}} \newlabel{eq:nue}{{5}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Calculated $\nu $ and $\overline {\nu }$ CC rates at a far site located 10000 km from a neutrino factory in which $2 \times 10^{20}$ muons have decayed in the beam--forming straight section. The fluxes are shown as a function of the energy of the stored muons for negative muons (top two plots) and positive muons (bottom two plots), and for three muon polarizations as indicated.}}{4}} \newlabel{fluxes}{{1}{4}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Interaction rates}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces a) The total cross sectionf for charged current neutrino scattering by muon and tau neutrinos. b) the ratio of tau to muon neutrino cross sectins as a function of neutrino energy.}}{5}} \newlabel{tau_fig}{{2}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Charged current event spectra at a far detector. The solid lines indicate zero polarization, the dotted lines indicate polarization of $\pm 0.3$ and the dashed lines indicate full polarization. The $P=1$ case for electron neutrinos results in no events and is hidden by the x axis.}}{5}} \newlabel{polarization}{{3}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Comparison of interacting $\nu _\mu $ energy distributions for a 20\nobreakspace {}GeV neutrino factory beam and the NUMI high energy wide band beam. }}{6}} \newlabel{minos_wbb}{{4}{6}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Lepton energy spectra for CC $\overline {\nu }_\mu $ (top left), $\nu _\mu $ (top right), $\nu _e$ (bottom left), and $\overline {\nu }_e$ (bottom right) interactions. Note that Z is the normalized energy $E_L/E_\mu $. Calculation from Ref.\G@refundefinedtrue {\unhbox \voidb@x \hbox {\normalfont \bfseries ??}}\GenericWarning { }{LaTeX Warning: Reference `BGW99' on page 6 undefined}.}}{6}} \newlabel{fig:elept}{{5}{6}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Events/kT of detector as a function of distance from the beam center for a 20 GeV muon beam.}}{7}} \newlabel{fig:radial}{{6}{7}} \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Muon neutrino and electron antineutrino CC interaction rates in the absence of oscillations, calculated for baseline length $L = 732$\nobreakspace {}km (FNAL $\rightarrow $ Soudan), for MINOS using the wide band beam and a muon storage ring with $E_\mu =10, 20, 50$ and $250$\nobreakspace {}GeV at 3 baselines. }}{8}} \newlabel{compare_tab}{{1}{8}} \citation{goodman} \citation{casper} \newlabel{tab:com}{{2.2}{9}} \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Dependence of predicted charged current event rates on muon beam properties at a neutrino factory. The last column lists the required precisions with which each beam property must be determined if the uncertainty on the neutrino flux at the far site is to be less than $\sim 1$\%. Here $\Delta $ denotes uncertainty while $\sigma $ denotes the spread in a variable.}}{9}} \newlabel{tab:flux}{{2}{9}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Tau neutrino interactions}{9}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Systematic uncertainties on the muon beam and neutrino flux}{9}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Dependence of CC neutrino interaction rates on the muon beam divergence for a detector at a far site located at $L = 2800$\nobreakspace {}km from a muon storage ring containing 30\nobreakspace {}GeV unpolarized muons. Rates are shown for $\nu _e$ (triangles) and $\nu _\mu $ (circles) beams in the absence of oscillations, and for $\nu _e \rightarrow \nu _\mu $ oscillations (boxes) with the three--flavor oscillation parameters IA1 (see theory section). The calculation is from Ref.\nobreakspace {}\G@refundefinedtrue {\unhbox \voidb@x \hbox {\normalfont \bfseries ??}}\GenericWarning { }{LaTeX Warning: Reference `geer00' on page 10 undefined}. }}{10}} \newlabel{fig:flux_xy}{{7}{10}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4}Event distributions at a near site}{10}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Dependence of CC neutrino interaction rates on the neutrino beam direction relative to a detector at a far site located at $L = 2800$\nobreakspace {}km from a muon storage ring containing 30\nobreakspace {}GeV unpolarized muons with a muon beam divergence of 0.33\nobreakspace {}mr. Rates are shown for $\nu _e$ (triangles) and $\nu _\mu $ (circles) beams in the absence of oscillations, and for $\nu _e \rightarrow \nu _\mu $ oscillations (boxes) with the three--flavor oscillation parameters IA1 (see theory section). The calculation is from Ref.\nobreakspace {}\G@refundefinedtrue {\unhbox \voidb@x \hbox {\normalfont \bfseries ??}}\GenericWarning { }{LaTeX Warning: Reference `geer00' on page 11 undefined}. }}{11}} \newlabel{fig:flux_d}{{8}{11}} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Events per gr/cm$^2$ per GeV for a detector 40\nobreakspace {}m from a muon storage ring with a 600 m straight section. The 3 curves show all events and those falling within 50 and 20\nobreakspace {}cm of the beam center. }}{12}} \newlabel{nearspectra}{{9}{12}} \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Events per gr/cm$^2$ as a function of the transverse coordinate x 50\nobreakspace {}m dowmstream of a 50\nobreakspace {}GeV neutrino factory providing $10^{20}$ muon decays. The central peak is mainly due to decays in the last hundred meters of the decay pipe while the large tails are due to upstream decays.}}{12}} \newlabel{xplot}{{10}{12}} \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Events per gr/cm$^2$ at a near detector as a function of muon beam energy. The curves indicate (solid) all events, the dashed and dotted curves show the effects of radial position cuts. REPLACE BY TABLE?}}{13}} \newlabel{eventrates}{{11}{13}} \@writefile{toc}{\contentsline {section}{\numberline {3}Oscillation physics}{14}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Theoretical framework}{14}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Scenarios}{14}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.1}Scenarios I A1,A2 and A3}{14}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2}Scenarios I B and C}{17}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.3}Three Active plus One Sterile Neutrino Scenarios}{18}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Where will we be in 5-10 years ?}{18}} \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Experimental neutrino oscillation observations expected in the next 5--10\nobreakspace {}years at accelerator based experiments.}}{19}} \newlabel{expt_table}{{3}{19}} \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Neutrino oscillation measurements expected in the next 5--10\nobreakspace {}years at accelerator based experiments. }}{20}} \newlabel{3nu_table}{{4}{20}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}The neutrino factory oscillation physics program}{21}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Detector considerations}{23}} \@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Visible energy spectra for four event classes when $10^{21} \mu ^-$ decay in a 30\nobreakspace {}GeV neutrino factory at $L = 7400$\nobreakspace {}km. Three cases are considered. Black histogram: no oscillations. Blue dotted histogram: $\delta m^2_{32}=3.5\times 10^{-3}$\nobreakspace {}eV$^2$/c$^4$, $\mathop {\mathgroup \symoperators sin}\nolimits ^2\theta _{23}=1$. Red dashed histogram: $\delta m^2_{32}=7\times 10^{-3}$\nobreakspace {}eV$^2$/c$^4$, $\mathop {\mathgroup \symoperators sin}\nolimits ^2\theta _{23}=1$. The distributions are for an ICANOE-type detector, and are from Ref.\nobreakspace {}11\hbox {}.}}{24}} \newlabel{fig:m1}{{12}{24}} \@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Same as previous figure, but with positive muons circulating in the storage ring. The difference between the two figures is due to the different cross section for neutrinos and antineutrinos, and to matter effects.}}{24}} \newlabel{fig:m2}{{13}{24}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.1}Muon identification and measurement}{25}} \newlabel{bkgds}{{3.5.1}{25}} \citation{bgrw00} \@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Background levels from punch through, pion/kaon decay, and charm backgrounds for 20\nobreakspace {}GeV (top) and 50\nobreakspace {}GeV (bottom) neutrino factories. The fraction of neutrino interactions that produce a wrong--sign muon background event is shown as a function of the minimum muon energy accepted.}}{26}} \newlabel{punch-charm}{{14}{26}} \@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces Reconstructed neutrino energy distribution for several different minimum muon energy cuts for a 20GeV ring. Result is from Ref.\nobreakspace {}10\hbox {}. }}{27}} \newlabel{enucut}{{15}{27}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.2}$\tau $--lepton identification and measurement}{27}} \@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Perspective view of the Liquid Argon TPC detector with 4 supermodules. HOW ABOUT REPLACING THIS WITH AN ELECTRON EVENT PIC}}{28}} \newlabel{icanoe_pr}{{16}{28}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.3}A Liquid Argon neutrino detector}{29}} \citation{nutevdet} \citation{nutevpub} \citation{nutevdet} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.4}A magnetized Steel/Scintillator neutrino detector}{30}} \@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Schematic of a CCFR/NuTeV calorimeter module.}}{31}} \newlabel{fig:ccfr}{{17}{31}} \@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces Reconstructed $\mu ^-$ $P_t^2$ with respect to the shower direction for 20 GeV and 50 GeV $\mu ^+$ decaying in a neutrino factory.}}{31}} \newlabel{pt}{{18}{31}} \@writefile{lot}{\contentsline {table}{\numberline {5}{\ignorespaces Wrong-sign muon rates after all cuts for a 10\nobreakspace {}kTon steel-scintillator detector downstream of a neutrino factory providing $10^{20}$ muon decays. The oscillation parameters correspond to scenario IA1. THE COLUMNS NEED TO BE DEFINED IN A BIT MORE DETAIL.}}{32}} \newlabel{thetable}{{5}{32}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.5}A Water Cerenkov detector}{32}} \@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Reconstructed wrong-sign muons as a function of the muon energy for a $\mu +$ 20 GeV ring. Top plot accepted events for the signal ($\nu _e \rightarrow \nu _\mu $--stars-- and $\nu _e \rightarrow \nu _\tau \rightarrow \mu + X$--crosses) and the potential backgrouns (x). The bottom plot shows the signal and the background after cuts.}}{33}} \newlabel{data}{{19}{33}} \@writefile{lof}{\contentsline {figure}{\numberline {20}{\ignorespaces Acceptance in a water target for charged current $\nu _\mu $ and $\overline \nu _\mu $ events in a 20 and 50 GeV storage ring, as a function of distance of the neutrino interaction vertex from the muon spectrometer.}}{35}} \newlabel{fig:wateracc}{{3.5.5}{35}} \citation{forty} \citation{strolin} \citation{para} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.6}Specialized $\tau $--lepton detectors}{36}} \@writefile{lof}{\contentsline {figure}{\numberline {21}{\ignorespaces Quasielastic $\nu _\tau $ event in a perfluoroHexane cerenkov detector: the ring described by about eight hits on the left is from the tau before it decays.}}{36}} \newlabel{fig:forty}{{21}{36}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.7}Detector summary}{37}} \@writefile{lot}{\contentsline {table}{\numberline {6}{\ignorespaces $^{**}$ The overburden required for a steel-scintillator calorimeter depends on the energy of the muon storage ring; but in the past this type of detector has been used with minimal contamination in the $\nu _\mu $ charged current sample above a neutrino energy of 5GeV at ground level. }}{38}} \newlabel{dettab}{{6}{38}} \citation{cerv00} \citation{bgrw00} \citation{bern00} \citation{camp00} \citation{geer98} \citation{bgrw99} \citation{bgrw00} \citation{bgrw00} \@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Oscillation measurements}{39}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.1}Observation of $\nu _e \rightarrow \nu _\mu $ oscillations and the pattern of neutrino masses}{39}} \citation{bgrw99} \@writefile{lof}{\contentsline {figure}{\numberline {22}{\ignorespaces Reach in $\mathop {\mathgroup \symoperators sin}\nolimits ^22\theta _{13}$ for the observation of 10 $\mu ^-$ events from $\nu _e \rightarrow \nu _\mu $ oscillations, shown versus baseline for three $\delta m^2_{32}$ spanning the favored SuperK range. The other oscillation parameters correspond to the LAM scenario IA1. The curves correspond to $10^{19} \mu ^+$ decays in a 20\nobreakspace {}GeV neutrino factory with a 50\nobreakspace {}kt detector, and a minimum muon detection threshold of 4\nobreakspace {}GeV. Result are from Ref.\nobreakspace {}10\hbox {}.}}{40}} \newlabel{fig:v1}{{22}{40}} \@writefile{lof}{\contentsline {figure}{\numberline {23}{\ignorespaces The required number of muon decays needed in the beam--forming straight section of a neutrino factory to achieve the physics goals described in the text, shown as a function of storage ring energy for the LAM scenario IA1, SAM scenario IA2, LOW scenario IA3, and a bimaximal mixing scenario BIMAX. The baseline is taken to be 2800\nobreakspace {}km, and the detector is assumed to be a 50\nobreakspace {}kt wrong--sign muon appearance device with a muon detection threshold of 4\nobreakspace {}GeV or, for $\nu _e \rightarrow \nu _\tau $ appearance, a 5\nobreakspace {}kt detector. Result are from Ref.\nobreakspace {}10\hbox {}.}}{41}} \newlabel{fig:v2}{{23}{41}} \@writefile{lof}{\contentsline {figure}{\numberline {24}{\ignorespaces Predicted measured energy distributions for CC events tagged by a wrong-sign (negative) muon from $\nu _e \rightarrow \nu _\mu $ oscillations, shown for various $\delta m^2_{32}$, as labeled. The predictions correspond to $2 \times 10^{20}$ decays, $E_\mu = 30$\nobreakspace {}GeV, $L = 2800$\nobreakspace {}km, with the values for $\delta m^2_{12}$, $\mathop {\mathgroup \symoperators sin}\nolimits ^22\theta _{13}$, $\mathop {\mathgroup \symoperators sin}\nolimits ^22\theta _{23}$, $\mathop {\mathgroup \symoperators sin}\nolimits ^22\theta _{12}$, and $\delta $ corresponding to the LAM scenario IA1. Result are from Ref.\nobreakspace {}10\hbox {}.}}{42}} \newlabel{fig:v3}{{24}{42}} \@writefile{lof}{\contentsline {figure}{\numberline {25}{\ignorespaces Same as previous figure, for CC events tagged by a wrong-sign (positive) muon from $\mathaccent "7016\relax {\nu }_e \rightarrow \mathaccent "7016\relax {\nu }_\mu $ oscillations. }}{42}} \newlabel{fig:v4}{{25}{42}} \citation{bgrw00} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.2}Observation of $\nu _e \rightarrow \nu _\tau $ oscillations}{43}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.3}Measurement of $\nu _\mu \rightarrow \nu _\tau $ oscillations}{44}} \citation{camp00} \citation{camp00} \citation{camp00} \citation{camp00} \citation{cerv00} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.4}Determination of $\mathop {\mathgroup \symoperators sin}\nolimits ^2 2\theta _{13}$, $\mathop {\mathgroup \symoperators sin}\nolimits ^2 2\theta _{23}$, and $\delta m^2_{32}$}{45}} \citation{cerv00} \citation{camp00} \citation{cerv00} \citation{bgrw00} \citation{bgrw00} \citation{bern00} \citation{camp00} \citation{cerv00} \citation{bgrw00} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.5}Search for CP violation}{48}} \citation{cerv00} \@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Summary}{49}} \bibcite{forty}{1} \bibcite{geer}{2} \bibcite{strolin}{3} \bibcite{para}{4} \bibcite{atlas}{5} \bibcite{nutevdet}{6} \bibcite{nutevpub}{7} \bibcite{LArdedx}{8} \bibcite{cerv00}{9} \bibcite{bgrw00}{10} \bibcite{camp00}{11} \bibcite{bern00}{12} \bibcite{bgrw_prep}{13} \bibcite{geer98}{14} \bibcite{bgrw99}{15} \newlabel{cerv00}{{9}{51}} \newlabel{bgrw00}{{10}{51}} \newlabel{camp00}{{11}{51}} \newlabel{bern00}{{12}{51}} \newlabel{bgrw_prep}{{13}{51}} \@writefile{lot}{\contentsline {table}{\numberline {7}{\ignorespaces Wrong-sign muon rates for a 50\nobreakspace {}kt detector (with a muon threshold of 4\nobreakspace {}GeV) a distance $L$ downstream of a neutrino factory (energy $E_\mu $) providing $10^{19}$ muon decays. Rates are shown for LAM scenario IA1 with both signs of $\delta m^2_{32}$ considered separately. The background rates listed correspond to an assumed background level of $10^{-4}$ times the total CC rates. Results are from Ref.\nobreakspace {}10\hbox {} }}{52}} \newlabel{dm2table}{{7}{52}} \@writefile{lof}{\contentsline {figure}{\numberline {26}{\ignorespaces $\nu _\tau $ CC appearance rates in a 5\nobreakspace {}kt detector 2800\nobreakspace {}km downstream of a 20\nobreakspace {}GeV neutrino factory in which there are $10^{20} \mu ^+$ decays in the beam--forming straight section. The rates are shown as a function of $\mathop {\mathgroup \symoperators sin}\nolimits ^22\theta _{13}$ and $\delta m_{32}^2$ with the other oscillation parameters corresponding to the LAM scenario IA1. The top 3 curves are the predictions for $\overline {\nu }_\mu \rightarrow \overline {\nu }_\tau $ events and the lower curves are for $\nu _e \rightarrow \nu _\tau $ events. Result are from Ref.\nobreakspace {}10\hbox {}. }}{53}} \newlabel{fig:t1}{{26}{53}} \@writefile{lof}{\contentsline {figure}{\numberline {27}{\ignorespaces Reach in $\mathop {\mathgroup \symoperators sin}\nolimits ^22\theta _{13}$ for the observation of 10 $\nu _e \rightarrow \nu _\tau $ oscillation events, shown as a function of baseline for four storage ring energies. The oscillation parameters correspond to the LAM scenario IA1. The curves correspond to $10^{20}$ $\mu ^+$ decays in a 20\nobreakspace {}GeV neutrino factory with a 5\nobreakspace {}kt detector. Result are from Ref.\nobreakspace {}10\hbox {}. }}{54}} \newlabel{fig:t2}{{27}{54}} \@writefile{lof}{\contentsline {figure}{\numberline {28}{\ignorespaces $\nu _\tau $ CC appearance rates in a 1\nobreakspace {}kt detector downstream of a 20\nobreakspace {}GeV neutrino factory in which there are $10^{20} \mu ^+$ decays. Rates are shown as a function of the baseline $L$ and phase $\delta $, with the other oscillation parameters corresponding to the LSND + Atmospheric scenario IB1. Predictions for $\nu _e \rightarrow \nu _\tau $ and $\overline {\nu }_\mu \rightarrow \overline {\nu }_\tau $ are shown separately, as labeled. Result are from Ref.\nobreakspace {}13\hbox {}. }}{55}} \newlabel{fig:t3}{{28}{55}} \@writefile{lof}{\contentsline {figure}{\numberline {29}{\ignorespaces Visible energy spectrum for events tagged by wrong-sign muons in an ICANOE--type detector (full histogram). The oscillation parameters are $\delta m^2_{32}=3.5\times 10^{-3}$\nobreakspace {}eV$^2$/c$^4$, $\mathop {\mathgroup \symoperators sin}\nolimits ^2\theta _{23}=1$, and $\mathop {\mathgroup \symoperators sin}\nolimits ^2 2\theta _{13}=0.05$. Also shown are the contributions from $\nu _e\to \nu _\mu $ oscillations (black dashed curve), $\nu _e\to \nu _\tau $, with a subsequent muonic decay of the $\tau $ lepton (red curve), and background from muonic decays of pions or kaons in neutral current or charged current events (blue dot-dashed curve). Result are from Ref.\nobreakspace {}11\hbox {}. }}{56}} \newlabel{fig:m3}{{29}{56}} \@writefile{lof}{\contentsline {figure}{\numberline {30}{\ignorespaces Results from a global fit to the visible energy distributions for various event classes recorded in a 10\nobreakspace {}kt ICANOE--type detector 7400\nobreakspace {}km downstream of a 30\nobreakspace {}GeV neutrino factory. The 68\% CL contours correspond to experiments in which there are $10^{19}$, $10^{20}$, and $10^{21} \mu ^+$ decays in the neutrino factory (as labelled) followed by the same number of $\mu ^-$ decays. Upper plot: density fixed to its true value. Lower plot: density is a free parameter of the fit. Result are from Ref.\nobreakspace {}11\hbox {}. }}{57}} \newlabel{fig:m7}{{30}{57}} \@writefile{lof}{\contentsline {figure}{\numberline {31}{\ignorespaces Results from a global fit to the visible energy distributions for various event classes recorded in a 10\nobreakspace {}kt ICANOE--type detector downstream of a 30\nobreakspace {}GeV neutrino factory in which there are $10^{20} \mu ^+$ decays in the neutrino factory followed by the same number of $\mu ^-$ decays. The 68\% CL contours correspond to baselines of 7400\nobreakspace {}km and 2900\nobreakspace {}km, as labelled. Result are from Ref.\nobreakspace {}11\hbox {}. }}{58}} \newlabel{fig:m7a}{{31}{58}} \@writefile{lof}{\contentsline {figure}{\numberline {32}{\ignorespaces Fit results in the (density parameter, $\theta _{13}$)--plane for a simulated experiment in which a 40\nobreakspace {}kt Fe-scintillator detector is a distance $L$\nobreakspace {}km downstream of a 50\nobreakspace {}GeV neutrino factory in which there are $10^{21} \mu $ decays. The curves are 68.5, 90, and 99\% CL contours. Result are from Ref.\nobreakspace {}9\hbox {}.}}{58}} \newlabel{fig:s15}{{32}{58}} \@writefile{lof}{\contentsline {figure}{\numberline {33}{\ignorespaces Allowed regions in oscillation parameter space calculated for a simulated experiment in which $10^{20} \mu ^+$ followed by $10^{20} \mu ^-$ decay in a 30\nobreakspace {}GeV neutrino factory that is 7400\nobreakspace {}km from a 10\nobreakspace {}kt ICANOE--type detector. This result is two orders of magnitude better than the analogous for ICANOE at the CNGS. Result are from Ref.\nobreakspace {}11\hbox {}.}}{59}} \newlabel{fig:m4}{{33}{59}} \@writefile{lof}{\contentsline {figure}{\numberline {34}{\ignorespaces Allowed regions in oscillation parameter space calculated for a simulated experiment in which a 40\nobreakspace {}kt Fe-scintillator detector is a distance $L$\nobreakspace {}km downstream of a 50\nobreakspace {}GeV neutrino factory in which there are $10^{21} \mu $ decays. The curves are 90\% CL contours for $L = 732$\nobreakspace {}km (dashed), 3500\nobreakspace {}km (solid), and 7332\nobreakspace {}km (dotted). Result are from Ref.\nobreakspace {}9\hbox {}.}}{59}} \newlabel{fig:s13}{{34}{59}} \@writefile{lof}{\contentsline {figure}{\numberline {35}{\ignorespaces Visible energy distributions for events tagged by a right--sign muon in a MINOS--type detector 2800\nobreakspace {}km downstream of a 20\nobreakspace {}GeV neutrino factory in which there are $2 \times 10^{20} \mu ^-$ decays. Predicted distributions are shown for four values of $\delta m^2_{32}$, with the other parameters corresponding to the LAM scenario IA1. For each panel, the points with statistical error bars show an example of a simulated experiment. The light shaded histograms show the predicted distributions in the absence of oscillations. Results are from Ref.\nobreakspace {}10\hbox {}. }}{60}} \newlabel{fig:v5}{{35}{60}} \@writefile{lof}{\contentsline {figure}{\numberline {36}{\ignorespaces Fit results for simulated $\nu _\mu $ disappearance measurements with a 10\nobreakspace {}kt MINOS-type detector 2800\nobreakspace {}km downstream of a 30\nobreakspace {}GeV neutrino factory in which there are $2 \times 10^{20} \mu ^-$ decays. For each trial point the $1\sigma $, $2\sigma $, and $3\sigma $ contours are shown for a perfect detector (no backgrounds) and no systematic uncertainty on the beam flux. The 68\%, 90\% and 95\% SuperK regions are indicated. Result are from Ref.\nobreakspace {}10\hbox {}. }}{60}} \newlabel{fig:v6}{{36}{60}} \@writefile{lof}{\contentsline {figure}{\numberline {37}{\ignorespaces Fit results (1\nobreakspace {}$\sigma $ contour for simulated $\nu _\mu $ disappearance measurements with a 10\nobreakspace {}kt MINOS-type detector 2800\nobreakspace {}km downstream of a 30\nobreakspace {}GeV neutrino factory in which there are $2 \times 10^{20} \mu ^-$ decays. For each trial point the $1\sigma $, $2\sigma $, and $3\sigma $ contours are shown. Backgrounds, cuts, and a 2\% systematic uncertainty on the flux are included. Result are from Ref.\nobreakspace {}12\hbox {}. }}{61}} \newlabel{fig:b1}{{37}{61}} \@writefile{lof}{\contentsline {figure}{\numberline {38}{\ignorespaces Fit results for simulated $\nu _\mu $ disappearance measurements with a 10\nobreakspace {}kt ICANOE type detector 732\nobreakspace {}km downstream of a 30\nobreakspace {}GeV neutrino factory in which there are $10^{20} \mu $ decays. The effect of a systematic uncertainty on the neutrino flux is shown. Result are from Ref.\nobreakspace {}11\hbox {}. }}{61}} \newlabel{fig:m8}{{38}{61}} \@writefile{lof}{\contentsline {figure}{\numberline {39}{\ignorespaces Fit results for simulated $\nu _\mu $ disappearance measurements with a 10\nobreakspace {}kt ICANOE type detector 2900\nobreakspace {}km (top plot) and 7400\nobreakspace {}km (bottom plot) downstream of a 30\nobreakspace {}GeV neutrino factory in which there are (a) $10^{20} \mu $ decays and (b) $10^{21} \mu $ decays. Result are from Ref.\nobreakspace {}11\hbox {}. }}{62}} \newlabel{fig:m9}{{39}{62}} \@writefile{lof}{\contentsline {figure}{\numberline {40}{\ignorespaces Fit results for simulated $\nu _\mu $ disappearance measurements with a 10\nobreakspace {}kt ICANOE type detector 2900\nobreakspace {}km downstream of a 30\nobreakspace {}GeV neutrino factory in which there are $10^{20} \mu ^+$ decays followed by $10^{20} \mu ^+$ decays. Result are shown for 3 values of $\delta m^2_{32}$, and are from Ref.\nobreakspace {}11\hbox {}. }}{63}} \newlabel{fig:m10}{{40}{63}} \@writefile{lof}{\contentsline {figure}{\numberline {41}{\ignorespaces Fit results for simulated $\nu _\mu $ disappearance measurements with a 10\nobreakspace {}kt ICANOE type detector 7400\nobreakspace {}km downstream of a 30\nobreakspace {}GeV neutrino factory in which there are $10^{20} \mu ^+$ decays followed by $10^{20} \mu ^+$ decays. Result are shown for 3 values of $\delta m^2_{32}$, and are from Ref.\nobreakspace {}11\hbox {}. }}{64}} \newlabel{fig:m11}{{41}{64}} \@writefile{lof}{\contentsline {figure}{\numberline {42}{\ignorespaces The ratio $R$ of $\mathaccent "7016\relax \nu _e \to \mathaccent "7016\relax \nu _\mu $ to $\nu _e \to \nu _\mu $ event rates at a 20\nobreakspace {}GeV neutrino factory for $\delta = 0$ and $\pm \pi /2$. The upper group of curves is for $\delta m^2_{32} < 0$, the lower group is for $\delta m^2_{32} > 0$, and the statistical errors correspond to $10^{21}$ muon decays of each sign and a 50\nobreakspace {}kt detector. The oscillation parameters correspond to the LAM scenario IA1. Result are from Ref.\nobreakspace {}10\hbox {}. }}{64}} \newlabel{fig:cp1}{{42}{64}} \@writefile{lof}{\contentsline {figure}{\numberline {43}{\ignorespaces Reach in $\mathop {\mathgroup \symoperators sin}\nolimits ^22\theta _{13}$ that yields a $3\sigma $ discrimination between (a) $\delta = 0$ and $\pi /2$ with $\delta m^2_{32} > 0$, (b) $\delta = 0$ and $\pi /2$ with $\delta m^2_{32} < 0$, (c) $\delta = 0$ and $-\pi /2$ with $\delta m^2_{32} > 0$, and (d) $\delta = 0$ and $-\pi /2$ with $\delta m^2_{32} < 0$. The discrimination is based on a comparison of wrong--sign muon CC event rates in a 50\nobreakspace {}kt detector when $10^{21}$ positive and negative muons alternately decay in the neutrino factory. The reach is shown versus baseline for four storage ring energies. The oscillation parameters correspond to the LAM scenario IA1. Result are from Ref.\nobreakspace {}10\hbox {}. }}{65}} \newlabel{fig:cp2}{{43}{65}} \@writefile{lof}{\contentsline {figure}{\numberline {44}{\ignorespaces Fit results in the CP phase $\delta $ versus $\theta _{13}$ plane for a LMA scenario with $\delta m^2_{21} = 1 \times 10^{-4}$\nobreakspace {}eV$^2$/c$^4$. The 68.5, 90, and 99\% CL contours are shown for a 40\nobreakspace {}kt detector a distance $L$\nobreakspace {}km downstream of a 50\nobreakspace {}GeV neutrino factory in which there are $10^{21} \mu ^+$ and $10^{21} \mu ^-$ decays. Result are from Ref.\nobreakspace {}9\hbox {}. }}{65}} \newlabel{fig:cp3}{{44}{65}} \@writefile{lof}{\contentsline {figure}{\numberline {45}{\ignorespaces The lowest value of $\delta m^2_{21}$, shown as a function of $\theta _{13}$, for which the maximal CP phase $\delta = \pi /2$ can be distinguished from a vanishing phase in a LMA oscillation scenario. The curve corresponds to a 40\nobreakspace {}kt detector 3500\nobreakspace {}km downstream of a 50\nobreakspace {}GeV neutrino factory in which there are $10^{21} \mu ^+$ and $10^{21} \mu ^-$ decays. Result are from Ref.\nobreakspace {}9\hbox {}. }}{66}} \newlabel{fig:cp4}{{45}{66}}