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Abstract

The GFDL Flexible Modeling System (FMS) is a publicly available software infrastructure for the
construction of atmosphere, ocean, and coupled climate models. The code is portable across a wide
variety of scalar and parallel computing architectures, and is designed for flexibility, modularity
and extensibility.

The FMS manual is aimed at all users and developers of models using the FMS infrastructure.
It describes the scope of the FMS infrastructure; the standards and conventions employed by FMS;
the principles of design of individual FMS components and elements; the policies regarding its
use both inside and outside GFDL, including the proposal and implementation of modifications
and extensions; as well as providing links to the actual source and documentation. It is intended
that the manual will permit a free and open manner for the user/developer to interact with FMS,
including configuring models and running them, designing and building extensions, porting to new
platforms, and replacing any FMS component with new code that will be usable across the FMS
community.

An online version of this document is available at:
http://www.gfdl.gov/˜vb/FMSManual
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Chapter 1

Overview

1.1 Introduction

In climate research, with the increased emphasis on detailed representation of individual physical
processes governing the climate, the construction of a model has come to require large teams
working in concert, with individual sub-groups each specializing in a different component of the
climate system, such as the ocean circulation, the biosphere, land hydrology, radiative transfer and
chemistry, and so on. The development of model code now requires teams to be able to contribute
components to an overall coupled system, with no single kernel of researchers mastering the whole.
This may be called the distributed development model, in contrast with the monolithic small-team
model of earlier decades.

A simultaneous trend is the increase in hardware and software complexity in high-performance
computing, as we shift toward the use of scalable computing architectures. Scalable architectures
come in several varieties, including shared-memory parallel vector systems, distributed memory
massively-parallel systems, and distributed shared-memory NUMA systems. The individual com-
puting elements themselves can embody complex memory hierarchies. To facilitate sharing of
code and development costs across multiple institutions, it is necessary to abstract away the details
of the underlying architecture and provide a uniform programming model across different scalable
and uniprocessor architectures.

These developments entail a change in the programming paradigm used in the construction
of complex earth systems models. The approach is to build code out of independent modular
components, which can be assembled by either choosing a configuration of components suitable
to the scientific task at hand, or else easily extended to such a configuration. The code must thus
embody the principles of modularity, flexibility and extensibility.

The current trend in model development is along these lines, with systematic efforts under way
in Europe and the U.S to develop shared infrastructure for earth systems models. It is envisaged that
the models developed on this shared infrastructure will go to meet a variety of needs: they will work
on different available computer architectures at different levels of complexity, with the same model
code using one set of components on a university researcher’s desktop, and with a different choice
of subsystems, running comprehensive assessments of climate evolution at large supercomputing

3
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sites using the best assembly of climate component models available at the moment.
The shared infrastructure currently in development concentrates on the underlying “plumbing”

for coupled earth systems models, building the layers necessary for efficient parallel computation
and data transfer between model components on independent grids.

1.2 The GFDL Flexible Modeling System

The Geophysical Fluid Dynamics Laboratory (NOAA/GFDL) undertook a technology moderniza-
tion program beginning in the late 1990s. The principal aim was to prepare an orderly transition
from vector to parallel computing. Simultaneously, the opportunity presented itself for a software
modernization effort, the result of which is the GFDL Flexible Modeling System (FMS). FMS
is an attempt to address the need to develop high-performance kernels for the numerical algo-
rithms underlying non-linear flow and physical processes in complex fluids, while maintaining the
high-level structure needed to harness component models of climate subsystems developed by in-
dependent groups of researchers. It constitutes a specification of standards, and a shared software
infrastructure implementing those standards, for the construction of climate models and model
components for vector and parallel computers. It forms the basis of current and future coupled
modeling at GFDL. In 2000, it was benchmarked on a wide variety of high-end computing sys-
tems, and runs in production on three very different architectures: parallel vector (PVP), distributed
massively-parallel (MPP) and distributed shared-memory (DSM)1, as well as on scalar micropro-
cessors. Models in production within FMS include a hydrostatic spectral atmosphere, a hydrostatic
grid-point atmosphere, an ocean model (MOM), and land and sea ice models. In development, or
scheduled for inclusion, are a non-hydrostatic atmospheric model, an isopycnal coordinate ocean
model, and an ocean data assimilation system.

The shared software for FMS includes at the lowest level a parallel framework for handling
distribution of work among multiple processors, described in Chapter 5. Upon this are built the
exchange grid software layer for conservative data exchange between independent model grids,
and a layer for parallel I/O. Further layers of software include a diagnostics manager for creat-
ing runtime diagnostic datasets in a variety of file formats, a time manager, general utilities for
file-handling and error-handling, and a uniform interface to scientific software libraries providing
methods such as FFTs. Interchangeable components are designed to present a uniform interface, so
that for instance, behind an “ocean model” interface in FMS may lie a full-fledged ocean model,
a few lines of code representing a mixed layer, or merely a routine that reads in an appropriate
dataset, without requiring other component models to be aware which of these has been chosen in
a particular model configuration. Coupled climate models in FMS are built as a single executable
calling subroutines for component models for the atmosphere, ocean and so on. Component mod-
els may be on independent logically rectangular (though possibly physically curvilinear) grids,
linked by the exchange grid, and making maximal use of the shared software layers.

This document provides a description of the overall design of FMS, with a specification of the
coding constructs required of developers building elements of the FMS. We first lay out the overall

1Also known as cache-coherent non-uniform memory access (ccNUMA) architecture.
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structure of FMS, followed by a section on general coding standards, and finally standards specific
to different FMS elements.

1.3 Purpose of the Manual

The documentation for FMS is divided in three categories: a developer’s guide; a user’s guide;
and a technical description where appropriate. This document serves as the developer’s guide. We
visualize several categories of developer: consider

� a university researcher with an existing atmospheric model, who wishes to conduct a coupled
climate experiment with a slab ocean;

� a scientific programmer porting the FMS infrastructure to a novel scalable architecture;

� a developer of physics parameterizations;

� a climate modeler constructing an FMS model configuration.

The user’s guide and technical description are distributed as modular documentation along with
the code. The user’s guide described the use and call syntax associated with an FMS module, and
the technical description provides more details on the algorithms and their implementation. As
the examples listed above show, the category of user we call “developer” is broad – every user
is a potential developer – and needs a broader document linking the whole. While remaining
closely linked to the user guide and technical documents, this developer’s guide will provide an
understanding of design principles on which the module interfaces and data structures in FMS
are constructed, and how it is intended to be used. The underpinning for this is provided by the
standards describing the design specification for FMS. It is hoped that the manual will permit a free
and open manner for the user/developer to interact with FMS, including the design and building of
extensions, porting to new platforms, and replacing any FMS component with new code that will
be usable across the FMS community.



Chapter 2

General design specification

This chapter describes a design specification for FMS. It first lays out the general design prin-
ciples which have informed our choices in code design, in Section 2.1. The different elements
that constitute FMS models are laid out in Section 2.2. The standards followed by FMS are de-
scribed in subsequent sections. These include a section on the conventions we employ, a section
on programming practice, a section on the representation of physical information and a section on
programming style. General documentation standards are then described, also with sections on
conventions, practice and style. Finally, in Section 2.3 we describe the organization of the FMS,
and how it is delivered as a product to the user/developer. This includes details on the organization
of the source, version control, compliance verification and review, compilation and data processing
requirements, test scripts, and guidelines for interaction with the FMS Development Team.

2.1 FMS design principles

The construction of FMS is guided by several principles of design, outlined here.

� We follow a distributed development model, with large teams working in concert and con-
tributing pieces to FMS from their areas of scientific and technical expertise. The harnessing
of the work of disparate teams requires modular design, with well-defined standards for the
interfaces between modules. These are open standards, defined by consultation across a net-
work of developers. Programming practices that embody the modularity principle include:

– Data-hiding: modules only publish data and interfaces that are needed to interact with
other modules, and keep the rest private;

– Encapsulation: modules encapsulate information with data structures that embody the
objects for which it is responsible;

– Self-sufficiency: Modules are responsible for initializing and configuring themselves,
saving their state on termination, and publishing diagnostic information about them-
selves.

6
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� We intend FMS eventually to be usable across a wide variety of high-end scalable computing
architectures, as well as desktop uniprocessor systems. This implies close attention to issues
of portability of code. We achieve this by close adherence to official language standards,
the use of community-standard software packages, and compliance with the standards we
have chosen to define for FMS. When departing from the standard (which could happen for
instance, if a non-standard proprietary programming interface offered major performance
enhancements for a particular platform), a standard-conformant alternative is required.

� We intend FMS to serve a variety of needs within the modeling community, spanning a range
of resolutions between paleoclimate modeling, and severe storm simulations, with choices
of simple and and comprehensive representations for model components, physics, and so on.
This flexibility is achieved by designing FMS to permit researchers to assemble and configure
particular experiments out of a wide choice of available components and modules.

� We anticipate that users and developers of FMS will extend the scope of FMS beyond what
is available at any time. This could include porting to novel architectures, adding dynamical
cores, and new physics options to various component models, implementing new grids and
numerical stencils and so on. We therefore view extensibility as a design principle always to
be kept in view. This requires some attempt to anticipate future needs, and design interfaces
that can accommodate them. In general, choices of model components for the same function
(e.g ocean model, convection parameterization, advection scheme) should have identical
interfaces, or be capable of being wrapped under an identical interface. This requires some
care and forward thinking.

Another consideration related to extensibility is in the use of data structures. If it is antici-
pated that the data structures might evolve, it would be prudent to make them opaque objects
(using the private keyword in f90 derived types) whose elements can only be accessed
through specified interfaces.

� The design of FMS calls for rigorous documentation using standard documentation formats.
The documentation itself is modular, and distributed along with the source. At a minimum,
the documentation is required to explain how to interact with the module: its syntax, function
and public interfaces. In addition, as an aid to developers, it is expected that authors will
provide more detailed technical documentation explaining the inner workings of their code,
and a rationale behind their design choices.

� As described above, we do expect users of FMS to also be developers. The building of
community is also viewed as a fundamental design principle vital to the success of a shared
software infrastructure, and the distributed development model. We achieve this by situating
the distribution of FMS within standard, open, and freely available tools for version control,
documentation, source and data distribution, sharing of information, and feedback.

The principles outlined here – modularity, portability, flexibility, extensibility and com-
munity – are in our view the vital elements of a successful distributed development model. The
conventions and standards described in the following sections all embody these principles.
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2.2 Elements of FMS

The design of FMS is principally aimed at the construction of coupled climate models running as
a single executable on vector and parallel high-performance computers. The FMS source tree is
divided into three principal sections:

2.2.1 Component models

Component models are models for the atmosphere, ice (or ocean surface), land surface, and ocean
subsystems. Any component model conforming to FMS practice can be used as a component
model. FMS permits each component model to be run either solo or coupled.

Each component model comes with:

1. a solo driver, a program to run the model standalone, if appropriate;

2. a coupled model driver, a routine for communicating with the coupler layer described below;

3. a directory of physical parameterizations of unresolved phenomena. Different choices of
parameterization of the same process (e.g moist convection in the atmosphere) must use an
identical interface;

4. an unspecified number of component model cores, each in its own subdirectory. These are
choices of a core representation of the component model’s role in the coupled system. One
of these cores in conjunction with the items above provide a comprehensive representation of
that climate model component in a coupled system for a particular experiment. These could
be dynamical cores (e.g the B-grid or spectral atmosphere) or simplified representations of
a model component (e.g a mixed-layer or slab ocean) or even routines that merely read in a
dataset (e.g an AMIP dataset for sea ice). Different choices of model for the same component
must use an identical interface.

2.2.2 Coupler

The coupler consists of the main program driving a coupled model, as well as the exchange grid
software for communicating data between component models, which can be on independent grids.
Component models communicate only with the coupler, which mediates all interactions between
them.

2.2.3 Shared utilities

These consists of fairly general purpose utility routines that are common to the component models
and the coupler layer. These include:

� parallel communication and memory management kernels;
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� parallel I/O;

� a diagnostics manager for registering, processing, and writing out model fields;

� standard interfaces to scientific software libraries (e.g for FFTs);

� a model time and calendar manager;

� performance evaluation;

� error-handling.

2.3 Organization of FMS

2.3.1 The FMS source

CVS is the software used for FMS version control. The FMS source is available under CVS
as described in the FMS distribution webpage. The directory tree reflects the modeling system
structure described in Section 2.2.

2.3.2 The FMS executable

An FMS experiment is an instantiation of a source code subset used to run a climate model simula-
tion, solo or coupled. In either case, an experiment consists of a single executable. This executable
will call component models as routines. On a parallel system, component models may run serially
on the same processor set, or concurrently on independent sets of processors.

The executable must be configurable at runtime as much as possible. Features may be frozen at
compile time if a clear performance advantage is demonstrable. In particular, the choice of model
size, grid, and domain decomposition must be runtime-configurable.

2.3.3 Compilation

FMS is designed to be written in a high-level abstract language, with the current choice being f90
(see Section 2.4.1). The source is split up among many files, and will contain many inter-procedural
dependencies. Compilation is potentially slow, and in the case of f90, must be performed in
a certain order, following a hierarchy of use statements. The use of Makefiles is thus strongly
recommended.

The mkmf utility supplied with FMS performs source file dependency analysis, with particular
attention to f90, and will generate Makefiles for the task at hand.
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2.4 FMS coding conventions

2.4.1 Language

The FMS code is currently written in Fortran 90Metcalf and Reid (1999). f90 has many of the
high-level features required to satisfy the design principles, while retaining adequate numerical
performance.

The programming standards below in Section 2.5 all are written specifically for f90. Should
code in other languages become part of FMS, these standards will be appropriately extended.

1. All elements of the ANSI f90 standard are permitted, with a few listed exceptions whose
use is discouraged or prohibited. These are enumerated below in Section 2.5.8.

2. Language extensions are severely restricted. They may be used in limited fashion, provided
a pressing reason exists (e.g major performance enhancement using a particular proprietary
software system), and an alternate formulation is provided for compiling environments that
do not permit the extension.

3. The language of FMS may change in the future, to Fortran 95 or Fortran 2000, or any other,
after review.

2.4.2 Preprocessing

FMS uses preprocessor directives based on cpp. The use is intended for language extensions, and
in some circumstances, it is used to generate module procedures under a generic interface for vari-
ables of different type, kind and rank (thus circumventing f90’s strict typing), while maintaining
a single copy of the source.

The use of preprocessor directives in FMS is permitted under the following conditions:

1. Where language extensions are used (see Section 2.4.1), cpp #ifdef statements must be
used to shield lines from compilers that may not recognize them.

2. Use is restricted to the builtin preprocessor of the f90 compiler (based on cpp), and cannot
be based on external preprocessors such as m4. This condition may be relaxed on platforms
where the builtin preprocessor proves to be inadequate.

3. Use is restricted to short code sections (a useful rule of thumb is that an #ifdef and the
matching #endif must both be visible on a single 80 � 24 editor window).

4. Owing to restrictions in certain compilers, preprocessor variable names may not exceed 31
characters.
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2.4.3 Code units

FMS source is divided into software modules. A software module consists of one of the following:

1. An f90 module;

2. An f90 program unit;

3. A group of f90 modules constituting a package. A package is a software unit that has been
separated into multiple f90 modules and source files for convenience, but intended to be
used through a single interface, with unified documentation, a single set of public interfaces,
a single I/O point, and so on. Examples of packages in FMS include the spectral transform
package (which includes a separate source file for the Legendre transform code) and the
diagnostics manager, which has been divided for convenience into multiple files. Direct use
of the f90 modules within a package is discouraged, as the individual modules may not
adhere to the standards specified here. Packages are identified by the f90 module at the
head of the package tree.

f90 modules and source files which are part of a package will be explicitly identified as
such, both in the source and in the documentation.

Subsequent discussion only refers to software modules. The manual will explicitly identify
items that specifically refer to f90 modules.

1. A module is responsible for its own I/O, including diagnostics, restarts, and input namelists.

2. A module has a well-defined set of public interfaces, including its own procedural interfaces,
file I/O interfaces, and public derived types.

Each source code file defines a single program or f90 module.
The general coding standard for a software module is described below in Section 2.5.

2.4.4 Filenames

The basename for the f90 module module_name is module_name. (Note that the module
name extension _mod is omitted from the basename). All filenames associated with this module
use this basename. The basename for a package is the name at the head of the package tree.

1. The source file for module_name is module_name.f90 (or .F90 if it contains prepro-
cessor directives).

2. Compilers produce object code for each source file, usually with a .o extension (module_-
name.o). During linking, it is required that each object file have a unique name. The
module_name must be carefully chosen to prevent name collisions. Extremely generic
names must be avoided. The recommended practice is to use suitable prefixes identifying
the package to which a file belongs (such as mpp_ or diag_).
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3. The namelist file, if any, associated with module_name is module_name.nml. The
namelist itself is called module_name_nml. Any namelist may also appear as an entry in
the file input.nml, the general namelist file.

4. The restart file, if any, associated with module_name is module_name.res. If more
than one restart file is present, a unqiue number is appended, thus module_name#.res.
If the restart is written in netCDF, The extension is .res.nc.

5. An ASCII text output file has the extension .out.

6. An raw binary output file has the extension .data.

7. The documentation associated with instructions for use of module_name is preferably
formatted for web access, and is named module_name.html. Additional (detailed) tech-
nical documentation may also be present in other formats, with the basename module_-
name.technotes and a standard file extension (e.g module_name.ps for a PostScript
file, module_name.pdf for PDF). PDF is recommended since PDF files are now indexed
by many web search engines.

8. If the documentation was generated from LATEX source, the file module_name.tex may
also be distributed. The use of non-standard LATEX packages is discouraged.

9. Distributed datasets are datasets where each processor has written its portion of some global
data to a separate file, intended for later assembly offline. These should be identified by
the 4-digit processor ID following the standard extensions described here (e.g module_-
name.nc.####) so it is evident that this is an incomplete file.

Files are sorted in subdirectories below the working directory. The convention calls for in-
put restart files to be read from the INPUT/ directory, the output restarts to be written to the
RESTART/ directory, and input datasets and namelists to be in the DATA/ directory. Documenta-
tion for a module will reside in the same directory as its source code.

2.4.5 Binary data formats

The preferred format for binary data in FMS is netCDF, a self-describing dataset format widely
used in the climate modeling community. netCDF follows the IEEE standards for binary data
representation. We currently follow the COARDS convention1 for netCDF metadata. We anticipate
that very soon we will adopt the CF convention2 currently under final review. The CF convention
is fully backward-compatible with COARDS.

The conventional extension for netCDF files from FMS is .nc.
1http://ferret.wrc.noaa.gov/noaa coop/coop cdf profile.html
2http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-current.htm
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2.4.6 Indices

By convention, spatial indices (x,y,z) should use indices (i,j,k).

2.5 Programming Standards

2.5.1 Scope

Each module in FMS must have private scope by default. Each public interface therefore needs to
be explicitly published.

2.5.2 Typing

The use of implicit typing is forbidden. Every module must contain the line:

implicit none

in the module header, and every variable explicitly declared.
Variables are generally assumed to be of default KIND. There may sometimes be reason to

specify the KIND of a variable:

1. If KINDmust be specified for reasons of precision, the f90 intrinsics SELECTED_REAL_-
KIND and SELECTED_INT_KINDmust be used.

2. If KIND must be specified in order to control the storage size (bytelength) of a variable
(typically in communication and I/O code) it must be done using the parameters r8_kind,
r4_kind, i8_kind, i4_kind and i2_kind, supplied by the module platform_-
mod, which sets various values that are specific to the computing platform. The platform
module sets these values to the appropriate KIND values for FP and integer variables of the
required bytelength.

2.5.3 Character variables

There are a few restrictions on the length of a character variable:

1. Character variables that are arguments to routines must be declared with (len=*). It has
been observed that compilers are inconsistent in their “padding” practices, and the standard
is silent on the subject.

2. It is recommended that other character variables be declared with length a multiple of 4, or
preferably 8. This is a requirement for variables that are components of derived types, since
it has been observed that without these restriction, there are occasional word alignment fault
errors generated.
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2.5.4 Arguments

The intent of arguments to subroutines and functions must be explictly specified.

2.5.5 Arithmetic

FMS requires the use of a default real variable kind that is equivalent to IEEE 64-bit floating-point
arithmetic.

2.5.6 Constants

Constants shared across packages must never be hardcoded: instead mnemonically useful names
are required. This applies to physical constants such as the universal gas constant, gravity, and so
on, but also for flags used to select code options. In particular, this coding construct:

subroutine advection(flag)
integer, intent(in) :: flag
...
if( flag.EQ.1 )then

call upwind_advection( ... )
else if( flag.EQ.2 )then

call smolar_advection( ... )
...
endif
end subroutine advection
...
call advection(1)

is forbidden. This should instead be written as:

integer, parameter :: UPWIND=1, SMOLAR=2
...
subroutine advection(flag)
integer, intent(in) :: flag
...
if( flag.EQ.UPWIND )then

call upwind_advection( ... )
else if( flag.EQ.SMOLAR )then

call smolar_advection( ... )
...
endif
end subroutine advection
...
call advection(UPWIND)
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2.5.7 Intrinsics

The f90 language provides a number of intrinsic functions for performing common operations.
The use of the standard intrinsics is generally encouraged. The following conditions apply:

1. The generic form of the intrinsic (e.g max()) must be used rather than the specific one (e.g
dmax0()). This permits flexibility to later changes of type.

2. Many of the intrinsic array operations have been found to be poorly optimized for perfor-
mance (e.g reshape(), matmul()) since they have to be perfectly general. These must
be used with care in code regions that are critical for performance. (Restate this in perfor-
mance chapter).

3. Several older standard intrinsic names have been declared obsolescent, and the current names
are preferred (e.g modulo() instead of mod(), real() instead of float()).

2.5.8 Deprecated language elements

Deprecated language elements include:

1. common blocks. Use module global variables instead.

2. implicit typing: every code unit must be implicit none (see Section 2.5.2).

3. STOP statements (see Section 2.5.9).

2.5.9 Error exit

Error exit in a parallel environment requires additional care for a graceful exit on all processors.
The FMS standard requires that:

1. the STOP statement not be used anywhere, including for the scheduled exit, since this may
cause one processor to exit, and the others to hang.

2. the exit print an adequate account of its reasons, ID number of the processor where the error
occurred, and a call stack traceback if one is accessible, to stderr.

3. the error exit return a non-zero status to the operating system, so that job scripts are made
aware of a failure.

It is strongly recommended that error exits be made through the mpp_error interface, which
satisfies all of these conditions.
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2.5.10 The module statement

1. The module name must be an unambiguous description of the module’s function, with a
_mod extension.

2. The module statement must appear on the same line as the module name, i.e, do not use:

module &
module_name

This is to be consistent with the dependency analysis performed by mkmf outlined in Sec-
tion 2.3.3.

2.5.11 use statements

1. The use statement must appear on the same line as the module name, i.e, do not use:

use &
module_name

This is to be consistent with the dependency analysis performed by mkmf outlined in Sec-
tion 2.3.3.

2. The use, only: clause is required so that all imported elements are explicitly declared.

3. Variables imported by a use statement must not be modified by the importing module.

4. Modules cannot publish variables and interfaces imported from another module. Thus, each
public element of a module is only available through that module. This does not apply to
modules in a package, where the package interface may provide all the required interfaces.

2.5.12 Version identifier

Since the FMS is expected to be in constant evolution, each revision being used must have a unique
identifier. We use CVS keywords for this purpose. Each module must contain the following lines:

character(len=128) :: version = ’$Id$’
character(len=128) :: tagname = ’$Name$’

The first entry returns a unique identifier to a particular revision of the source file. The second
entry returns the tag that was used to checkout the code from the CVS repository. The author
is expected to make these entries exactly as shown prior to the first import of the code into the
repository. Subsequently, CVS will expand the keywords and keep the names current.

Additional information can be included in the version and tagname strings if desired. In
particular, if your are compiling using a file that has been modified from the repository version,
this fact should be signalled by adding a string such as “modified” to the version string.
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2.5.13 The logfile

FMS maintains a logfile logfile.out that can be used for an exact reconstruction of the source
and inputs used in a run. Each module must make an entry in the logfile on initialization. The entry
includes the revision information from Section 2.5.12, the contents of namelists, and identifiers for
input files used. See Section 2.5.19.

2.5.14 Model fields

1. A field is a function of space representing the instantaneous state of a model field.

2. A field is represented by a floating-point array, either declared as such or as a component of
a type.

3. Arrays containing fields may be of higher rank, with the extra dimensions representing, say,
tracer number, or timestep. These dimensions must follow the spatial dimensions.

2.5.15 Memory management

1. The FMS is runtime-configurable, in that all the work arrays are dynamically allocated. Also,
the processor count and domain decomposition must be specifiable at runtime.

2. All fields must be allocated on the data domain of the associated decomposition. In par-
ticular, the allocation of 3D fields on the global domain is prohibited. This standardization
permits all or most of the allocation to be done at initialization, and reduces the use of
assumed-size arrays.

3. The considerations related to domain decomposition do not apply to modules that entirely
column-oriented and have no horizontal dependencies.

2.5.16 Parallelism

The parallelism discussed here refers to the message-passing between nodes on a cluster. If in
addition the user has access to on-node shared memory parallelism, this can easily be applied on
top of the existing parallelism interfaces in thread-safe regions of code (Section 3.2).

1. All parallel processing is done through the mpp_mod, mpp_domains_mod, and mpp_-
io_mod interfaces.

2. Domain decomposition is generally in the horizontal only. For the logically rectilinear grids
(see Section 4.1.1) under consideration, most inter-processor communication can be formu-
lated as halo updates and data transposes, both of which can be handled mpp_update_-
domains procedure. It is anticipated that direct use of mpp_transmit should rarely be
necessary.
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The parallel processing modules are documented in Chapter 5.
The MPP layers are designed to work on single processors with negligible overhead.

2.5.17 I/O

I/O must flow through the standard I/O packages provided by FMS (the diagnostics manager, the
FMS I/O manager, or the MPP I/O layer underlying these). In particular, the direct use of Fortran
I/O or other I/O APIs for opening and closing files is forbidden.

A particularly dangerous practice is using Fortran I/O units without checking if they are already
in use. The use of the FMS I/O standard interfaces prevents this.

2.5.18 Procedural interfaces

Procedural interfaces are the public interfaces to subroutines and functions provided by a module.

1. Procedures that perform the same function on different datatypes (e.g of differing type, kind
or rank) must have a single generic interface. When the generic public interface exists, all
the module procedures that constitute it must be private.

2. Optional arguments, if any, should follow the required arguments, so that the procedure may
be called without explicit argument keywords.

3. Argument lists should be short. If necessary related elements of an argument list should be
encapsulated in a public derived type.

2.5.19 Module constructor

Each module or package must have an initialization procedure called a constructor. It is generally
called once in the course of the run.

1. The constructor is conventionally a subroutine named module_name_init.

2. The constructor may be responsible for allocating global storage.

3. The constructor reads the input data, if any is required. This includes namelists, restart files
and any other data files. In every case, the constructor must be capable of generating internal
defaults if the input file is not present. It must terminate gracefully if it is neither capable of
proceeding without an input file, nor of generating internal defaults.

4. The constructor writes entries to the logfile logfile.out so that the model output con-
tains a permanent record of the exact state of the code that was used to generate it (see Sec-
tion 2.5.13). The FMS I/O package returns the unit number stdlog for this. Entries include
the version identifier (see Section 2.5.12), the namelist contents, and identifiers for any input
files.
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5. There must be a private logical variable in the module generally called module_name_-
initialized that is initialized at runtime to .FALSE. and is set to .TRUE. by the
constructor. All module procedures can subsequently check if the module had been properly
initialized. If the constructor is called and this variable is .TRUE., it must exit cleanly and
silently.

6. The constructor must attempt to call the constructor of each module that it uses.

The constructor may be omitted from a module if none of the initialization functions described
here (accessing input data, allocating storage, logging) are required.

2.5.20 Module destructor

It is recommended that each module have a termination procedure called a destructor. It terminates
use of the module, not of the run. It is generally called once in the course of the run.

1. The destructor is by convention a subroutine named module_name_end.

2. The destructor is responsible for deallocating module global storage.

3. The destructor closes any open files associated with the module.

4. The variable module_name_initialized (see Section 2.5.19) is set to .FALSE. by
the destructor.

5. Restart files save the state of a module upon exit. The destructor is responsible for the writing
of restarts. Restart files are written in full 64-bit precision to preserve the bitwise exact model
state. These are currently being written in fortran unformatted I/O in IEEE64 format, and
will eventually also be written in netCDF.

2.6 Coding style recommendations

Style is somewhat personal, and it would be needlessly restrictive to attempt to impose style re-
quirements. These are recommendations which we believe will lead pleasant interactions for de-
velopers with clear, legible and understandable code. The only style requirement we place is that
of consistency: a single code unit is required to be rigorous in using the author’s preferred set
of stylistic attributes. It is not onerous to follow a style: modern editors have many language-aware
features designed to produce a consistent, customizable style.

Style recommendations include the following:

1. The use of free format;

2. The use of do...end do constructs (as opposed to numbered loops as in Fortran-IV);

3. The use of proper indentation of loops and blocks;
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4. The liberal use of blank lines to delimit code blocks;

5. The use of comment lines of dashes or dots to delimit procedures;

6. The use of useful descriptive names for physically meaningful variables; short conventional
names for iterators (e.g (i,j,k) for spatial grid indices);

7. The use of uppercase for constants (parameters), lowercase for variables;

8. The use of verbose syntax on end statements (e.g subroutine sub...end subroutine sub
rather than subroutine sub...end);

9. The use of short comments on the same line to identify variables; longer comments in well-
delineated blocks to describe what a portion of code is doing;

10. Compact code units: long procedures should be split up if possible. 200 lines is a rule-of-
thumb procedure length limit.

2.7 Module documentation standard

There are three categories of documentation:

Internal documentation consists of comments in the code, expected to be reasonably descriptive
but terse. These include:

1. Descriptions of module and interface functionality, including brief descriptions of in-
terface arguments.

2. Descriptions of important internal variables.

3. Frequent comments before sections of code.

User guide This is external documentation distributed alongside the code. This section of the
Manual describes in more detail the standards and conventions to be followed by a user
guide.

Technical and scientific documentation This contains a technical and/or mathematical descrip-
tion of the process or algorithm being solved and should be referenced by the user guide. It
may take the form of a scientific paper. As described in Section 2.4.4, these may be in PDF
or PostScript, with PDF preferred.

Each FMS module is required to have a user guide, with the exception of modules that are
always invoked as part of a package (Section 2.4.3).
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2.7.1 Language

The user guide documentation is written in HTML. A standard format is required as it is automat-
ically processed by scripts.

2.7.2 Sections

Sections MUST be delimited by the following HTML comments:

<!-- BEGIN section_name -->
... section text ...
<!-- END section_name -->

The section_name must be in uppercase.
The section names are given below (items marked with an asterisk are required). An HTML

anchor should be placed before the section title. The form of this anchor should be:

<A NAME="SECTION NAME">

where the section name should be all capitals (see the list of section names below). The section
titles should not appear between the delimiters.

HEADER * module name, contact person, tags link (see template)

OVERVIEW * A brief description of what the module does.

DESCRIPTION * A more detailed description of what the module does, including links to tech-
nical/scientific documentation.

OTHER MODULES USED A list of other modules used. It is recommended that the list also
include a version number that the module was tested with.

PUBLIC INTERFACE * A brief description of the entire public interface. This includes all pub-
lic data and routines. Should also mention whether a namelist interface exists, if data sets
are needed, and how any restart data might be used. One line summaries should suffice here.
(This section could include much more information???)

PUBLIC DATA A detailed description of all public data and data types (includes units, variable
types, and dimensions).

PUBLIC ROUTINES A detailed description of public routines and operators (all arguments must
be described including their units, type, and dimensions).

NAMELIST A detailed descriptions of all namelist variables (includes units, type, and default
value).
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DIAGNOSTIC FIELDS A list of possible netcdf diagnostic output fields (includes short name,
units, and description).

DATA SETS Data sets used.

CHANGE HISTORY * Link to the CVS log history for this module.

ERROR MESSAGES A list of all error messages in this module with a brief description and
solution of the error.

REFERENCES A list of references and/or link to technical documentation.

COMPILER SPECIFICS A list of compiler recommendations (might include recommended
compiler version or optimization options for a particular system).

PRECOMPILER OPTIONS A list of precompiler options.

LOADER OPTIONS A list of loader options (e.g., libraries) and/or recommendations (note that
this may be machine dependent).

KNOWN BUGS A list of known bugs.

NOTES Developer notes.

FUTURE PLANS Future plans.

2.7.3 Hyperlinks

Hyperlinks within a document or across documents follow these rules:

� Links to documents that are not in the current directory must have a fully-qualified URL.

� Links to documents that are in the current directory must include the filename.

� Links to the current document that are between section delimiters must also include the
current filename.

2.7.4 Embedded scripts

The use of embedded scripts is forbidden. This includes:

1. dynamic HTML;

2. Java and Javascript;

3. server-side scripts, with the exception of webCVS.
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2.7.5 Style

As for the source, we do not place stringent style requirements for documentation, except to require
consistency. Issues specific to HTML files:

1. Browsers vary widely in their adherence to standards, so the HTML standard itself is not
much use. Testing on different browsers is recommended;

2. Leave as much as possible of the choice of fonts and sizes to the reader;

3. Use cascading stylesheets to provide a uniform look and feel across multiple HTML files.
FMS stylesheets are stored in a separate directory and must be invoked in the HTML header
using a fully-qualified URL.

2.7.6 Template

A template3 is provided for simple generation of conformant user guide HTM documentation.
Steps to be followed using the template are:

1. Enter an appropriate name for contact person (line 25).

2. Change the string sample to the name of your module (lines 3, 21).

3. Complete the URL to the WebCVS Log link (line 28) and Change History link (line 147)
by appending the path in the CVS repository to the source file. For example, for mpp.F90,
you would change the default:

http://www.gfdl.gov/fms-cgi-bin/cvsweb.cgi/FMS/

to:

http://www.gfdl.gov/fms-cgi-bin/cvsweb.cgi/FMS/shared/mpp/mpp.F90

4. Remove sections that you do not expect to use if they are not applicable to your source file.

3http://www.gfdl.gov/˜fms/gfdl/sample.html



Chapter 3

Coding for performance

As high performance is a vital consideration, we provide guidelines for coding that may assist in
writing efficient code. These need not be followed in routines that are not critical to the overall
performance of the code.

3.1 Memory management

The bulk of the memory is taken up with 3D fields. Care must be taken for efficient use of memory
for module fields. This section deals with module internal fields and work arrays.

There are several performance considerations to keep in mind in designing a memory manage-
ment strategy.

� Calls to allocate and deallocate memory from the heap can be expensive as they often require
system calls.1 Calls to allocate and deallocate from the stack (such as automatic arrays) can
be fast, but stack overflows generally overflow to the heap if the request is larger than the
available stack.

� Putting all arrays in static memory may inflate memory usage beyond practical limit. Be-
sides, it contradicts a requirement of runtime-configurability.

In light of these, two strategies suggest themselves. One is for modules to allocate all or most
of the required memory at initialization. Workspace can be managed through the use of simple
user stacks, which are initialized by the module constructor (Section 2.5.19) and reused. Examples
of user stacks are available in the modules in the MPP package, as described in Chapter 5. In
particular, we use very simple stack management, where there is no pervasive storage in the stack:
each call can use all of the stack, and all of the stack is considered to be released on exit from the
call.

1If a process has once allocated memory to itself and then deallocated, that portion of memory can generally be
reused without a system call to assign another memory arena. This optimization is however not guaranteed on all
platforms; and besides is only useful if subsequent allocations fit within the present one.

24



17 December 2002 (
���������	��
���������

) 25

3.2 Thread Safety

Scalable architectures can be divided into two broad classes: distributed memory, where processors
each have independent memory hardware, and shared memory, where many processors have read
and write access to the same physical memory. We can think of MPI and OpenMP as the canonical
programming paradigms for these two architectural types. Increasingly, a hybrid architecture is
becoming a basic form, usually called the “cluster of SMPs”, where a group of shared memory
nodes operates as distributed memory cluster.

A basic distributed memory programming model usually can target all these types of archi-
tectures, and that is the approach followed in FMS. We have not chosen to recast our models in
a hybrid programming paradigm nesting the MPI and OpenMP approaches, choosing instead to
limit software complexity.

Instead, the design choice in FMS is to have clearly demarcated regions of code where dis-
tributed memory parallelism and shared memory parallelism are evoked. The basic parallel con-
struct is the horizontal domain decomposition outlined above in Section 2.5.16. Inside each of
these parallel regions, we may invoke shared memory parallelism in regions of code which are
known to contain no horizontal dependencies, if the underlying architecture is known to deliver
significant increases in performance or scalability with a shared memory programming model.

An example where this approach might be followed is in a spectral atmospheric model. The
spectral transform method for distributed memory typically reaches its limit of scalable efficiency
in a 1D decomposition (longitudinal for the FFTs, latitudinal for the Legende transforms). The
decomposition is longitudinal when data is in grid space. The bulk of the computation is in grid
space and is generally taken up in column physics routines (Section 4.2). Since these routines have
no horizontal data dependencies, it is possible to parallelize further in this region of code using
shared memory parallelism.

Which brings us to the issue of “thread safety”. This is the somewhat imprecise term used to
describe the organization of memory to allow multiple execution threads to use a shared region
of memory, typically through OpenMP or equivalent directives. The key issue is to distinguish
memory addresses as being private to a thread, or shared across threads (which users of earlier
Cray parallel vector syntax may remember as task common and global common). Thread
safety is the careful sorting of variables into thread-private and thread-shared, and careful control
of how shared variables are updated. It is best in general to avoid updating of shared variables, and
if it must be done, the code must be done in critical regions where multiple threads cannot create
a race condition.

The thread safety considerations proposed for FMS include:

� Only routines with no horizontal dependencies (e.g column physics) are permitted to have
shared memory threads. Typically, use is restricted to the column physics routines described
in Section 4.2.

� Global storage in these routines is never updated by a shared memory thread: any variable
that must be updated by one of these routines must be passed through an argument list.
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� No I/O is performed from shared memory threads (beyond simple notes to stdout and
error messages).

More detailed thread-safety guidelines are provided in Section 4.2.

3.3 Pointers

The use of pointers in f90 is a subject of much debate. In general, the use of f90 pointers may
be detrimental to performance, as it inhibits optimization. However, the standard itself requires
dynamic arrays encapsulated within derived types to have the pointer attribute. This is now
widely recognized within the community to have been an error in the standard: and future revisions
of the standard will permit such arrays to have an allocatable attribute. This in fact is already
available as an extension in many compilers, but not widely enough to be usable here.

FMS is also required to be parsed by automatic source-to-source differentiation tools to gener-
ate adjoint and tangent linear models for data assimilation. It has been found that the use of f90
pointers places insuperable demands on automatic differentiation. However, many of these can be
overcome by placing a restriction that f90 poonters be static, i.e, once assigned, they will never
be redirected. FMS adopts this restriction for code segments subject to automatic differentiation.
For code segments violating this restriction, the developer is required to provide adjoint code so
that automatic differentiation for that code segment may be avoided. The adjoint requirement is
not currently in force, but will be shortly.

Another style of pointer of much utility is the Cray pointer. This is outside the f90 standard,
but is universally available on compilers on designed for high-performance, including all the ma-
jor scalable and vector system native compilers, as well as several compilers designed for HPC on
Linux clusters. Its utility is in avoiding memory-to-memory copies, and in writing interfaces inter-
operable with C. Cray pointers are used in FMS in performance-critical low-level utilities such as
the communication kernels (Chapter 5).



Chapter 4

Interfaces for component models

Component models are defined as the model code for each climate subsystem, specifically: atmo-
sphere, ocean, land surface, sea ice, etc. They are divided into a core which treats resolved-scale
dynamics (referred to as the dynamical core) and a set of parameterized representations of unre-
solved phenomena (referred to as the physics routines).

This chapter specifies standards for component models. The standards are divided into a section
specifying general standards for representing physical information, a section specifying standards
for writing column physics (mainly relevant for atmospheric models); the interface specification
for how component models will call column physics; and finally sections specifying the interface
between specific component models and the coupled model driver.

4.1 General representation of physical information

4.1.1 Horizontal grid

The state of a component model is represented at any instant on a logically rectilinear grid. The
horizontal coordinates are permitted to be physically curvilinear. For coupled model experiments,
the coupler places restrictions on the span1 of coupled model elements:

1. The span of the atmos component is defined as the model’s global domain.

2. The span of the planetary surface (the union of land and ice2 components) must equal the
atmospheric span. In addition there must be no holes and no overlaps between the compo-
nents of the planetary surface.

3. The ocean component must exactly underlie the ice component.

4. If any span is incomplete, it must patch in data for the uncovered region. The coupler as-
sumes that each horizontal grid it sees supplies all the data required for coupling.

1The span is defined as the physical area of the planetary surface covered by a component.
2The component model covering the ocean surface is conventionally referred to as the ice component.

27
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There are no restrictions on the span of solo component models.

4.1.2 Vertical grid

The vertical grid specification of a component model is generally internal to that model. Its speci-
fication will be described separately in the specification of component model cores.

4.1.3 Boundary state vector

Each component model has a boundary state vector that contains all information about its instan-
taneous internal state that may be required by the coupler. The requirements of the interface state
vector that each component model must provide are specified in Section 4.3.

4.1.4 Timestepping

1. Explicit or implicit timestepping may be used by any component model. This places cer-
tain restrictions on the treatment of fluxes between component models, described below in
Section 4.3.

2. The coupling timestep must be an integral multiple of each of the component model timesteps;

3. The order of calls to component models in the main program may depend on which of the
component models has the shortest timestep.

4.1.5 Units

FMS uses SI units.

4.2 Column Physics

Historically, the first attempt to write down a formal FMS design specification began with the 1D
column physics specification. While that document continues to be separately available, many
of its recommendations have now become part of the general programming standards for FMS
(Section 2.5). Considerations specific to the column physics routines are outlined here.

4.2.1 Definition of column physics

Various unresolved and other phenomena are represented in models through column physics rou-
tines, which operate entirely on vertical columns of data. The column orientation is a distinguishing
feature in that the model domain decomposition on scalable architectures has a horizontal orienta-
tion (Section 2.5.16).
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4.2.2 Horizontal grid

Column physics routines in FMS are constructed to operate with no knowledge of the parallel
decomposition of the model. The main computational routine must be thread-safe (Section 3.2).

1. All model fields modified by a column physics routine share the same 2D horizontal grid.

2. The standard latitude (- � /2, � /2) and standard longitude (0, 2 � ) location of each column is
passed in arguments which are arrays on this grid.

3. There are no horizontal data dependencies (in the limit, the routine must be able to operate
on a single vertical column).

4. The horizontal grid indices (i,j) must be the two innermost indices on any model field.

5. If lateral boundary conditions are required by the column computations, they, and the lo-
cations of the grid faces, are passed in arrays with one extra (i,j) grid point in each
horizontal direction. There are no current cases requiring lateral boundary conditions.

4.2.3 Vertical grid

1. The vertical grid index k must be the 3rd index of any model field of rank 3 or higher. Other
indices (e.g tracer number, timestep) must follow k.

2. Vertical positions are numbered from top to bottom, with points nearest the ground having
the highest value of k.

3. Vertical grid locations are passed as arrays on the column physics grid. Vertical grid faces,
if required, are passed as arrays with one extra k location. An optional mask array can
be passed to identify non-existent grid locations (e.g locations below the topography in a
non-terrain-following atmospheric vertical co-ordinate).

4.2.4 Shared physical quantities

Some physical quantities (e.g moisture) are shared between multiple parameterizations.

1. Shared physical quantities are passed in and out as optional arguments to avoid redundant
computations.

2. All quantities are in SI units, as in all of FMS. Dimensionless tracer concentrations, by
convention, are in “specific humidity”-like notation, not “mixing ratio”-like.
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4.2.5 Procedural interfaces

There are three basic types of public procedural interfaces, the constructor, destructor, and main
computational routine.

1. The constructor and destructor perform all the functions outlined earlier in Section 2.5.19
and Section 2.5.20, principally I/O and memory management. They are not required to be
thread-safe. They will never be called within a code region that might be partitioned across
shared-memory execution threads.

2. The main computational routine performs the basic calculation associated with the physics
parameterization. The result is returned as either a time tendency or an adjustment.

This routine is required to be thread-safe, as it might potentially be called in a code region
partitioned across shared-memory execution threads. Partitioning is only in the horizontal.
This places some restrictions on the actions such a routine might perform:

(a) No I/O may be performed, barring simple notes, or error messages. The main I/O
activity must be performed by the constructor and destructor. If diagnostic I/O must be
performed during the run, it must be from a separate diagnostic I/O routine called from
outside the threaded region.

(b) Shared memory locations may not be written to by this routine. This applies to scalar
variables: however, model fields may be updated, as their horizontal indices are dis-
tributed among the shared memory threads, and are guaranteed to have no dependen-
cies.

4.3 Coupler
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