Challenges to rockfish conservation/management

A.J. Gharrett and hordes of colleagues

Juneau Center
School of Fisheries and Ocean Sciences
University of Alaska Fairbanks

Challenges to rockfish conservation/management

General

lifehistory information incomplete
for many insemination/ fertilization/parturition locations unknown
Why?
few fall/winter surveys
physical marking/recovery methods poor
insufficient barotrauma, large numbers

Challenges to rockfish conservation/management

General

lifehistory information incomplete
 for many insemination/ fertilization/parturition locations unknown

Why?
few fall/winter surveys
physical marking/recovery methods
insufficient barotrauma, large numbers
Genetics
statistical and parameter analyses inadequate;
estimates difficult
e.g., dispersal rates, gene flow, intrinsic scale, N_{e} or N_{e} / N ratio, N_{b}

Why?
modest divergence levels
large (effective) populations
long generation times

Geneticists frequently use a value called $F_{S T}$

$$
F_{S T} \text { is the fixation coefficient }
$$

$F_{S T}$ can be a misleading value because it as a relative value, a ratio:

$$
F_{S T}=\frac{\sigma_{\text {among }}^{2}}{\sigma_{\text {total }}^{2}}
$$

It is not an absolute measure of genetic divergence.
$F_{S T}$ can be used to estimate exchange of individuals among populations

$$
F_{S T} \approx \frac{1}{4 N_{e} m+1} \quad N_{e} m \approx \frac{1}{4 F_{S T}}-\frac{1}{4}
$$

That is, at equilibrium between random genetic drift and gene flow

How fast does that equilibrium (for $F_{S T}$) occur?

$$
t_{1 / 2} \approx \frac{\ln (2)}{2 m+1 / N_{e}} \quad \text { (Crow and Aoki 1984) }
$$

Both the $N_{e} m$ exchanged and $t_{1 / 2}$ depend on both effective size $\left(N_{e}\right)$ and proportionate rate of migration (m).

Let's see what kinds of numbers pop out of simple calculations.

What do these values mean in a management time-frame?

Let's do some more back-of-the-envelope calculations:
Consider a low $F_{S T}$:
$F_{S T}=0.0025$ corresponds to ~ 100 immigrants $\left(N_{\mathrm{e}} m\right)$

N_{e}		m	
		$t_{1 / 2}$	
100		0.34	
1000		0.1	
10000		0.01	
1.45			
100000		0.001	
	344.48		
1000000		0.0001	

$t_{1 / 2}$ is in generations
how long is a rockfish generation?

But wait, there's more!

Often, divergence also reflects historic events (read post glacial colonization)
"With marine fishes?" you ask. "Assuredly!" I reply.

After colonization from a common source, divergence might be expected

This means that $F_{S T}$'s may still be increasing, and estimates of $N_{\mathrm{e}} \boldsymbol{m}^{\prime} s$ are inflated.

Did the glacial advances affect marine species?

Probably. Let's see.

Extent of glaciation and land masses
at last glacial maximum

Sea level was > 100 m lower
-- at just about the shelf break

Any species that depend on the continental shelf for habitat or food would have been depressed or displaced.

16,000 years ago was only 640 generations (25-year generations)

Use study of Northern rockfish (Sebastes polyspinis), and example

 6 collections (Bering Sea/Aleutian Islands)two pooled (A2a\&b)-- proximity and similarity ($P_{\text {homogeneity }}=0.42$)

Preliminary analysis

due diligence
11 microsatellite loci -- no LDE or HWE departures (post multiple testing)
Number of alleles (N_{a}): 8 to 42; average 13.0
Average expected heterozygosity within collections (H_{e}): 0.79
Average effective \# alleles/locus within collections ($N_{\text {eff }}$: 5.9

Homogeneity tests (a variety of approaches):
$P_{\text {homogeneity }} \mathbf{0 . 0 0 1}$ for aggregate test (all loci)
3 of 11 loci individually significant
but
Fixation coefficient:
not different from zero ($F_{s t}=0.018 ; P>0.05$)

So what can we do?

Assignment tests:
Proportion of individuals assigned to their populations of origin (fish removed from populations for assignment):
all populations exceeded 40% (20% expected at random).

Population	EBS	Al1	Al2	Al3	Al4
EBS	46.5	14.9	12.1	13.9	12.7
Al1	15.4	42.3	16.7	14.0	11.5
Al2	12.8	15.7	41.4	16.2	13.9
Al3	14.1	13.9	14.6	43.1	14.3
Al4	12.9	13.1	14.3	14.1	45.6

5% allele frequency threshhold
(Geneclass)

Partition heterogeneity by contiguous non significant groups: Two homogeneous groups of adjacent populations.

Graphic depiction of gene flow barriers

Pairwise estimates of $F_{S T}$ and tests of homogeneity:

Population	EBS	AL1	AL2	AL3	AL4
EBS		0.0027	0.0032	0.0038	0.0028
AL1	0.1049		0.0007	0.0015	0.0014
AL2	0.0172	0.8106		0.0014	0.0007
AL3	0.0075**	0.0221*	0.1059		0.0007
AL4	0.0003 ***	0.0113*	0.0910	0.0372*	

fixation index ($F_{S T}$ above diagonal)
$P_{\text {homogeneity }}$ between populations (below diagonal)
divergence increased with distance along shelf break.

IBD plot

Relationship between $F_{S T}\left(1-F_{S T}\right)$ and distance (d) (Rousset 1997; for a linearly distributed species):

$$
\frac{F_{S T}}{1-F_{S T}} \approx \frac{A_{1}}{4 D_{e} \sigma}+\frac{d}{4 D_{e} \sigma^{2}}
$$

slope: $1 /\left(4 D_{e} \sigma^{2}\right)$
intercept: $A_{1} /\left(D_{\mathrm{e}} \sigma\right)$
D_{e} is the effective density - effective number of individuals per unit distance or $D^{*} N_{\mathrm{e}} / N$-- D is density
σ^{2} is variance of average distance of parents from offspring (axial displacement) A strip $4 \sigma_{\text {axial }}{ }^{2}$ would account for $\sim 95 \%$ of parents.
A_{1} is a constant that depends on the distribution of dispersal; $A_{1}=-0.8238$ for a normal distribution

The geographic scale of the analysis is critical

How can we use this information?

1. We can estimate the density (D);

Northern rockfish ~ 13 years at 50\% maturity;
In 2006, ~ 291.5 million fish were 13 years and older in the this area;
\longrightarrow "linear" density of about 136,870 fish/km.
the "line" is about 30 km wide, so this about $4,500 / \mathrm{km}^{2}$ in this region.
2. From D we can estimate a set of effective densities $\left(D_{\mathrm{e}}\right)$ from a plausible set of N_{e} / N.

| $\boldsymbol{N e} / \mathbf{N}$ | | $\boldsymbol{D}_{\boldsymbol{e}}=\boldsymbol{D}^{\star} \mathbf{N} / \mathbf{N}$ |
| :--- | ---: | ---: | ---: |
| 0.1 | | 13,687 |
| 0.05 | | 6,844 |
| 0.01 | | 1,369 |
| 0.005 | | 684 |
| 0.001 | | 137 |

3. We can use D_{e} estimates and the slope to estimate 4σ;
4. We can estimate neighborhood size $\left(N_{b}\right)$ from those results.

Ne / N	$D_{\text {e }}=D^{\star} N_{\text {e }} / N$	$4 \sigma=2^{\star}\left(1 /\left(4^{\star} \hat{b}^{\star} D_{e}\right) 1 / 2\right.$	$D_{\mathrm{e}}{ }^{*} 4 \sigma=N_{\text {b }}$
0.1	13,687	12.4	169,751
0.05	6,844	17.5	120,032
0.01	1,369	39.2	53,680
0.005	684	55.5	37,957
0.001	137	124.0	16,975

The estimate of neighborhood size from â was 39,416 ;
-- close to the slope-based estimate $(37,957)$ for an N_{e} / N ratio of 0.005 .
but be very cautious in using the intercept!

Estimate effective population sizes from each of the "populations"

Population	Lower CI	N	Upper CI
EBS	450	10,160	∞
AL1	296	896	∞
AL2	468	∞	∞
AL3	353	3,600	∞
AL4	369	1,928	∞

Estimates from the program LDNe; (linkage disequilibrium for alleles with frequencies of at least 0.05).

Originally, IBD analyses were done from "populations".

 (as we showed for northern rockfish)More recently, Rousset (2000) extend the analysis to individuals.

Genetic divergence between pairs of individuals versus the distance separating them provides considerable power.

Evaluating autocorrelation between the genotypes of individuals in different distance classes is another approach

There is now an advantage to more continuous sampling

Collections of northern rockfish were taken from 6 sites

Rougheye rockfish and POP collections were more dispersed

Rougheye

Isolation-by-distance

level of test	species		
	northern	rougheye	POP
n	500	173	499
maximum distance (km)	1820	2076	2056
	P of significant relationship		
groups	0.014	0.250	0.316
individuals (20,000 iterations)	$<10^{-4}$	0.005	$<10^{-4}$

Autocorrelation

Number of distance classes	species		
	northern	rougheye	POP
	P of significant relationship		
4 classes	0.0001	0.841	0.0043
5 classes	0.0002		
6 classes	NA	0.078	0.0063
10 classes	NA	0.033	0.0065
15 classes	NA	0.009	NA

(Alleles in Space)

What can we do?

Generally?

Obviously, a wide variety of lifehistory information.

Genetics?
Individual-based genetics analyses and landscape genetics methods should improve our understanding of the relationship between population structure and physical factors.

Those analyses will require intensive sampling and continued development of analytical methods for data analysis.

Ball's in your court

