Geographic scales of population structure in boreal marine fishes and the influence of ice-age demography

M.F. Canino¹, L. Hauser,² I. B. Spies¹ and W. S. Grant³

¹ Alaska Fisheries Science Center, NOAA, Seattle

² School of Aquatic and Fishery Sciences, U of W, Seattle

³ Department Biological Sciences, U of A, Anchorage

UAA UNIVERSITY of ALASKA ANCHORAGE

Atka mackerel

photo courtesy Bob Lauth

Sources of Genetic Population Structure

Ice-age Temperatures

FIGURE 5 Temperature of the Earth for the last 850,000 years as inferred from ice volume derived by oxygen isotope measurements from ice cores.

Decrease in plankton productivity

USGS

Elimination of near-shore nursery areas

Refuge-hybrid zone model

Pacific cod (Gadus macrocephalus)

Life history characteristics

- Transoceanic
- Temperate/subpolar
- Demersal shelf/slope
- Lifespan ~ 18 y
- Age @ 50% maturity ~ 5y
- Highly fecund, demersal eggs, fast growing
- Seasonal migration

<u>Genetic studies in North America</u> Grant et al. 1987 – allozymes

Two stocks - NA and Asia

source:http://seattletimes.nwsource.co m/art/pacificnw/2004/0502/taste01.jpg

Pacific cod – global isolation by distance

Canino et al. in prep

Refuge-hybrid zone model

NAO Statistical Areas

Assignment tests - microsatellites

- Asian samples 100% correct assignment to Asia, correct to KO or JPN \sim 97%
- North America 99.3% correct self assignment

Pacific cod – global isolation by distance

Canino et al. in prep

Pacific cod – isolation by distance in North America

Cunningham et al. 2009

Pacific cod – isolation by distance in North America

Cunningham et al. 2009

Estimation of mean dispersal distances

- Assumptions
 - Exponential dispersal curve
 - Genetic equilibrium
 - All locations have same dispersal
- Depends on population density
- Pacific cod
 - Effective density
 - Stock assessment
 - *N_e/N*=10⁻³
 - N_e range 10 10⁵ individuals / km
 - mean dispersal distance 26 km

Cunningham et al. 2009

Pacific cod – microsatellites

North America

- evidence for discrete fjord stocks
- monotonic isolation-by-distance pattern along contiguous shoreline indicates limited effective dispersal

Ocean basin scales

 large genetic divergence between Asian and N American populations resulting from isolation during ice-age glaciation and lack of effective trans-Pacific gene flow following secondary contact

Other species with signatures of ice-age vicariance

- yellowfin sole Grant et al. 1983
- Pacific herring Grant & Utter 1984
- walleye pollock Grant et al. 2006

Another climatic effect - expansion

- pollock cytochrome oxidase I 630 bp
- Pacific cod ND2+Cytb 1510 bp
- Atka mackerel Dloop 648 bp

Atka mackerel mtDNA

NW Pacific n = 57

Aleutians n = 31

NE Pacific n = 31

Time

Coalescent gene tree

Expanding populations create waves in the mismatch distribution

Pollock

NW Pacific Bering Sea-Aleutians NE Pacific

Atka mackerel

- extremely shallow genealogy
- mismatch distribution on origin
- extremely low mtDNA diversity likely indicates strong and very recent bottleneck

Species	haplotype diversity (h)	nucleotide diversity (π)
Atka mackerel	0.0333	0.00007
walleye pollock	0.8160	0.0024
Pacific cod	0.9810	0.0039
Atlantic cod	0.3044	0.0013

History matters

Pacific cod – ice-age signals of isolation and expansion persist to contemporary time

<u>Atka mackerel</u> – recent bottleneck stripped nearly all variation from mtDNA

 Not severe enough to cause significant loss of diversity in nuclear microsatellites or allozymes – loss by drift 4x slower

- H_e 37allozyme loci = 0.137 (Lowe et al. 1998). Global F_{ST} = 0.004 - H_e 9 microsatellites = 0.797 (Canino et al. unpubl). Global F_{ST} = 0.002

 Recent bottleneck/expansion event likely precludes accumulation of significant differentiation in highly dispersive species – genetic approach uninformative

Integrating genetics and stock assessment?

Eventually, but will require:

- More informative genetic markers
- More sophisticated models
 - seascape genetics models (e.g. Galindo et al. 2006)
 - simulation-based models w/in Bayesian framework
 assessment models evaluating adult/larval source/sink relationships (Stenseth et al. 2006)
- Multidisciplinary approaches
 - oceanography, acquired tags, behavior

Acknowledgements

- Fisheries Interaction Team, NMFS
 - Sandy Neidecther
 - Libby Loggerwell
 - Peter Munro
 - Liz Connors
- AFSC, NMFS
 - Steve Barbeaux
- NWFSC, NMFS
 - Mike Rust
- University of Alaska
 - Olav Olmseth
- WDFW
 - Sue Hoffman
 - Greg Bargmann
 - Wayne Palsson
- Kodiak Laboratory, NMFS
 - Kally Spalinger
 - Dan Urban

- DFO, Canada
 - Sandy McFarlane
- Hokkaido Fisheries Research Institute
 - Takashi Yanagimoto
 - Akira Nishimura
- University of South Korea
 - Qtae Jao

