Aleutian Islands Fishery Ecosystem Plan

For the NPFMC Ecosystem Committee SSC, AP, and Council March 2007

We request specific feedback...

What are we missing? More useful organization?

- 1. Introduction / purpose / need
- 2. Geographic description
- 3. Understanding the AI EcosystemOther information / sources?Other interactions?
- 4. Ecosystem Assessment Add uncertainty (qualitative)? Alternative presentation?
- 5.-9. Sections to be completed pending comments

Goal of FEP

 Provide better scientific information and measurable indicators to evaluate and promote ecosystem health, sustainable fisheries, and vibrant communities in the Aleutian Islands region

FEP concept for Alaska*

- Policy and planning document
- Applies to all fisheries in the Aleutian Islands ecosystem
- Specific management changes still occur through existing processes
- FEP is not a legal, binding document it is an educational tool for the Council, to provide an ecosystem context for fishery management
- * (other regions may do things differently)

Need for FEP in AI

- Stewardship
 - AI unique environment
 - Opportunity to better integrate emerging knowledge of the functioning of the marine ecosystem
 - AI is the least predictable Alaska marine ecosystem, therefore may need to use other tools
- Leadership
 - Ecosystem approaches to management, including FEPs, ongoing nationally
 - Opportunity to help define standard, see whether FEPs are useful tool

FEP Purposes

- 1. Integrate AI information across FMPs
- 2. Identify ecosystem indicators for the AI
- 3. Develop and refine tools, i.e. models
- 4. Identify uncertainty / research needs
- 5. Assist Council with management objectives and understanding cumulative effects

AI Ecosystem Boundary for FEP

SSL abundance: Moderate decline

SSL diet: Mixed, pollock Corals: Sparse and similar

Aleutian Islands Ecosystem Processes: Visualizing relationships in Section 3

Interactions \rightarrow Ecosystem Assessment Section 4

Next steps

- 1. Take your feedback, community feedback, and team feedback to edit the current sections (1-5).
- 2. AI FEP Team workshop April 5-6 where we use these results to...
- 3. Highlight implications for human use of ecosystem (section 6)
- 4. Suggest priorities for analysis and further research (section 7)
 - within the next year
 - over longer timeframes (2 years, 5 years, 10 years, etc.)
- 5. Make Recommendations for the Council and (section 8)
- 6. Summarize the "value added" by FEP process (section 9)

Final review in June 2007

"Would you please elaborate on 'then something bad happened'?"

AI FEP Team membership

Kerim Aydin, NMFS AFSC Steve Barbeaux, NMFS AFSC Forrest Bowers, ADF&G Vernon Byrd, USFWS, AKRO Diana Evans, NPFMC Sarah Gaichas, NMFS AFSC Carol Ladd, NOAA PMEL Sandra Lowe, NMFS AFSC John Olson, NMFS AKRO Jennifer Sepez, NMFS AFSC Paul Spencer, NMFS AFSC Francis Wiese, NPRB

Ecosystem / food web modeling Pollock biology, assessment Crab and state fisheries Birds and mammals FEP policy, implementation Ecosystem / food web modeling Physical oceanography Atka mackerel bio, assessment Habitat, GIS Anthropology, socioeconomics Rockfish biology, assessment Research, seabirds

Ecosystem Dynamics of the Aleutian Islands:

Food webs, space, and scale

Dr. Ivonne Ortiz, UW SAFS

Ivonne's dissertation work is the basis for much of biological interactions section of the FEP. Thank you Ivonne.

Aleutian Islands Exploitation History

Historical exploitation patterns in space 1740-1858

Aleutian Island Catch History 1950-2005

2005 volume and value of AI fisheries

Figure 3-22 Fishery resources harvested in the Aleutian Islands Ecosystem (areas 541, 542, and 543) by volume and by value, in 2005.

AI Fish stock assessment trends 800,000 POP (BSAI) 700,000 600,000 Pollock 500,000 metric tons - Atka 400,000 * Sablefish 300,000 200,000 0 Ο Halibut \Diamond (survey) 100,000 жжж ****** P. cod \bigcirc 0 (survey) 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

year

all sharks

Aleutian Islands Physical relationships

2,500 km island arc with over 300 islands and 40 volcanoes Near constant seismic activity as the Pacific plate slides under the North American Plate

Aleutian Islands Physical relationships

Figure 3-6 The mean circulation along the Aleutian Arc is shown together with geographic place names, The lower panel shows the depth of the passes in the Aleutian Arc. Reprinted from Stabeno et al. 2005.

Note: ANSC = Aleutian North Slope Current, ACC = Alaska Coastal Current, BSC = Bering Sea Current.

Aleutian Islands Physical relationships

Along the chain, other physical and biological relationships continue to change through space (Ortiz 2007)

Seabirds: Mostly piscivorous

SSL diet: Mixed, pollock Corals: Sparse and similar

Whales: Fin & humpback common SSL abundance: Moderate decline

Physical relationships affect energy flow

Consumption in all three ecosystems

The Eastern Bering sea is detritus / benthic dominated The Gulf of Alaska is intermediate The Aleutian Islands is plankton / pelagic dominated

Aydin et al in review

Consumption by sablefish in all three systems

Comparing Pacific cod diets

Aleutian Islands Biological relationships

Building a model food web requires

Biomass (B) Population growth rate or Production (P/B)

Fishery catch (F)

Consumption (Q/B) Diet comp (DC)

For ALL groups!!

Information sources for modeling

Standard stock assessment data
 Biomass or abundance index
 Productivity information
 Fishery observation

 Commercial catch
 Incidental catch and discards

Food habits collections

- Multiple species and trophic levels
- Multiple seasons

Full AI food web, early 1990's

Viewing the food web through our focus species

Focus species interact with most of the food web

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Prey Similarity

percent of Atka mackerel production consumed by each group

AI Food webs: location, location, location

Socioeconomic relationships: Fishing patterns 1990-2005

1979

543

170/0018

Atka mackerel: Local fish, global market

Source: U.S. Merchandise Trade Statistics, GIS: Alaska Fisheries Science Center (michael.dalton@noaa.gov)

Figure 3-23 US Atka Mackerel Exports to the World, 2005.

International shipping: global markets, local impacts

Source: The Economist, January 18,2007

Estimated 3000-3500 vessel transits annually through Unimak pass 1600 container ships, 30-40 tankers, and increasing with global trade Risk concentrated near Dutch Harbor, Unimak Pass, Akun Is., Near Is.

Social and management boundaries

Figure 3-25 Management boundaries in the Aleutian Islands for groundfish, halibut, and crab fisheries.

Agencies in the AI

Resource, Population	Agency	Responsibility
groundfish	NPFMC/NMFS	3-200nm; population abundance; setting harvest levels, fishery management, monitoring, and enforcement
	ADFG	0-3nm
halibut	IPHC NPMFC/NMFS	population abundance, setting harvest levels management of fishery
crab	NPFMC/NMFS ADFG	monitor overfishing levels, allocations harvest levels; fishery management, monitoring, enforcement
scallop	NPMFC/NMFS ADFG	monitor overfishing levels harvest levels, fishery management, monitoring, enforcement
salmon	ADFG NPFMC/NMFS	population abundance, harvest levels, fishery management retention prohibited 3-200nm
herring	ADFG	population abundance, harvest levels, fishery management
other fish	NMFS	advisory authority for habitat for all fish including fish in nearshore watersheds
marine mammals (except walrus and otters)	NMFS	population abundance, advisory authority, protection under the MMPA and ESA
walrus and otters	USFWS	population abundance, advisory authority, protection under the MMPA and ESA
birds	USFWS	population abundance, advisory authority, protection under the MBTA
citizens of Adak	City of Adak	municipal responsibility
citizens of Atka	City of Atka	municipal responsibility
land	USFWS BLM DNR DOD	protection of Alaska Maritime National Wildlife Refuge, including marine responsibility extending offshore (own some small parcels) (own some land parcels) Shemya, others?
shipping	DEC USCG	oversight of spill response ensure safety of vessels in US ports and waterways
oil and gas development	MMS DNR or DEC	3-200nm 0-3nm
military activity	Alaskan Command, Pacific Command	Shemya, floating barge
formerly used defense sites	AFCEE	cleanup
Amchitka	DOE	cleanup

KEY: ADFG – Alaska Department of Fish and Game; AFCEE – US Air Force Corps of Engineers; DEC – Alaska Department of Environmental Conservation; DNR – Alaska Department of Natural Resources; DOD – Department of Defense, DOE – Department of Energy, EPA – Environmental Protection Agency, MMS – Minerals Management Service, NMFS – National Marine Fisheries Service, NPFMC – North Pacific Fishery Management Council, USFWS – US Fish and Wildlife Service

Table 3-3 Regulatory responsibility in Aleutian Islands

Interactions

- Climate and or physically mediated interactions
- Predator-prey (food web mediated) interactions
- Endangered Species Act (regulatory) interactions
- Fishing effects interactions
- Other socioeconomic activities interactions

Interactions between interactions are discussed within each category to the extent possible

Are the interactions clear and are we missing any?

Climate and physically mediated interactions

Predator-prey / food web mediated interactions

Fishery indirect effects caused by predator prey interactions between fished species
Potential competition for same prey base
Unexploited apex predator populations interaction with fished species, fisheries

Ecosystem processes?

Socio-economic processes?

Endangered species (regulatory) interactions

Population status of ESA listed seabirds effect on fisheries

Population status of ESA listed marine mammals effect on fisheries

(Note: predator prey interactions cover potential fishery competition effects) Ecosystem processes?

Socio-economic processes?

Fishing related interactions

Total cumulative fishery removals Fishery interactions via habitat Fishery interactions via bycatch Competition between commercial and subsistence fisheries Management system limits ability to adapt to ecosystem change

Ecosystem processes?

Socio-economic processes?

Other socioeconomic activity interactions

Changing military activity
Changing fishery activity
Oil and gas development
International shipping
Adak onshore processor
Research interactions with fisheries

Ecosystem processes?

Figure 4-2 Map of ecosystem interactions

Risk Assessment

Each team member qualitatively estimated (low, medium, high)

- 1. The probability of each interaction happening
- 2. The extent of adverse impact of the interaction
 - Ecologically
 - Economically
- 3. And rated the length of impact (months-centuries)

Risk Assessment

Figure 4-4 Characterization of interactions in terms of probability of occurrence and a combined ecological multiplied by economic impact. Shaded area in upper right quadrant highlights those interactions with a medium to high probability of occurring and likely impact.

interpretation of scores begins on p.79

Risk Assessment

Qualitative and preliminary

Intended to identify major interactions where the Council may direct further more in depth analysis

What are we missing?

How will we come up with implications?

- First identify/ prioritize data gaps and research needs
- Second use risk assessment
 - look at high probability/high impact interactions
 - consider how the uncertainty associated with these interactions is currently considered by management
 - could more be done/ is further action warranted
 - prioritize these actions
 - use Council management objectives as filter (e.g. groundfish PSEIS objectives)

We request specific feedback...

What are we missing? More useful organization?

- 1. Introduction / purpose / need
- 2. Geographic description
- 3. Understanding the AI EcosystemOther information / sources?Other interactions?
- 4. Ecosystem AssessmentAdd uncertainty (qualitative)?Alternative presentation?
- 5.-9. Sections to be completed pending comments

Feedback

- Looking for feedback from communities, stakeholders, Council
- Community meetings
 - Unalaska: March 21
 - Adak: technical difficulties, will try to reschedule for April
 - Atka: late April

Unalaska Community Meeting

- Discussion and clarifications on the purpose/use of the document, risk assessment
- Comments on missing elements, risk assessment methodology, reliance on models

Ecosystem Committee report

Next Steps for FEP

- AI Ecosystem Team workshop April 5-6, to discuss and develop remaining sections of FEP
 - reflect on feedback / reassess draft
 - develop implications and priorities for Council
 - AI FEP was pilot project; is this a useful exercise for other Alaska ecosystems?
- Final draft to be distributed to Council by May 18
- June Council meeting Council adopts AI FEP
- by October Team develops 'glossy' summary of FEP

Future 'phases' of the FEP

- Coordination with the annual Ecosystem Considerations chapter
- Further work on the FEP
 - we discussed FEP being updated on 3 to 5 year cycle
 - FEP will identify some areas for future consideration

Council's Action today

- Feedback on the document and its description of ecosystem processes
- Opportunity to provide direction to the Team on completing the remaining sections