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ABSTRACT

Climate studies often involve comparisons between estimates of some parameter derived from different
observed and/or model-generated datasets. It is common practice to present estimates of two or more
statistical quantities with error bars about each representing a confidence interval. If the error bars do not
overlap, it is presumed that there is a statistically significant difference between them. In general, such a
procedure is not valid and usually results in declaring statistical significance too infrequently. Simple
examples that demonstrate the nature of this pitfall, along with some formulations, are presented. It is
recommended that practitioners use standard hypothesis testing techniques that have been derived from
statistical theory rather than the ad hoc approach involving error bars.

1. Introduction

The statistical analysis of climate data typically in-
volves the estimation of quantities such as the mean
value or the regression coefficient from a trend analy-
sis. Such estimates are viewed as incomplete without
the inclusion of an uncertainty estimate that can then
be used to test a hypothesis. For example, in model
intercomparison projects, an estimate bracketed by er-
ror bars may be presented for each model. In climate
change studies, a trend estimate may be presented for
competing datasets, or for models and observations.
When the error bars for the different estimates do not
overlap, it is presumed that the quantities differ in a
statistically significant way. Unfortunately, as demon-
strated by Schenker and Gentleman (2001, hereafter
SG), this is in general an erroneous presumption.

A natural question to ask at this point is “How seri-
ous is the problem of misapplication of error bars?” To
address this question, the author searched through a
recent year’s worth of issues from the Journal of Cli-
mate. A similar but less exhaustive search was made of
the Third Assessment Report (TAR) of the Intergov-
ernmental Panel on Climate Change (IPCC; Houghton
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et al. 2001). Instances of inappropriate use of error bars
were found in both the Journal of Climate and the
TAR.' Given that these are two of the most respected
publications in the field of climate, some clarification
on the use of error bars seems warranted.

Before beginning discussion of the problem, it is
worth reviewing some of the types of error bars that are
commonly presented, along with related terminology.
Error bars may represent the standard deviation, the
standard error, the confidence interval, or some other
measure of error or uncertainty. While the standard
deviation is a measure of dispersion of individual ob-
servations about their mean, the standard error is the
standard deviation of a derived statistic, such as the
mean, regression coefficient, correlation coefficient,
etc. A confidence interval can be constructed about a
sample statistic such that it contains the true population

! In the Journal of Climate there were 17 articles in which error
bars or related measures were presented in figures or tables and
used in a two-sample setting. In only two of these articles did the
authors correctly apply a two-sample test. In the majority of the
other 15 articles, inferences were drawn inappropriately from the
error bars; in a few cases the usage was ambiguous, perhaps lead-
ing the reader to an inappropriate inference. Although it seemed
that conclusions would not change in about a third of the offend-
ing articles, for the remainder, conclusions would change in some
instances; the extent of change is difficult to determine given the
large number of individual cases involved. In the TAR, although
proper usage was noted in quite a few cases, four cases of inap-
propriate use were found.
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TABLE 1. Some statistical quantities from two examples involving hypothetical samples of data from observations and a GCM. Given
are the sample size (n), the mean of the sample (X), the std dev of the sample values (s), the standard error or std dev of the mean (SE),
and the confidence interval. On the third line (difference) for each example are given the difference of the means (observations minus
GCM), the standard error of the difference of the means, and a confidence interval based on a two-sample Student’s ¢ test. The intervals
have been constructed using * twice the sampling error about the mean; this is close to the value of 1.96, which in the limiting case of
an infinite sample size corresponds to a 95% confidence interval. Note that while these examples have been constructed to produce
“round numbers,” the concepts that they illustrate are not dependent on either the particular values or the sample sizes.

n X s SE Interval
Example 1 (equal variances)
Observations 49 3.0 7.0 1.00 [5.00, 1.00]
GCM 49 0.0 7.0 1.00 [2.00, —2.00]
Difference 3.0 1.41 [5.82, 0.18]
Example 2 (disparate variances)

Observations 49 4.0 13.9 1.99 [7.97, 0.03]
GCM 49 0.0 0.1 0.01 [0.03, —0.03]
Difference 4.0 1.99 [7.97, 0.03]

statistic with a specified probability? and thus can be
used in hypothesis testing. This note is relevant to error
bars that represent confidence intervals for hypothesis
testing.

2. The nature of the problem

The misperception regarding the use of error bars
may arise because of a fundamental difference between
one-sample and two- (or multi) sample testing. For a
Gaussian-distributed variate, when only one quantity is
estimated, a one-sample test (such as a Student’s ¢ test)
may be performed. The null hypothesis would be that
the estimated quantity is equal to some constant (e.g.,
that an anomaly is zero). In the one-sample case, ap-
plication of a ¢ test is equivalent to placing error bars
about the quantity to see if it overlaps with the hypoth-
esized value. However, when the interest is in compar-
ing estimated values from two different samples, use of
error bars about each estimate, looking for overlap, is
not equivalent to application of a two-sample ¢ test.

Suppose, for example, based on a single sample of
data generated by a climate model, a 6-K rise in tem-
perature is found to occur over some interval, and sup-
pose that the standard error of this estimate is 2 K.
Assuming that the temperatures are drawn from a
Gaussian-distributed population, the hypotheses that
the true change is zero can be assessed via a one-sample

2 A confidence interval is often a scaled version of the standard
error. For example, assuming a Gaussian distribution, a 95% con-
fidence interval for the population mean is constructed by exten-
sion of * 1.96 standard errors about the sample mean.

Student’s ¢ test. Employing the standard formula yields
a t value of 3 that, except for a very small sample size,
results in rejection of the null hypothesis of no change
in temperature with a high level of confidence. Alter-
nately, if one had preselected the same confidence level
by placing error bars at 3 times the standard error about
the estimated mean, it would have been found that the
interval just intersects zero.

In contrast, the two-sample case is fundamentally dif-
ferent in that, in general, looking for overlap from two
sets of error bars is not equivalent to the appropriate ¢
test. Examples based on the data in Table 1 are used to
illustrate the nature of the problem. Suppose we have
finite samples of values of some quantity from both
observed data and from a general circulation model
(GCM). Estimates of the mean (X) and standard de-
viation (s) of the sample values can be made along with
the uncertainty [standard error (SE)] of the estimated
means. As is common practice, a confidence interval
about the estimated means can be constructed by tak-
ing * twice the standard error. The intervals given in
Table 1 are displayed graphically in Fig. 1 in the form of
error bars.

For example 1, three sets of error bars are shown on
the left side of Fig. 1 for the observations (O), GCM
(G), and their difference (D). In this example, the ob-
servations and GCM have equal standard deviations. It
can be seen that there is considerable overlap of the
error bars from the observations and GCM. In such a
case, a researcher would typically conclude erroneously
that there is no statistically significant difference be-
tween their respective means. An alternate approach to
the same problem is to apply a two-sample ¢ test. Such
a test has been applied and the corresponding error
bars about the difference of the means (D) do not in-
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FiG. 1. Error bars corresponding to the data given in Table 1.
Each triplet (O, G, and D) corresponds to observations, GCM,
and differences, respectively, from Table 1. The left (right) triplet
corresponds to example 1 (example 2). Each square corresponds
to a mean (X), and each set of error bars corresponds to a con-
fidence interval. The units on the ordinate are arbitrary.

clude zero. Based on this test, the same researcher
would conclude that there is a statistically significant
difference between the means.

The reason for this apparent paradox can be under-
stood by considering the relationship between the SE of
the mean of the individual samples (observations and
GCM) to that of the SE of the difference of their means.
The crucial factor is that in the case of the two-sample
t test, the SE of the difference is estimated by “pooling”
the variances from the two different samples. It should
be noted that while the two-sample ¢ test is well
founded in statistical theory, the use of overlapping er-
ror bars in the two-sample case is not.

The depiction of example 1 in Fig. 1 can be used to
understand the crucial distinction between the two ap-
proaches. In order for significance to be declared using
the overlapping error bars approach, one would have to
move the means of the observations farther apart until
the bottom whisker from the observations just touches
the top whisker from the GCM. This can be expressed
mathematically as
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X —X,=cSE, +¢SE,, 1)

where X ; (X)) is the mean of the observations (GCM),
SE, (SE,) is the standard error of the observations
(GCM), and c is a constant that determines the level of
confidence. The two terms on the rhs of (1) represent
the distances from their respective means to the end of
the whisker (i.e., half the length of the confidence in-
tervals). In example 1, ¢ = 2 since the confidence in-
tervals represent * two standard errors. Note that
throughout this paper no distinction is made between
population and sample parameters; it should be under-
stood that estimates of various population parameters
from an available finite sample are being used.

Application of the two-sample ¢ test to example 1
results in a different requirement for declaration of sig-
nificance

)71 - X’z = ¢ SE,, )

where SE; is the standard error of the differences. The
distinction between the two approaches lies in the re-
lationship between the individual standard errors (SE;
and SE,) and the standard error based on pooling the
individual variances (SE;). Under some simplifying as-
sumptions, this relationship, presented by SG along
with some theoretical underpinnings and derived alge-
braically in the appendix, is

SE, = (SE? + SE%)'. (3)

To gain insight, it is instructive to use the geometric
analogy given by SG involving a right triangle. The
lengths of the sides are given by SE,; and SE,, while the
length of the hypotenuse is given by SE;. Thus, (3) is
simply an expression of the Pythagorean relationship. It
can be reasoned that for the same difference in means
[the left-hand sides of (1) and (2)] it will be more ditf-
ficult to declare significance using (1) than (2). This is
true because the rhs of (1) represents the sums of the
lengths of the sides of a right triangle whereas the rhs of
(2) represents the length of the hypotenuse; the latter
will always be less than or equal to the former.

The amount of disparity between the two approaches
depends on the ratio of the lengths of the sides of the
triangle, which is equivalent to the ratio of the standard
errors of the two samples. Example 1 was concocted to
have equality in this regard and illustrates the case of
maximum disparity. It is easy to demonstrate (SG) that
when SE,; = SE,, the ratio of the rhs of (1) to the rhs of
(2) takes on its maximum value of \/2. Unfortunately,
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in practice it is often the case that the two samples have
comparable standard errors.

At the other extreme, when the SE from one sample
is much larger than the other, (2) and (3) approach
equivalency. Geometrically this occurs as one side of
the right triangle approaches zero length, in which case
the remaining side is also the hypotenuse. Example 2
illustrates this situation in that the variance from the
observations is much larger than that from the GCM.
As seen on the right side of Fig. 1, the error bars from
observations and GCM just overlap and the error bars
about the difference almost touch the zero line. Unfor-
tunately, instances of large disparity in variances are
typically not so common.

3. Conclusions

In summary, this note has addressed the common
practice of placing error bars about the means from two
distinct samples. While this practice lends itself to an
appealing graphical presentation, it can often lead to an
erroneous conclusion as to whether the means differ in
a statistically significant manner. In particular, this ap-
proach will lead to a conservative bias in that some-
times no difference is found when it should. However,
this bias is not constant, varying depending on the rela-
tive magnitudes of the sampling errors in the two
samples. The maximum bias is found when the sam-
pling variability of the two samples is comparable.

While this note has dealt with testing the difference
between means, the same cautions apply to other sta-
tistical quantities. Practitioners should opt for appro-
priate two-sample tests suited for the parameter of
choice, or for a multiple comparisons test when more
than two samples are involved. While the error bar
method is tempting, it is not grounded by statistical
theory when more than one sample is involved.
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APPENDIX

Derivation of Relationship between Standard
Errors

The relationship expressed by (3), which is associated
with a two-sample Student’s ¢ test, is derived here by
invoking some simplifying assumptions as per SG. This
relationship relates the individual standard errors of the
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means from two samples (SE; and SE,) with the stan-
dard error of the difference of their means (SE;). The
derivation utilizes a number of standard statistical
equations [(A1l)-(A6) and (A10)-(A1ll)] associated
with the two-sample ¢ test. These are available from any
of a number of introductory statistics texts, for ex-
ample, Zar (1996).

Begin by defining the pooled variance (S,?) from the
two samples

8,7 = (SS; + SS,)/(vy + vy), (A1)

where SS; (SS,) is the corrected sum of squares from
the first (second) sample and v, (v,) is the degrees of
freedom for the first (second) sample such that
vy=n;—1 (A2)
and
v, =n, — 1, (A3)

where n; (n,) is the sample size of the first (second)
sample and where the variances of the two samples are
defined by

s7 =SS, /v, (A4)
and

55 = SS,/v,.

(AS)

Next define the standard error of the difference of
the means of the two samples:

SE; = (8,%/n, + 8,7/n,)">. (A6)

Now substituting (A1), (A4), and (AS) into (A6) and
rearranging the terms yields

SE; = [(1/n, + 1/n,) (v; 82 + v, s3)/(v; + v,) ]2
(A7)

The first simplifying assumption invoked by SG is to
consider the limiting case where the sample sizes n; and
n, — . In this limit v; — n; and v, — n, so that after

algebraic cancellation (A7) becomes
SE; = (si/n, + s3/n;)">.

(A8)

The second simplification is the assumption that the
sample sizes are equal (n; = n,) so that (A8) becomes
SE; = (s¥/n, + s3/n,)"2. (A9)

Next note the definitions of the standard errors of the
means of the two samples

SE, = (s3/n))"? (A10)
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and
SE, = (s5/n,)""*. (A11)

Finally, substitute (A10)-(A1l) into (A9) to yield an
expression equivalent to (3):

SE, = (SE? + SE3)'. (A12)

The relationship expressed by (A12) is useful for
gaining insight as to the difference between the use of
individual error bars (based on SE; and SE,) from the
two samples and application of the two-sample ¢ test
(based on SE5). Although it is based on some simplify-
ing assumptions, yielding a less complex relationship
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for illustrative purposes, the principle that it expresses,
namely the distinction between the two approaches, is
more generally applicable.
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