

AQMD Hydraulic Hybrid Vehicle Forum and Technical Roundtable

Stan Miller
International Truck and Engine
November 15, 2007

Hybrid Vehicle Technology to Date:

- Over 90% of commercialization effort has focused on electric hybrid vehicles (100% of all commercially available passenger cars and light truck hybrids are electric hybrids)
- Nearly all R&D funding has been allocated to electric hybrids (with the exception of EPA sponsored research that has begun to explore hydraulic hybrid technology)
- Hydrostatic drive components (pumps, motors, & hoses) have been proven for lawn/garden, agricultural, and construction equipment
- "Gap" between current hydrostatic systems and optimized hydraulic hybrids is:
 - > Fluid storage in accumulators
 - Engine, pump and motor control strategy/optimization

Why Hydraulic Hybrids?

- Hydraulic pump and motor efficiency is very high – better than motor/generator and battery
- Hydraulic pump/motors and accumulators are able to recapture a higher % of kinetic energy than electric motors/batteries during braking events, especially during rapid decelerations.

Room for both Hydraulic and Electric Hybrids -

- Electric hybrids may be better suited to applications that require exportable electric power and use a parallel hybrid drive system
 - Work trucks that operate power tools on job site
 - Food and beverage delivery trucks that operate an electric refrigeration compressor
 - Plug-in hybrid electric trucks that can use electricity from the grid during evening hours to smooth the utility demand curve
- Hydraulic hybrids may be better suited to applications that do an extreme amount of low speed stop/start driving and use a series hybrid drive system
 - Refuse
 - School bus, shuttle bus
 - Package delivery

Energy Storage Device Comparison - Power vs. Energy

Kinetic Energy = $\frac{1}{2}$ mV² (m = mass; V = velocity) Power = Work/time

Commercializing Hydraulic Hybrids (How do we fill the gap?)

Needs:

- Regulatory
- Hydraulic System Suppliers
- Customers
- **■**OEM/Engine Manufacturers

Regulatory

Current Situation

- Federal exhaust emission standards are expressed in grams per brake horsepower-hour
 - Testing is done on an engine dynamometer
 - Testing does not account for regenerative energy impact (reduced emissions and reduced fuel consumption)

Future Needs

Emission test standards written for medium and heavy duty vehicles that give appropriate credit for reductions in exhaust emissions (similar to passenger car/light truck standards)

Hydraulic Supplier

- Optimization of pumps, motors, and accumulators – not a one size fits all answer across applications and GVW
- Accumulator technology advancements and cost effectiveness are probably the largest hydraulic supplier challenges
- System integration that achieves advanced functionality (will require close work with engine/vehicle OEM's)

Hydraulic & Engine Controller Challenges and Opportunities

Customers

- Gain familiarity with and accept unique operation characteristics of series hydraulic hybrids
 - Some engine off operation will be normal
 - Disconnect between accelerator pedal position and engine response
 - (Vehicle may initially accelerate from stop when high pressure accumulator is sufficiently charged with the engine off)
- Gain experience with servicing and maintaining hydraulic hybrid vehicles
- Low volume field testing will facilitate this need

OEM/Engine Manufacturers

- System integration between engine, brake, vehicle, and hydraulic control systems that achieves advanced functionality
 - Engine off strategy/algorithm
 - > Transient emissions
 - Engine lubrication
- Hydraulically driven AC compressor and power steering system with closed center steering gear
- Robust total vehicle that improves customer's bottom line

Conclusions

- Hydraulic hybrids can play a significant role in reducing fossil fuel consumption and in improving our air quality
- There are regulatory, hydraulic supplier, customer, and OEM/engine manufacturer needs that must all be addressed to successfully bring hydraulic hybrids to market
- The knowledge and ability to do this exist, however,
- Significant investment must be made to be successful
- Additional grant funding would be beneficial in bringing this technology to market with the advanced functionality necessary to reduce fuel consumption and improve air quality by the largest margin possible