Comparative Effects of Vehicle Fuels and Technologies on Air Pollution and Climate

> Mark Z. Jacobson Atmosphere/Energy Program Dept. of Civil & Environmental Engineering Stanford University

South Coast Air Quality Management District Controlling Global Warming and Local Air Pollution June 28, 2007

Causes of Global Warming

M.Z. Jacobson

Causal Effect of CO₂ on Mortality

An increase in water vapor or an increase in temperature increases ozone in urban areas (high NO_x , high NMOG).

Causal Effect of CO₂ on Mortality

An increase in water vapor decreases ozone and an increase in temperature causes little ozone change in rural areas (low NO_x ; low NMOG).

Causal Effect of CO₂ on Mortality Global-regional nested simulations demonstrate that CO₂ alone increases temperature, water vapor, ozone, and PM

U.S. Δ ozone deaths/yr per 1 K +500 (U.S. Δ PM2.5 death/yr per 1 K +640 U.S. Δ Total deaths/yr per 1K +1140

+500 (190-575) +640 (160-1280) +1140 (350-1855)

World Δ Total deaths/yr per 1K +24,000 (7200-37,000)

Potential Effects of E85 vs. Gas: Emission Differences From Data

Oxides of nitrogen Carbon monoxide Total organic gas Methane Formaldehyde Acetaldehyde 1,3-butadiene Benzene PM number PM mass Percent change -30(-59 to +33)+5 (-33 to +320) +22 (+38 to +95) +43 (+43 to +340) +60 (+7 to +240) +2000 (+1250 to +4340) -10 (0 to -13) -79 (-62 to -85) 0(+100)0(+31)

Comparison of Emission Assumptions With Recent CARB and Other Data

Percent change E85 minus gas

	Cert data (2006)	Jacobson (2007)
NMOG	+45%	+19.6%
NO _x	-29.7%	-30%
	Whitney (2007)	Jacobson (2007)
Benzene	-64%	-79%
1,3-butadiene	-66%	-10%
Acetaldehyde	+4500%	+2000%
Formaldehyde	+200%	+60%

Effect in 2020 of E85 vs. Gasoline on Ethanol and Acetaldehyde

Aug. ethanol diff. (ppbv) E85 minus gas

Effect in 2020 of E85 vs. Gasoline on 1,3-Butadiene and Benzene

Ozone isopleth

Effect in 2020 of E85 vs. Gasoline on Ozone and Health

 Δ Pop-weighted O₃≥35 ppbv E85 minus gas: +1.33 ppbv Δ O₃ deaths/yr: +120 (+9%) (47-140) Δ O₃ hospitalizations/yr respiratory illness: +650 Δ O₃ -emergency-room visits/yr for asthma: +770 Δ Cancer/yr : -3.5 to +0.3

2020 U.S. Effects of E85 vs. Gasoline

 Δ Pop-weighted ozone ≥ 35 ppbv E85 minus gas: Δ Ozone deaths/yr: Δ Ozone hospitalizations/yr respiratory illness: Δ Ozone-emergency-room visits/yr for asthma: Δ Cancer/yr +0.28 ppbv +185 (72-213) +990 +1200 +3 to -29

Future U.S. Deaths Per Year From Onroad Vehicle Emissions

Percent Decrease in Total U.S. Carbon Dioxide Upon Replacing 100% of Onroad Vehicles

Area to Power 100% of U.S. Onroad Vehicles

Thousands of 5 MW Wind Turbines Needed to Displace 100% U.S. CO

M.Z. Jacobson

Path to Satisfy All U.S. Energy Needs and Reduce CO and BC by 80%

Land Area For 50% of US Energy From Wind

Alternatively, Water Area For 50% of US Energy From Wind

Mean 80-m Wind Speed in North America

Archer and Jacobson (2005) www.stanford.edu/group/efmh/winds/

Average 80-m wind speed in 2000 (LS methodology)

Percent of Land+Near Shore Stations With Annual Wind Speeds > 6.9 m/s at 80 m

Europe	14.2
North America	19.0
United States over land	15.0
United States over land+near shore	17.0
South America	9.7
Oceania	21.2
Africa	4.6
Asia	2.7
Antarctica	60
Global over land	13

Archer and Jacobson (2005)

Dvorak et al. (2006)

Eureka Wind Park Example (Preliminary)

{ Requires about 28 km (18 mi) or 2.1% of California's 840 mi coast.

Birds and Wind

U.S. bird deaths from current wind turbines10,000-40,000/yr (!)U.S. bird deaths from communication towers:50 million/yr (!)Worldwide bird deaths from avian flu:200 million/yr (%)

Est. bird deaths with 2,500,000 turbines worldwide: 2.5-10 million/yr

Outdoor human deaths reduced by these turbines: 800,000/yr (*)

The effect of wind turbines on birds will be small relative to the benefit of reducing fossil-biofuels on human and animal illness.

(!) Bird Conservancy (April 2006); (%) San Jose Mercury News (April 2006)
(*) World Health Organization (2002)

Summary

Global warming will hasten as aerosol pollution decreases.

 CO_2 increases air pollution mortality due to its effect on temperature, water vapor, and atmospheric stability, which increase ozone and particulate matter in urban areas.

80% reductions in current emissions are needed to stabilize CO_2 . Corn ethanol cannot practically reduce CO_2 in the U.S. by more than 0.07-0.2%; cellulosic ethanol cannot reduce CO_2 by more than 1.3-4%, based on current understanding.

Wind-battery electric vehicles can reduce U.S. CO_2 by 25.5%; solarbattery electric vehicles can reduce it by 23.4% Wind turbines require 30 times less land than corn ethanol and 20 time less land than cellulosic ethanol for the same power.

Sufficient wind and solar are available worldwide to supply all electric and nonelectric energy needs simultaneously several times over.

Summary

Converting all U.S. gasoline vehicles to ethanol (E85) vehicles will not improve air quality. At 100% penetration, it may enhance air pollution mortality from 0 to 200/yr deaths above the 10,000/yr due to gasoline in 2020. At 10-30% penetration, deaths may still be 0 to 20-60/yr above 10,000/yr.

The long lifetime of unburned ethanol may result in a global source of acetaldehyde and ozone.

Each ethanol or gasoline vehicle developed from now on will enhance air pollution and climate problems significantly compared with each renewable-powered battery-electric or hydrogen fuel cell vehicle produced.