
KILLER WHALE (Orcinus orca): West Coast Transient Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Killer whales have been observed in all oceans and seas of the world (Leatherwood and Dahlheim 1978). Although reported from tropical and offshore waters, killer whales occur at higher densities in colder and more productive waters of both hemispheres, with the greatest densities found at high latitudes (Mitchell 1975, Leatherwood and Dahlheim, 1978, and Forney and Wade in press). Killer whales are found throughout the North Pacific. Along the west coast of North America, killer whales occur along the entire Alaskan coast (Braham and Dahlheim 1982), in British Columbia and Washington inland waterways (Bigg et al. 1990), and along the outer coasts of Washington, Oregon, and California (Green et al. 1992; Barlow 1995, 1997; Forney et al. 1995). Seasonal and year-round occurrence has been noted for killer whales throughout Alaska (Braham and Dahlheim 1982) and in the intracoastal waterways of British Columbia and Washington State, where pods have been labeled as 'resident,' 'transient,' and 'offshore' (Bigg et al. 1990, Ford et al.

Figure 25. Approximate distribution of killer whales in the eastern North Pacific (shaded area). The distribution of the eastern North Pacific Resident and Transient stocks are largely overlapping (see text).

2000) based on aspects of morphology, ecology, genetics, and behavior (Ford and Fisher 1982; Baird and Stacey 1988; Baird et al. 1992; Hoelzel et al. 1998, 2002; Barrett-Lennard 2000). Through examination of photographs of recognizable individuals and pods, movements of whales between geographical areas have been documented. For example, whales identified in Prince William Sound have been observed near Kodiak Island (Matkin et al. 1999) and whales identified in Southeast Alaska have been observed in Prince William Sound, British Columbia, and Puget Sound (Leatherwood et al. 1990, Dahlheim et al. 1997). Movements of killer whales between the waters of Southeast Alaska and central California have also been documented (Goley and Straley 1994).

Several studies provide evidence that the 'resident', 'offshore', and 'transient' ecotypes are genetically distinct in both mtDNA and nuclear DNA (Hoelzel and Dover 1991; Hoelzel et al. 1998, 2002; Barrett-Lennard 2000). Genetic differences have also been found between populations within the 'transient' and 'resident' ecotypes (Hoelzel et al. 1998, 2002; Barrett-Lennard 2000).

Until recently, transient killer whales in Alaska had only been studied intensively in southeastern Alaska and in the Gulf of Alaska (from Prince William Sound, through the Kenai Fjords, and around Kodiak Island). In the Gulf of Alaska, Matkin et al. (1999) described two communities of transients which were never found in association with one another, the so-called 'Gulf of Alaska' transients and 'AT1' transients. Neither of these communities associates with transient killer whales that range from California to southeastern Alaska, which has been termed the 'west coast' stock. 'Gulf of Alaska' transients are seen throughout the Gulf of Alaska, including occasional sightings in Prince William Sound. AT1 transients are primarily seen in Prince William Sound and in the Kenai Fjords region, and are therefore partially sympatric with 'Gulf of Alaska' transients. Transients that associate with the 'Gulf of Alaska' community have been found to have two mtDNA haplotypes, neither of which is found in the west coast or AT1 communities. Members of the AT1 community share a single mtDNA haplotype. Transient killer whales from the 'west coast' community have been found to share a single mtDNA haplotype that is not found in the other communities. Additionally, all three communities have been found to have significant differences in nuclear (microsatellite) DNA (Barrett-Lennard 2000). Acoustic differences have been found, as well, as Saulitis (1993) described acoustic differences between 'Gulf of Alaska' transients and AT1 transients. For these reasons, the 'Gulf of

Alaska' transients are considered part of a population that is discrete from the AT1 population, and both of these communities are considered discrete from the 'west coast' transients.

Recent research in western Alaska, particularly along the south side of the Alaska Peninsula and in the eastern Aleutian Islands, have identified transient killer whales that share acoustic calls and mtDNA haplotypes with the Gulf of Alaska transients (NMML unpublished, NGOS unpublished), suggesting transient whales there may be part of the same population as Gulf of Alaska transients. On the other hand, samples from the central Aleutian Islands and Bering Sea have identified mtDNA haplotypes not found in Gulf of Alaska transients, suggesting the possibility there is some population structure in western Alaska. At this point, there are insufficient data to resolve transient population structure in western Alaska any further. Therefore, transient-type killer whales from the Aleutian Islands and Bering Sea are considered to be part of a single population that includes 'Gulf of Alaska' transients. Killer whales are seen in the northern Bering Sea and Beaufort Sea, but little is known about these whales.

In summary, within the transient ecotype, association data (Ford et al. 1994, Ford and Ellis 1999, Matkin et al. 1999), acoustic data (Saulitis 1993, Ford and Ellis 1999) and genetic data (Hoelzel et al. 1998, 2002; Barrett-Lennard 2000) confirms that three communities of transient whales exist and represent three discrete populations: 1) Gulf of Alaska, Aleutian Islands, and Bering Sea transients, 2) AT1 transients, and 3) West Coast transients.

Based on data regarding association patterns, movements, acoustics, genetic differences and potential fishery interactions, eight killer whale stocks are recognized within the Pacific U.S. EEZ: 1) the Alaska Resident stock - occurring from southeastern Alaska to the Aleutian Islands and Bering Sea, 2) the Northern Resident stock - occurring from British Columbia through part of southeastern Alaska, 3) the Southern Resident stock - occurring mainly within the inland waters of Washington State and southern British Columbia, but also in coastal waters from British Columbia through California, 4) the Gulf of Alaska, Aleutian Islands, and Bering Sea Transient stock - occurring mainly from Prince William Sound through the Aleutian Islands and Bering Sea (see Fig. 25), 5) the AT1 Transient stock - occurring in Alaska from Prince William Sound through the Kenai Fjords, 6) the West Coast Transient stock - occurring from California through southeastern Alaska, 7) the Offshore stock - occurring from California through Alaska, and 8) the Hawaiian stock. 'Transient' whales in Canadian waters are considered part of the West Coast Transient stock. The Stock Assessment Reports for the Alaska Region contain information concerning all the killer whale stocks except the Hawaiian and Offshore stocks.

The West Coast Transient Stock includes animals that occur in California, Oregon, Washington, British Columbia and southeastern Alaska. On many occasions, transient whales from the inland waters of southeastern Alaska have been seen in association with British Columbia/Washington State transients. On other occasions, some of those same British Columbia whales have been sighted with whales more frequently seen off California thus linking these whales by association.

POPULATION SIZE

The West Coast Transient stock is a trans-boundary stock, including killer whales from British Columbia. Preliminary analysis of photographic data resulted in the following minimum counts for 'transient' killer whales belonging to the West Coast Transient stock (Note: individual whales have been matched between geographical regions and missing animals likely to be dead have been subtracted). In British Columbia and southeastern Alaska, 219 'transient' whales have been cataloged (Ford and Ellis 1999). Off the coast of California, 105 'transient' whales have been identified (Black et al. 1997): 10 whales were matched to photos of 'transients' in other catalogs and the remaining 95 were linked by association. An additional 14 whales in southeastern Alaska (M. Dahlheim unpubl. data) and 16 whales off the coast of California (N. Black, Monterey Bay Cetacean Project, pers. comm.) have been provisionally classified as 'transient' whales by association. Combining the counts of cataloged 'transient' whales gives a minimum number of 314 (219 + 95) killer whales belonging to the West Coast Transient stock.

Minimum Population Estimate

The abundance estimate of killer whales is a direct count of individually identifiable animals. However, the number of cataloged whales does not necessarily represent the number of live animals. Some animals may have died, but whales can not be presumed dead if not resighted because long periods of time between sightings are common for some 'transient' animals. On the other hand, given that researchers continue to identify new whales, the estimate of abundance based on the number of uniquely identified individuals cataloged is likely conservative. However, the rate of discovering new whales within southeastern Alaska is relatively low. In addition, the abundance estimate does not include 14 whales from southeastern Alaska and 16 whales off the coast of California that have been provisionally classified as 'transients'.

Other estimates of the overall population size (i.e., N_{BEST}) and associated CV(N) are not currently available. Thus, the minimum population estimate (N_{MIN}) for the Eastern North Pacific Transient stock of killer whales is 314 animals, which includes animals found in Canadian waters (see PBR Guidelines regarding the status of migratory trans-boundary stocks, Wade and Angliss 1997). Information on the percentage of time animals typically encountered in Canadian waters spend in U.S. waters is unknown. However, as noted above, this minimum population estimate is considered conservative. This approach is consistent with previous recommendations of the Alaska Scientific Review Group (DeMaster 1996).

Current Population Trend

At present, reliable data on trends in population abundance for the West Coast Transient stock of killer whales are unavailable.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

A reliable estimate of the maximum net productivity rate is currently unavailable for this stock of killer whales. Studies of 'resident' killer whale pods in the Pacific Northwest resulted in estimated population growth rates of 2.92% and 2.54% over the period from 1973 to 1987 (Olesiuk et al. 1990, Brault and Caswell 1993). However, a population increases at the maximum growth rate (R_{MAX}) only when the population is at extremely low levels; thus, the estimate of 2.92% is not a reliable estimate of R_{MAX} . Hence, until additional data become available, it is recommended that the cetacean maximum theoretical net productivity rate (R_{MAX}) of 4% be employed for this stock (Wade and Angliss 1997).

POTENTIAL BIOLOGICAL REMOVAL

Under the 1994 reauthorized Marine Mammal Protection Act (MMPA), the potential biological removal (PBR) is defined as the product of the minimum population estimate, one-half the maximum theoretical net productivity rate, and a recovery factor: $PBR = N_{MIN} \times 0.5 R_{Max} \times F_R$. The recovery factor (F_R) for this stock is 0.5, the value for cetacean stocks with unknown population status with a mortality rate $CV \ge 0.80$ (Wade and Angliss 1997). Thus, for the Eastern North Pacific Transient killer whale stock, PBR = 3.1 animals ($314 \times 0.02 \times 0.5$). The proportion of time that this trans-boundary stock spends in Canadian waters cannot be determined (G. Ellis, Pacific Biological Station, Canada, pers. comm.)

HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fisheries Information

NMFS observers monitored the California/Oregon thresher shark/swordfish drift gillnet fishery from 1994 to 2003 (Julian 1997, Julian and Beeson 1998, Cameron and Forney 1999, Carretta 2002, Carretta and Chivers 2003, Carretta and Chivers 2004). The observed mortality in this fishery, in 1995, was a transient whale as determined by genetic testing (S. Chivers, NMFS-SWFSC, pers. comm.). Overall entanglement rates in the California/Oregon thresher shark/swordfish drift gillnet fishery dropped considerably after the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders (Barlow and Cameron 1999). Because the California/Oregon thresher shark/swordfish drift gillnet fishery is observed and has not incurred incidental serious injuries or mortalities of killer whales between 1999-2003, the estimate of fishery-related take for this fishery is zero. Thus, the mean annual mortality rate for this stock is zero. Additional fisheries that could interact with the Eastern North Pacific Transient stock of killer whales are listed in Appendix 3.

An additional source of information on the number of killer whales killed or injured incidental to commercial fishery operations is the self-reported fisheries information required of vessel operators by the MMPA. During the period between 1994 and 2003, there were no fisher self-reports of killer whale mortalities from any fisheries operating within the range of this stock. However, because logbook records (fisher self-reports required during 1990-94) are most likely negatively biased (Credle et al. 1994), these are considered to be minimum estimates. Self-reported fisheries data are incomplete for 1994, not available for 1995, and considered unreliable after 1995 (see Appendix 7 for details.)

The estimated minimum mortality rate incidental to recently monitored U.S. commercial fisheries is zero animals per year.

Due to a lack of Canadian observer programs, there are few data concerning the mortality of marine mammals incidental to Canadian commercial fisheries, which are analogous to U.S. fisheries that are known to interact with killer whales. The sablefish longline fishery accounts for a large proportion of the commercial fishing/killer whale interactions in Alaska waters. Such interactions have not been reported in Canadian waters where sablefish are taken via a pot fishery. Since 1990, there have been no reported fishery-related strandings of killer whales in Canadian waters. However, in 1994, one killer whale was reported to have contacted a salmon gillnet, but it did not entangle (Guenther et al. 1995). Data regarding the level of killer whale mortality related to commercial fisheries in Canadian waters, though thought to be small, are not readily available or reliable which results in an underestimate of the annual mortality for this stock.

Subsistence/Native Harvest Information

There are no reports of a subsistence harvest of killer whales in Alaska or Canada.

Other Mortality

The shooting of killer whales in Canadian waters has been a concern in the past. However, in recent years there have been no reports of shooting incidents in Canadian waters. In fact, the likelihood of shooting incidents involving 'transient' killer whales is thought to be minimal since commercial fishermen are most likely to observe 'transients' feeding on seals or sea lions instead of interacting with their fishing gear (G. Ellis, Pacific Biological Station, Canada, pers. comm.).

Collisions with boats are another source of mortality. One mortality due to a ship strike occurred in 1998, when a killer whale struck the propeller of a vessel in the Bering Sea groundfish trawl fishery. There have been no reported mortalities of killer whales from this stock due to ship strikes.

STATUS OF STOCK

The West Coast transient killer whale stock is not designated as "depleted" under the MMPA or listed as "threatened" or "endangered" under the Endangered Species Act. Recall that the human-caused mortality has been underestimated, primarily due to a lack of information on Canadian fisheries, and that the minimum abundance estimate is considered conservative (because researchers continue to encounter new whales and provisionally classified whales from southeastern Alaska and off the coast of California were not included), resulting in a conservative PBR estimate. Based on currently available data, the estimated annual fishery-related mortality level (0.0) does not exceed 10% of the PBR (0.3) and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate. The estimated annual level of human-caused mortality and serious injury (0.0 animals per year) does not exceed the PBR (3.1). Therefore, the West Coast Transient stock of killer whales is not classified as a strategic stock. Population trends and status of this stock relative to its Optimum Sustainable Population (OSP) level are currently unknown.

REFERENCES

- Baird, R. W., and P. J. Stacey. 1988. Variation in saddle patch pigmentation in populations of killer whales (*Orcinus orca*) from British Columbia, Alaska, and Washington State. Can. J. Zool. 66 (11):2582-2585.
- Baird, R. W., P. A. Abrams, and L. M. Dill. 1992. Possible indirect interactions between transient and resident killer whales: implications for the evolution of foraging specializations in the genus *Orcinus*. Oecologia 89:125-132.
- Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull., U.S. 93:1-14.
- Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ-97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25 pp.
- Barlow, J., and G. A. Cameron. 1999. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Paper SC/51/SM2 presented to the International Whaling Commission, May 1998 (unpublished). 20 pp.
- Barrett-Lennard, L. G. 2000. Population structure and mating patterns of killer whales (*Orcinus orca*) as revealed by DNA analysis. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 97 pp.

- Bigg, M. A., P. F. Olesiuk, G. M. Ellis, J. K. B. Ford, and K. C. Balcomb III. 1990. Social organization and genealogy of resident killer whales (*Orcinus orca*) in the coastal waters of British Columbia and Washington State. Pp. 386-406 *In* Hammond, P. S., S. A. Mizroch, and G. P. Donovan (eds.), Individual Recognition of Cetaceans: Use of Photo-identification and Other Techniques to Estimate Population Parameters. Rep. Int. Whal. Commn. Special Issue 12.
- Black, N. A., A. Schulman-Janiger, R. L. Ternullo, and M. Guerrero-Ruiz. 1997. Killer whales of California and western Mexico: a catalog of photo-identified individuals. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-247, 174 pp.
- Braham, H. W., and M. E. Dahlheim. 1982. Killer whales in Alaska documented in the Platforms of Opportunity Program. Rep. Int. Whal. Commn. 32:643-646.
- Brault, S., and H. Caswell. 1993. Pod-specific demography of killer whales (*Orcinus orca*). Ecology 74(5):1444-1454.
- Cameron, G. A., and K. A. Forney. 1999. Preliminary estimates of cetacean mortality in the California gillnet fisheries for 1997 and 1998. Paper SC/51/O4 presented to the International Whaling Commission, May 1999 (unpublished). 14 pp.
- Carretta, J. V. 2002. Preliminary estimates of cetacean mortality in California gillnet fisheries for 2001. Unpubl. doc. submitted to Int. Whal. Comm. (SC/54/SM12). 22 pp.
- Carretta, J. V. and S. J. Chivers. 2003. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2002. Unpubl. doc. submitted to Int. Whal. Comm. (SC/55/SM3). 21 pp.
- Carretta J. V. and S. J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Unpubl. doc. submitted to Int. Whal. Comm. (SC/56/SM1). 20 pp.
- Credle, V. R., D. P. DeMaster, M. M. Merklein, M. B. Hanson, W. A. Karp, and S. M. Fitzgerald (eds.). 1994. NMFS observer programs: minutes and recommendations from a workshop held in Galveston, Texas, November 10-11, 1993. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-94-1. 96 pp.
- Dahlheim, M. E., D. Ellifrit, and J. Swenson. 1997. Killer Whales of Southeast Alaska: A Catalogue of Photoidentified Individuals. Day Moon Press, Seattle, WA. 82 pp. + appendices.
- DeMaster, D. P. 1996. Minutes from the 11-13 September 1996 meeting of the Alaska Scientific Review Group, Anchorage, AK. 20 pp + appendices. Available upon request National Marine Mammal Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115.
- Ford, J. K. B., and G. M. Ellis. 1999. Transients: Mammal-Hunting Killer Whales of British Columbia, Washington, and Southeastern Alaska. University of British Columbia Press, Vancouver, BC. 96 pp.
- Ford, J. K. B., and H. D. Fisher. 1982. Killer whale (*Orcinus orca*) dialects as an indicator of stocks in British Columbia. Rep. Int. Whal. Commn. 32:671-679.
- Ford, J. K. B., G. M. Ellis, and K. C. Balcomb. 1994. Killer Whales: The Natural History and Genealogy of *Orcinus orca* in British Columbia and Washington State. University of British Columbia Press, Vancouver, BC, and University of Washington Press, Seattle. 102 pp.
- Ford, J.K.B., G.M. Ellis, K.C. Balcomb. 2000. Killer Whales. University of British Columbia Press, Vancouver, Toronto, Canada; University of Washington Press, Seattle. 104p.
- Forney, K. A., J. Barlow, and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull., U.S. 93:15-26.
- Forney, K. A., and P. R. Wade. World-wide abundance and density of killer whales. In press. In: Whales, Whaling, and Ecosystems (ed. J. Estes), University of California Press.
- Goley, P. D., and J. M. Straley. 1994. Attack on gray whales (*Eschrichtius robustus*) in Monterey Bay, California, by killer whales (*Orcinus orca*) previously identified in Glacier Bay, Alaska. Can. J. Zool. 72:1528-1530.
- Green, G. A., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnel, and K. C. Balcomb. 1992. Cetacean distribution and abundance off Oregon and Washington, 1989-1990. Pp. 1-100 *In* Brueggeman, J. J. (ed.), Oregon and Washington Marine Mammal and Seabird Surveys. Final Rep. OCS Study MMS 91-0093.
- Guenther, T. J., R. W. Baird, R. L. Bates, P. M. Willis, R. L. Hahn, and S. G. Wischniowski. 1995. Strandings and fishing gear entanglements of cetaceans on the west coast of Canada in 1994. Paper SC/47/O6 presented to the International Whaling Commission, May 1995 (unpublished). 7 pp.
- Hoelzel, A. R., and G. A. Dover. 1991. Genetic differentiation between sympatric killer whale populations. Heredity 66:191-195.

- Hoelzel, A. R., M. E. Dahlheim, and S. J. Stern. 1998. Low genetic variation among killer whales (*Orcinus orca*) in the Eastern North Pacific, and genetic differentiation between foraging specialists. J. Heredity 89:121-128.
- Hoelzel, A. R., A. Natoli, M. Dahlheim, C. Olavarria, R. Baird and N. Black. 2002. Low worldwide genetic diversity in the killer whale (*Orcinus orca*): implications for demographic history. Proc. Ro. Soc. London 269: 1467-1473.
- Julian, F. 1997. Cetacean mortality in California gill net fisheries: preliminary estimates for 1996. Paper SC/49/SM02 presented to the Int. Whal. Comm., September 1997 (unpublished). 13 pp.
- Julian, F., and M. Beeson. 1998. Estimates of marine mammal, turtle, and seabird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull., U.S. 96(2):271-284.
- Leatherwood, J. S., and M. E. Dahlheim. 1978. Worldwide distribution of pilot whales and killer whales. Naval Ocean Systems Center, Tech. Rep. 443:1-39.
- Leatherwood, S., C. O. Matkin, J. D. Hall, and G. M. Ellis. 1990. Killer whales, *Orcinus orca*, photo-identified in Prince William Sound, Alaska 1976 to 1987. Can. Field Nat. 104:362-371.
- Matkin, C., G. Ellis, E. Saulitis, L. Barrett-Lennard, and D. Matkin. 1999. Killer Whales of Southern Alaska. North Gulf Oceanic Society. 96 pp.
- Mitchell, E. D. 1975. Report on the meeting on small cetaceans, Montreal, April 1-11, 1974. J. Fish. Res. Bd. Can. 32:914-916.
- Olesiuk, P. F., M. A. Bigg, and G. M. Ellis. 1990. Life history and population dynamics of resident killer whales (*Orcinus orca*) in the coastal waters of British Columbia and Washington State. Rep. Int. Whal. Commn. Special Issue 12:209-242.
- Saulitis, E. L. 1993. The behavior and vocalizations of the "AT" group of killer whales (*Orcinus orca*) in Prince William Sound, Alaska. M.S. Thesis, University of Alaska Fairbanks, Fairbanks, AK, 193 pp.
- Stevens, T. A., D. Duffield, E. Asper, K. Hewlett, A. Bolz, L. Gage, and G. Bossart. 1989. Preliminary findings of restriction fragment differences in mitochondrial DNA among killer whales (*Orcinus orca*). Can. J. Zool. 67:2592-2595.
- Wade, P. R., and R. Angliss. 1997. Guidelines for assessing marine mammal stocks: report of the GAMMS workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.